Navigation

  • Page 1

    ReferenceManual9/Series CNCAMPAllen-Bradley

  • Page 2

    Because of the variety of uses for the products described in thispublication, those responsible for the application and use of this controlequipment must satisfy themselves that all necessary steps have been takento assure that each application and use meets all performance and safetyrequirements...

  • Page 3

    Summary of Changes9/Series AMP Reference ManualOctober 2000Summary of ChangesThe following is a list of the larger changes made to this manual since itslast printing. Other, less significant changes, were also made throughout.Homing sequenceHoming sequence using distance--coded markers (DCMs)Shun...

  • Page 4

    PrefaceP-2

  • Page 5

    9/Series CNC AMP Reference ManualTable of ContentsT--iChapter 1Using This Manual1.0 Manual Objective1--1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.1 An Overview of AMP1--1. . . . . . . . . . . . . . . . ...

  • Page 6

    9/Series CNC AMP Reference ManualTable of ContentsT--ii3.6 Configuring a Servo3-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.7 Selecting Units3-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

  • Page 7

    9/Series CNC AMP Reference ManualTable of ContentsT--iiiChapter 6Zone/Overtravel Parameters6.0 Chapter Overview6-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.1 Zones6-3. . . . . . . . . . . . . . . . . . ...

  • Page 8

    9/Series CNC AMP Reference ManualTable of ContentsT--iv7.2.15 Teeth on Gear for Position Feedback7-54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7.2.16 Teeth on Lead Screw for Position Feedback7-56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

  • Page 9

    9/Series CNC AMP Reference ManualTable of ContentsT--vChapter 8Jog Parameters8.0 Chapter Overview8-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8.1 Pulse Count Multipliers8-2. . . . . . . . . . . . . . . . ...

  • Page 10

    9/Series CNC AMP Reference ManualTable of ContentsT--viChapter 10Acc/Dec Parameters10.0 Chapter Overview10-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10.1 Acceleration and Deceleration10-2. . . . . . . . . ...

  • Page 11

    9/Series CNC AMP Reference ManualTable of ContentsT--viiChapter 13Spindle 2 Parameters13.0 Chapter Overview13-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13.1 DAC Voltage and Spindle Gear Parameters13-3. . ....

  • Page 12

    9/Series CNC AMP Reference ManualTable of ContentsT--viiiChapter 16Axis Program Format Parameters16.0 Chapter Overview16-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16.1 Axis 1-12 Word Format16-2. . . . . . ...

  • Page 13

    9/Series CNC AMP Reference ManualTable of ContentsT--ixChapter 18Plane Select Parameters18.0 Chapter Overview18-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18.1 Plane Select Parameters18-2. . . . . . . . . ....

  • Page 14

    9/Series CNC AMP Reference ManualTable of ContentsT--x21.3.1 Modality of AMP G-codes21-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21.3.2 G-Code for Macro Call to #9010 to #901921-8. . . . . . . . . . . . . . . . . . . . . . . . ...

  • Page 15

    9/Series CNC AMP Reference ManualTable of ContentsT--xiChapter 23Cutter Comp/Tool Tip Radius23.0 Chapter Overview23-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23.1 Compensation Basic Setup23-2. . . . . . . ...

  • Page 16

    9/Series CNC AMP Reference ManualTable of ContentsT--xii25.11 7300 Tape Compatibility Parameters25-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25.11.1 Dwell Time for G82, G88 and G8925-18. . . . . . . . . . . . . . . . . . . . . . . ....

  • Page 17

    9/Series CNC AMP Reference ManualTable of ContentsT--xiiiChapter 30Cylindrical/Virtual C Parameters30.0 Chapter Overview30-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30.1 Mill Cylindrical Interpolation Para...

  • Page 18

    9/Series CNC AMP Reference ManualTable of ContentsT--xivChapter 33Remote I/O Parameters33.0 Chapter Overview33-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33.1 Adapter Baud Rate33-1. . . . . . . . . . . . . ...

  • Page 19

    9/Series CNC AMP Reference ManualTable of ContentsT--xv37.7 Threading E Word Definition37-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37.8 Secondary Auxiliary Function Word37-8. . . . . . . . . . . . . . . . . . . . . . . ....

  • Page 20

    9/Series CNC AMP Reference ManualTable of ContentsT--xviChapter 41Patch AMP41.0 Patch AMP41-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41.1 Accessing Patch AMP41-1. . . . . . . . . . . . . . . . ....

  • Page 21

    Chapter11--1Using This ManualThis manual is designed to assist system installers in programming theAdjustable Machine Parameters (AMP) for the Allen-Bradley9/Series CNC.Table 1.A briefly outlines how this manual’s structure and how to locatecertain information.Table 1.AWhat This Manual Contains...

  • Page 22

    Using This ManualChapter 11--2monitor and command peripheral devices such as tool turrets, part clamps,and coolant systems. Refer to your PAL reference manual for additionalinformation.AMP lets you:define basic parameters such as system resolution and axis types thataffect the overall operation o...

  • Page 23

    Using This ManualChapter 11--3To make this manual easier to read and understand, full product names andfeatures are shortened where possible. Here are the shortened terms:AMP — Adjustable Machine ParametersCNC — Computer Numerical ControlCPU — Central Processing Unit (the computing part of ...

  • Page 24

    Using This ManualChapter 11--4Using the Screen ExamplesWe show several different types of screens in this manual. Some of thescreens will not match what you see on your terminal. The screens areoffered as examples only. Figure 1.1 shows two example screens anddefines the terms that they use.Figur...

  • Page 25

    Using This ManualChapter 11--5Information that is especially important is indicated by the following:ATTENTION: Indicates circumstances or practices that canlead to personal injury as well as damage to the control, themachine, or other equipment.Important: Indicates information that is necessary ...

  • Page 26

    Using This ManualChapter 11--6

  • Page 27

    Chapter22-1Using AMP Applications and ODS UtilitiesThis chapter covers the AMP application and the related download andupload applications of the Offline Development System (ODS). Use theseapplications and their utilities to prepare an AMP file for use by thecontrol.This chapter contains this inf...

  • Page 28

    Using AMP Applications and ODS UtilitiesChapter 22-2Figure 2.1 shows the process of creating an AMP file.Figure 2.1Process of Creating AMP for a ControlBackup to thecontrol’s memorySTART ODSVerify or assignvalue for eachparameter inthat groupAMPEditSelect nextparametergroup, process oraxisCorre...

  • Page 29

    Using AMP Applications and ODS UtilitiesChapter 22-3The AMP parameter file is developed using the Offline DevelopmentSystem (ODS). The ODS software provides a full-featured AMPdevelopment environment. All AMP parameters, except those dealingwith axis calibration and fine tuning the spindle and se...

  • Page 30

    Using AMP Applications and ODS UtilitiesChapter 22-4The following screen appears:Proj:TESTAppl:noneUtil:noneF2-ProjectF1-FileAMP(A)PAL(P)I/O Assignments(I)Part Program(R)Upload(U)Download(D)F4-UtilityF5-ConfigurationF3-Application3.Press [A]to select the AMP application.To select the AMP editor u...

  • Page 31

    Using AMP Applications and ODS UtilitiesChapter 22-5The workstation displays a screen showing that it is loading theselected utility, then displays this AMP editor menu screen:Proj:TESTAppl:AMPUtil:EditF2-Project F3-Application F4-UtilityF5-ConfigurationF1-FileF2-AxisF3-OptionsF4-Quick Edit!F5-Pr...

  • Page 32

    Using AMP Applications and ODS UtilitiesChapter 22-6The following screen appears:Proj:TESTAppl:AMPUtil:EditF2-Project F3-Application F4-UtilityF5-ConfigurationF1-FileF2-AxisF3-OptionsF4-Quick Edit!F5-ProcessAxis :Type :About(?)New...(N)Open...(O)Save(S)Save as...(A)Copy...(C)Rename...(R)Delete......

  • Page 33

    Using AMP Applications and ODS UtilitiesChapter 22-7To copy an AMP file from the current project:1.Press [F1]to pull down the F1-File menu.2.Press [C]to select the Copy option.The following screen appears:Proj:AMPTESTAppl:AMPUtil:EditF2-Project F3-Application F4-UtilityF5-ConfigurationF1-FileF2-A...

  • Page 34

    Using AMP Applications and ODS UtilitiesChapter 22-8Use the rename option to change the name of an AMP file in the activeproject. To rename a file:1.Press [F1]to pull down the F1-File menu.2.Press [R]to rename a file.3.The workstation displays the directory of existing files and asks youwhich fil...

  • Page 35

    Using AMP Applications and ODS UtilitiesChapter 22-9The following screen appears:Proj:AMPTESTAppl:AMPUtil:EditF2-Project F3-Application F4-UtilityF5-ConfigurationF1-FileF2-AxisF3-OptionsF4-Quick Edit!F5-ProcessType : LatheAXIS: X<P1> - linearP1:File :TESTCopy From Project...Use ARROW keys o...

  • Page 36

    Using AMP Applications and ODS UtilitiesChapter 22-10Before setting AMP parameter values, open a file.When you open a file, the following screen appears:Proj:AMPTESTAppl:AMPUtil:EditF2-Project F3-Application F4-UtilityF5-ConfigurationF1-FileF2-AxisF3-OptionsF4-Quick Edit!F5-ProcessType : LatheAXI...

  • Page 37

    Using AMP Applications and ODS UtilitiesChapter 22-11To select an AMP parameter group:1.Move the cursor to the desired group, then press [ENTER].When you have selected the Axis Parameters group, this screen isdisplayed:Proj:AMPTESTAppl:AMPUtil:EditF2-Project F3-Application F4-UtilityF5-Configurat...

  • Page 38

    Using AMP Applications and ODS UtilitiesChapter 22-12The software refers to each AMP parameter by an identification number.All AMP parameters have an identification number that allows forQuick Editing.To edit a parameter, follow these steps:1.Press [F4]to pull down the Quick Edit menu.The followi...

  • Page 39

    Using AMP Applications and ODS UtilitiesChapter 22-13After you have edited the open AMP file, it must be saved to store the newparameter values. There are two ways to save the file:Save — saves the edited file under its original nameSave As — saves the edited file under a new name, and retain...

  • Page 40

    Using AMP Applications and ODS UtilitiesChapter 22-14When you save an AMP file, the original file is saved as a backup file, thenoverwritten with the edited file. To recover the AMP file that wasoverwritten during the most recent save operation, use the Recover BackupFile option:1.Press [F1]to pu...

  • Page 41

    Using AMP Applications and ODS UtilitiesChapter 22-15If the open file has been edited, the workstation displays this screen:Proj:AMPTESTAppl:AMPUtil:EditF2-Project F3-Application F4-UtilityF5-ConfigurationF1-FileF2-AxisF3-OptionsF4-Quick Edit!F5-ProcessType : LatheAXIS: X<P1:> - linearP1:Ax...

  • Page 42

    Using AMP Applications and ODS UtilitiesChapter 22-164.Refer to the table below.If you want to:select:the workstation:· discard any changes· close the open file[Y]· exits the AMP editor· returns to the main menu line of ODSterminate the quit procedure[N]returns to the screen that was displaye...

  • Page 43

    Using AMP Applications and ODS UtilitiesChapter 22-17On the control, you must configure port B for serial communication. Theserial communication parameters of this port must correspond to those ofthe workstation. To display the serial communication parameters ofport B:1.Press the {SYSTEM SUPORT} ...

  • Page 44

    Using AMP Applications and ODS UtilitiesChapter 22-184.Press [F4]to pull down the Utility menu.The workstation displays this screen:Proj:TESTAppl:DownloadUtil:noneF2-Project F3-ApplicationF1-FileSend AMP params(A)Send PAL and I/O(P)Send Part Program(R)F4-UtilityF5-Configuration5.Select the Send A...

  • Page 45

    Using AMP Applications and ODS UtilitiesChapter 22-19When you press any key, the workstation displays this screen:Proj:TESTAppl:DownloadUtil: Send AMP paramsF2-Project F3-Application F4-UtilityF5-ConfigurationF1-FileDownloading...Use ARROW keys or type in name. Press ENTER when done or ESC to can...

  • Page 46

    Using AMP Applications and ODS UtilitiesChapter 22-20The workstation displays this screen:Proj:TESTAppl:DownloadUtil: Send AMP paramsF2-Project F3-Application F4-UtilityF5-ConfigurationF1-FileDownload in progressPercent transferred 50%The workstation continuously updates and displays the percenta...

  • Page 47

    Using AMP Applications and ODS UtilitiesChapter 22-21At the workstation:1.Return to the main menu line of ODS.2.Press [F3]to pull down the Applications menu.3.Select the Download application.4.Press [F4]to pull down the Utilities menu.5.Select the Send AMP params utility.6.Select the Storage Devi...

  • Page 48

    Using AMP Applications and ODS UtilitiesChapter 22-22At the control:1.Press the {SYSTEM SUPPORT} softkey.2.Press the {AMP} softkey.3.Press the {UPLD/DWNLD} softkey.The operator panel CRT displays this screen:Figure 2.2Upload/Download Parameter ScreenTOPORT AFROMPORT ATOPORT BFROMPORT BUPLD / DWNL...

  • Page 49

    Using AMP Applications and ODS UtilitiesChapter 22-23The operator panel CRT displays this screen:Figure 2.3Download Parameter ScreenCOPY PARAMETERSFROM:PORT A (or PORT B)TO:AMPDEVICE:ALLEN-BRADLEY 1770-SBBAUD RATE:1200PARITY:NONESTOP BITS:1DATA LENGTH:8YESNO6.Refer to the table below.If you want ...

  • Page 50

    Using AMP Applications and ODS UtilitiesChapter 22-24The currently active AMP file in the control or an AMP file stored in astorage device can be edited. These files must be uploaded to theworkstation before they can be edited. Use the upload application of ODSto upload AMP files in these ways:fr...

  • Page 51

    Using AMP Applications and ODS UtilitiesChapter 22-25The workstation displays this screen:Proj:TESTAppl:UploadUtil: Get AMP paramsF2-Project F3-ApplicationF1-FileGet AMP params(A)Get PAL and I/O(P)Get Part Program(R)F4-UtilityF5-Configuration6.Select the Get AMP params utility.The workstation dis...

  • Page 52

    Using AMP Applications and ODS UtilitiesChapter 22-267.Select the Control option.The workstation displays this screen:Proj:TESTAppl:UploadUtil: Get AMP paramsF2-Project F3-Application F4-UtilityF5-ConfigurationF1-FileName of file to be uploadedType in name.Press ENTER when done, or ESC to cancel....

  • Page 53

    Using AMP Applications and ODS UtilitiesChapter 22-279.The workstation starts uploading a copy of the active AMP file to theworkstation. The workstation continuously updates and displays thepercentage of the file that has been transferred.The workstation then displays this screen:Proj:TESTAppl:Up...

  • Page 54

    Using AMP Applications and ODS UtilitiesChapter 22-28The workstation displays this screen:Proj:TESTAppl:UploadUtil: Get AMP paramsF2-Project F3-Application F4-UtilityF5-ConfigurationF1-FileWARNINGParameter Out of RangeContinue Checking(C)Edit Parameter(E)Quit Checking(Q)Correct the out of range e...

  • Page 55

    Using AMP Applications and ODS UtilitiesChapter 22-29When you upload an AMP file from a storage device, the workstation mustbe connected to the storage device. In this procedure the specific storagedevice is an Allen-Bradley 1770-SB cassette recorder.To upload a file from the control to a 1770-SB...

  • Page 56

    Using AMP Applications and ODS UtilitiesChapter 22-30The operator panel CRT displays this screen:Figure 2.4Upload/Download Parameter ScreenTOPORT AFROMPORT ATOPORT BFROMPORT BUPLD / DWNLDAMPPAL AND I/OSELECT OPTION USING THE UP/DOWN ARROW4.Use the up or down arrow keys to select the AMP option.5....

  • Page 57

    Using AMP Applications and ODS UtilitiesChapter 22-31The operator panel CRT displays this screen:Figure 2.5Upload Parameter ScreenCOPY PARAMETERSFROM:AMPTO:PORT A (or PORT B)DEVICE:ALLEN-BRADLEY 1770-SBBAUD RATE:1200PARITY:NONESTOP BITS:1DATA LENGTH:8YESNO6.Refer to the table below.If you want to...

  • Page 58

    Using AMP Applications and ODS UtilitiesChapter 22-32At the workstation:1.Return to the main menu line of ODS.2.Press [F3]to pull down the Applications menu.3.Select the Upload application.4.Press [F4]to pull down the utilities menu.5.Select the Get AMP params utility.The workstation displays the...

  • Page 59

    Using AMP Applications and ODS UtilitiesChapter 22-33AMP setting -- The AMP parameter “Block Transfer Capability” whenset to enabled, also enables the pass through feature. Once downloadedto the control, this setting remains until either AMP is lost or changed.Softkey -- This method is discus...

  • Page 60

    Using AMP Applications and ODS UtilitiesChapter 22-34After you create a file by using the AMP editor, it can be documentedusing the Document utility. This file can be printed or displayed onthe workstation.To document an AMP file, use this procedure:1.Press [F3]to pull down the Application menu.2...

  • Page 61

    Using AMP Applications and ODS UtilitiesChapter 22-354.Select the Document utility.The workstation displays a screen showing that it is loading theselected utility, then displays this screen:Proj:TESTAppl:AMPUtil:DocumentF2-Project F3-ApplicationF1-FileF4-UtilityF5-ConfigurationA M PD O C U M E N...

  • Page 62

    Using AMP Applications and ODS UtilitiesChapter 22-366.Select the file to be documented.The workstation displays this screen:Proj:TESTAppl:AMPUtil:DocumentF2-Project F3-ApplicationF1-FileF4-UtilityF5-ConfigurationA M PD O C U M E N T O RDocument parameters by :Axis/Non-Axis Sort(a)Parameter Numbe...

  • Page 63

    Using AMP Applications and ODS UtilitiesChapter 22-37Press any key to bring up this screen:Proj:TESTAppl:AMPUtil:DocumentF2-Project F3-ApplicationF1-FileF4-UtilityF5-ConfigurationA M PD O C U M E N T O RDocument File(D)Quit(Q)8.Select another file to document or quit the AMP documenter.To print o...

  • Page 64

    Using AMP Applications and ODS UtilitiesChapter 22-38The workstation displays this screen:Proj:TESTAppl:AMPUtil:DocumentF2-Project F3-ApplicationF1-FileF4-UtilityF5-ConfigurationAbout(?)Copy file...(C)Rename file...(R)Delete file...(D)Copy from proj...(F)Print(P)Print Cancel(X)Type...(T)Exit to D...

  • Page 65

    Chapter33-1Configuring AxesThis chapter covers the procedures that must be performed to configure theaxes of the control. Before setting the axis parameter values, an axis nameand axis type must be specified for each axis.This chapter contains this information:Topic:Page:Selecting an Axis3-2Speci...

  • Page 66

    Configuring AxesChapter 33-2The axes of the control must be configured in AMP through theircorresponding AMP parameters. Some AMP parameters are globalparameters. The value assigned to these parameters apply to all axes of thecontrol. Other AMP parameters must be set independently for each axis.T...

  • Page 67

    Configuring AxesChapter 33-3The screen displays each axis, and assigns it a letter or number thatyou can use to select it.Important: The three controls support the following number of servoaxes with feedback:the 9/230 supports three axesthe 9/440 supports four axesthe 9/260 supports eight axesthe...

  • Page 68

    Configuring AxesChapter 33-4Important: The axes must be named in a consecutive series; fitted axescannot follow an unfitted axis. Any fitted axes that follow an unfitted axisare ignored by the control. Any motor using the auxiliary outputs(CN8/TB2 on 3-axis digital or analog servo modules, TB2 on...

  • Page 69

    Configuring AxesChapter 33-5Use this procedure to specify the axis types of the axes on the machine.Repeat the procedure for each axis on the machine.Specifying SpindlesFollow these guidelines if you are using one or more spindles in yoursystem:Spindles must be configured after you have configure...

  • Page 70

    Configuring AxesChapter 33-6Configuring SpindlesIf you are using one or more spindles, refer to chapter 7 for information onsetting the parameters Spindle Type for Axis and Spindle Servo Boardfor Axis.You must configure the spindles in this order:the first spindle axis is spindle 1the spindle axi...

  • Page 71

    Configuring AxesChapter 33-73.Select the axis to configure.The workstation displays this screen:Proj:AMPTESTAppl:AMPUtil:EditF2-Project F3-Application F4-UtilityF5-ConfigurationF1-FileF2-AxisF3-OptionsF4-Quick Edit!F5-ProcessType : LatheAXIS: X<P1:> - linearP1:Axis ParametersHome Parameters...

  • Page 72

    Configuring AxesChapter 33-8Here is a list of axes with their corresponding AMP identificationnumbers and default type values for both mill and lathe control types.Axis NumberParameter NumberAxis Type1[360]linear2[361]linear3[362]linear4[363]unfitted5[364]unfitted6[365]unfitted7[366]unfitted8[367...

  • Page 73

    Configuring AxesChapter 33-93.Type in the number of the axis to delete.The workstation reclassifies the selected axis as “unfitted” and theparameters change to their default values.Important: The axes must be named in a consecutive series, no fitted axesmay follow an unfitted axis. All spindl...

  • Page 74

    Configuring AxesChapter 33-103.Select the axis from which to copy.The workstation displays this screen:Proj:TESTAppl:AMPUtil:EditF2-Project F3-Application F4-UtilityF5-ConfigurationF1-FileF2-AxisF3-OptionsF4-Quick Edit!Control Type : MillAxis :X - linearFile :TESTAxis ParametersHome ParametersZon...

  • Page 75

    Configuring AxesChapter 33-11For each axis, the type of servo needs to be entered. To do this:1.Configure the axis type as described on page 3-6.2.Configure the servo by setting the:Servo Hardware TypeServo Loop TypeThe full servo parameter selections will only become available whenboth of these ...

  • Page 76

    Configuring AxesChapter 33-12Once you have selected the servo hardware, you are prompted to select thetype of servo loop you will be using.b.Select a Servo Loop Type. This is the type of servo loop(s) youexpect the 9/SERIES control to close. Select between:Servo Loop Type:Results in:NoneThis is t...

  • Page 77

    Configuring AxesChapter 33-132.Select the display and input units.The workstation returns to the main menu.Your control type is based on the application type that you selected whenyou created the project.If, as an application type,you selected:these control types areavailable:and the default valu...

  • Page 78

    Configuring AxesChapter 33-14The workstation displays this screen:Proj:AMPTESTAppl:AMPUtil:EditF2-Project F3-Application F4-UtilityF5-ConfigurationF1-FileF2-AxisF3-OptionsF4-Quick Edit!F5-ProcessType : LatheAXIS: X<P1:> - linearP1:Axis ParametersHome ParametersZone/Overtravel ParametersServ...

  • Page 79

    Configuring AxesChapter 33-15If you are using a Dual-Processing Control, you can select between twoprocess applications. To change processes, press [F5].The workstation displays this screen:Proj:AMPTESTAppl:AMPUtil:EditF2-Project F3-Application F4-UtilityF5-ConfigurationF1-FileF2-AxisF3-OptionsF4...

  • Page 80

    Configuring AxesChapter 33-16Use the Copy Process option to copy the AMP parameters from oneprocess to another.To copy a process:1.Press [F5]to pull down the F5--Process menu.2.Press [C]to select the Copy Process option.The following screen appears:Proj:AMPTESTAppl:AMPUtil:EditF2-Project F3-Appli...

  • Page 81

    Configuring AxesChapter 33-17Use the Name Process option to assign a name a maximum of 12characters in length. The name is split into two halves of sixcharacters each.You can use hex digits to create a name in double size characters(Kanji, etc.). Each hex digit is entered as two characters.To nam...

  • Page 82

    Configuring AxesChapter 33-184.Enter the characters for the first half of the name and press [Enter].Important: When you rename a process, you can leave the first half ofthe name unchanged by pressing [Esc].5.The menu for the second half of the name appears. Enter thecharacters for the second hal...

  • Page 83

    Configuring AxesChapter 33-19The following screen appears:Proj:AMPTESTAppl:AMPUtil:EditF2-Project F3-Application F4-UtilityF5-ConfigurationF1-FileF2-AxisF3-OptionsF4-Quick Edit!F5-ProcessType : LatheAXIS: X <P1> - linearFile :TEST-- Axis Parameters --Axis One’s Name:XAxis Two’s Name:YAx...

  • Page 84

    Configuring AxesChapter 33-20The following screen appears:Proj:AMPTESTAppl:AMPUtil:EditF2-Project F3-Application F4-UtilityF5-ConfigurationF1-FileF2-AxisF3-OptionsF4-Quick Edit!F5-ProcessType : LatheAXIS: X <P1> - linearFile :TEST-- Axis Parameters --Axis One’s Name:XAxis Two’s Name:YAx...

  • Page 85

    Chapter44-1Axis ParametersThis chapter covers the parameters used to specify the various axis relatedparameters. These parameters are accessed by selecting the AxisParameters group displayed on the main AMP menu screen. When youselect the “Axis Parameters” group, the workstation displays thes...

  • Page 86

    Chapter 4Axis Parameters4-2This table shows you where each of the axis parameters is found:Axis Parameter:Page:Axis Name4-5Axis Process4-6Process Spindles4-7Integrand Name4-8Incremental Name4-10Diameter Axis Name4-11Rollover value4-13Axis Sharable4-14All axes of the control must be assigned an ax...

  • Page 87

    Axis ParametersChapter 44-3Figure 4.1Example of a Lathe, a Mill, and a Dual Process Lathe+X+Z+X+Z+Y+ X+ U+ W+ ZDual Process LatheLatheMill

  • Page 88

    Chapter 4Axis Parameters4-4Figure 4.2Example of a Surface Grinder and a Cylindrical GrinderXZSYZX+--++------+--+Cylindrical GrinderSurface Grinder(Reciprocating)

  • Page 89

    Axis ParametersChapter 44-5FunctionThese parameters specify the axis name for each axis of the control. Eachaxis of a selected control type must be assigned an axis name. Thesenames are used in part programs to reference a specific axis.Important: The Name Axis option, accessed by pressing the [F...

  • Page 90

    Chapter 4Axis Parameters4-6FunctionThese parameters are only available for dual process applications. Usethese parameters to specify the process that controls the axis. Each axis onthe control must be assigned a specific process. You can choose eitherprocess 1 or process 2.Important: You cannot u...

  • Page 91

    Axis ParametersChapter 44-7FunctionThese parameters are only available in dual process applications. Use theseparameters to select the spindle(s) that process 1 or process 2 controls.Each spindle you configure must be assigned to a process. You can select ashared spindle that works for both proce...

  • Page 92

    Chapter 4Axis Parameters4-8ParameterParameter NumberProcess 1 Spindle(s)[351]Process 2 Spindle(s)[352]RangeSelectionResult(a)none(b)Spindle 1(c)Spindle 2(d)Spindle 3(e)Spindles 1 & 2(f)Spindles 1 & 3(g)Spindles 2 & 3(h)Spindles 1, 2 & 3Important: If you do not configure a spindle ...

  • Page 93

    Axis ParametersChapter 44-9RangeSelectionResult(a)I(b)J(c)K(d)NoneNotesEach of these parameters must be set independently for its correspondingaxis.The axis integrand name is a secondary programming word used toprogram additional axis data when necessary. For example, the axisintegrand name can b...

  • Page 94

    Chapter 4Axis Parameters4-10FunctionImportant: The axis incremental name parameter is used only for lathesusing G-code type A. It is not used for any other lathe types or millapplications.These parameters specify the incremental name for each axis of thecontrol. The numeric value programmed with ...

  • Page 95

    Axis ParametersChapter 44-11RangeSelectionResultSelectionResult(a)A(h)Y(b)B(i)Z(c)C(j)$B(d)U(k)$C(e)V(l)$X(f)W(m)$Y(g)X(n)$ZNotesThis parameter is a global parameter. The value applies to all axes.In the Dual Processing Lathe, this is a per process parameter. The value setin the parameters applie...

  • Page 96

    Chapter 4Axis Parameters4-12AxisParameterNumberAxisParameterNumber1[1205]9[9205]2[2205]10[10205]3[3205]11[11205]4[4205]12[12205]5[5205]13[13205]6[6205]14[14205]7[7205]15[15205]8[8205]RangeSelectionResult(a)True(b)FalseNotesMost angled-wheel cylindrical grinder applications require the virtual axi...

  • Page 97

    Axis ParametersChapter 44-13FunctionThis parameter is available only when configuring a rotary axis (selectedwith the F2 option). Typically, for rotary tables, this value represents fullrotation of the axis (normally 360 degrees).Figure 4.3Rotary Axis Rollover Value (configured to rollover at 360...

  • Page 98

    Chapter 4Axis Parameters4-14FunctionThis parameter is only available when configuring dual processingsystems. The Axis Sharable parameter is used to indicate that an axis isavailable for programming by both control processes. Control over ashared axis is switched from process to process through P...

  • Page 99

    Axis ParametersChapter 44-15Paramacro parameter numbers are assigned to an axis based on the order inwhich it is AMPed. Lets use paramacro parameter #5021 to #5029(Coordinates of Commanded Position) as examples. Assume thefollowing:This AxisAMPed HereCoordinate of commandedposition is shown in th...

  • Page 100

    Chapter 4Axis Parameters4-16It is not always necessary to configure the shared axis as the last axes inthe system. In the above example similar results would have beenachieved by configuring the shared axis as the first axis (1) in the system.In cases where a digital and analog servo card is used...

  • Page 101

    Axis ParametersChapter 44-17Deskew Axes (Splits)The split axis feature (which allows more than one servo to position onephysical axis) is available for dual processing systems. You can assignonly one split axes to each process. Additionally, if you choose to share asplit axis between processes, t...

  • Page 102

    Chapter 4Axis Parameters4-18

  • Page 103

    Chapter55-1Home ParametersHoming refers to the process of orienting a linear or rotary axis to aspecific, repeatable, mechanical position. This chapter covers the AMPparameters that the control uses to home the axes.If you have configured your axis as open loop, servo off, or servodetached, you d...

  • Page 104

    Home ParametersChapter 55-2This chapter covers the AMP parameters that are used in homing the axes.These parameters are significant for both manual and automaticaxis homing:Parameter:Page:Dir. to Move Off Limit Switch5-10Home Calibration5-11Axis Position after Homing5-12Home Speed from Limit Swit...

  • Page 105

    Home ParametersChapter 55-3Important: If the speed selected here is too great, the axis may move“through” the home switch before coming to a stop. If the switch changesfrom “OFF” to “ON” and then back to “OFF” before the axis can stop, andthe Dir to Move off Limit Switch is the sa...

  • Page 106

    Home ParametersChapter 55-49.If the distance to nearest null is out--of--tolerance, then the homeprocedure is aborted and an error message is displayed in yellow“axis names HOME TOLERANCE EXCEEDED”. Refer toFigure 5.1 and Figure 5.2 for an example.10. If the distance from the null is within t...

  • Page 107

    Home ParametersChapter 55-5Important: If the speed selected here is too great, the axis may move“through” the home switch before coming to a stop. If the switch changesfrom “OFF” to “ON” and then back to “OFF” before the axis can stop, andthe Dir to Move off Limit Switch is the sa...

  • Page 108

    Home ParametersChapter 55-6Figure 5.1Typical Homing SequenceEncoder markerHome limit switch(1) (2)(3) (4)OffOn(5)(6)(9)(8)(7)HOMECALIBRATIONdistanceDistanceto nearestmarkerThough not yet homed, the control picks up the encodermarker and records feedback counts since last markerInitial move to fin...

  • Page 109

    Home ParametersChapter 55-7Mechanical ConsiderationsATTENTION: If the encoder marker is exactly 180 degreesaway from the point at which the home limit switch transitionsfrom “ON” to “OFF,” an undesirable condition is created thatcould affect homing repeatability. To avoid this condition, ...

  • Page 110

    Home ParametersChapter 55-8Here are some common variations that can be accommodated:use a momentary contact home limit switch; if the axis passes theswitch, it reverts to the “OFF” statehold a home limit switch in the “ON” state whenever the axis is on oneside of it; hold it in the “OFF...

  • Page 111

    Home ParametersChapter 55-9Manual Homing Sequence in Home ModeThe following outlines a manual homing operation for systems with DCMswhen you set the Jog Select Switch to “Home”.1.Assuming you are using the standard MTB Panel, set the Mode Selectswitch to “Manual”. Once the switch is set, ...

  • Page 112

    Home ParametersChapter 55-10ATTENTION: The axis will only stop when the Axis/Directionbutton is released.After the axis passes three consecutive markers, the control automaticallyrecalculates the absolute axis position, based on the position after the axiscrosses the three consecutive markers add...

  • Page 113

    Home ParametersChapter 55-11NotesThis parameter must be set independently for each axis.This parameter is not used for axes that use distance coded marker linearfeedback devices.FunctionThis parameter specifies the distance from the encoder marker to thedesired home position. The control moves th...

  • Page 114

    Home ParametersChapter 55-12As another example, the encoder orientation relative to the axis positionmay change when repairing gears or gear belts. Consequently the distancethat the axis moves off the home limit switch during homing may bedifferent. That difference can be measured and entered as,...

  • Page 115

    Home ParametersChapter 55-13AxisParameterNumberAxisParameterNumber(1)[1310](7)[7310](2)[2310](8)[8310](3)[3310](9)[9310](4)[4310](10)[10310](5)[5310](11)[11310](6)[6310](12)[12310]Range--2450000.00000 to 2450000.00000 mmor--100000.00000 to 100000.00000 in.NotesFor example, the home position for t...

  • Page 116

    Home ParametersChapter 55-14FunctionThis parameter specifies the feedrate at which the axis moves to come offthe home limit switch.This feedrate is used for manual and automatic homing. It is used incoming off the switch and also in moving to the calculated home position.When a homing operation i...

  • Page 117

    Home ParametersChapter 55-15These parameters are related to automatic homing:Parameter:Page:G28 Direction to Home5-17G28 Home Speed5-18G30 Secondary Home Position5-20G30 3rd Home Position5-21G30 4th Home Position5-22Automatic homing is similar to manual homing and is described below.Automatic Hom...

  • Page 118

    Home ParametersChapter 55-16Automatic Homing Sequence (G28) with Distance--coded MarkersThe following outlines automatic machine homing (G28) for a DCM axisthat has not been homed previously. Only axes that have their axis wordsprogrammed in the G28 block are homed. For more information, refer to...

  • Page 119

    Home ParametersChapter 55-17The following outlines automatic machine homing (G28) for a DCM axisthat has been previously homed:1.Execute a G28 block, either through the part program or MDI. Theaxis moves at a direction determined by the parameter G28 Directionto Home and a speed determined by the...

  • Page 120

    Home ParametersChapter 55-18AxisParameterNumberAxisParameterNumber(1)[1010](7)[7010](2)[2010](8)[8010](3)[3010](9)[9010](4)[4010](10)[10010](5)[5010](11)[11010](6)[6010](12)[12010]RangeSelectionResult(a)plus(b)minusNotesThis parameter must be set independently for each axis.For axes using A quad ...

  • Page 121

    Home ParametersChapter 55-19AxisParameterNumberAxisParameterNumber(1)[1011](7)[7011](2)[2011](8)[8011](3)[3011](9)[9011](4)[4011](10)[10011](5)[5011](11)[11011](6)[6011](12)[12011]Range0.0000 to 10160.0000 mmpmor0.0000 to 400.0000 ipmNotesThis parameter must be set independently for each axis.For...

  • Page 122

    Home ParametersChapter 55-20FunctionThis parameter determines the coordinate value to be assigned to asecondary home position for the axis.The G30 secondary home command provides an alternative home position,often necessary if special attachments or different tool changer are to beused. Refer to ...

  • Page 123

    Home ParametersChapter 55-21FunctionThis parameter determines the coordinate value to be assigned to a thirdhome position for the axis.The G30 P3 third home command provides an alternative home position,often necessary if special attachments or different tool changer are to beused. Refer to progr...

  • Page 124

    Home ParametersChapter 55-22FunctionThis parameter determines the coordinate value to be assigned to a fourthhome position for the axis.The G30 P4 fourth home command provides an alternative home position,often necessary if special attachments or different tool changer are to beused. Refer to cha...

  • Page 125

    Home ParametersChapter 55-23FunctionThis parameter is only available for axes that use DCMs with a linearscale. See Appendix B for details on integrating a DCM scale.This parameter is similar to the homing parameter “Axis Position AfterHoming”. The value entered here is used to define the axi...

  • Page 126

    Home ParametersChapter 55-24

  • Page 127

    Chapter66-1Zone/Overtravel ParametersZones and overtravels define areas that restrict the movable range of thecutting tool. The control is equipped to establish two overtravel areas andtwo programmable zones.There are two types of overtravel:Hardware overtravels ---- Established by mounting mecha...

  • Page 128

    Zone/Overtravel ParametersChapter 66-2Figure 6.1 shows a typical configuration of zones and overtravels.Figure 6.1Overtravels and Programmable ZonesSoftwareovertravelHardwareovertravelLimit switchLimit switchZ axistravelX axis travelY axis travelLimit switchLimit switchProgrammableZone 2Programma...

  • Page 129

    Zone/Overtravel ParametersChapter 66-3When you select the “Zone/Overtravel Parameters” group from the mainmenu in AMP, the workstation displays this screen:Proj:AMPTESTAppl:AMPUtil:EditF2-Project F3-Application F4-UtilityF5-ConfigurationF1-FileF2-AxisF3-OptionsF4-Quick Edit!F5-ProcessType : L...

  • Page 130

    Zone/Overtravel ParametersChapter 66-4The size and location of this zone are determined in AMP or on thecontrol.Zone 3 defines either an interior zone (tool must stay within zoneboundaries) or an exterior zone (tool must stay outside of the zoneboundaries). This zone is enabled or disabled by par...

  • Page 131

    Zone/Overtravel ParametersChapter 66-5FunctionUse this parameter to assign each axis to a particular programmable zonegroup. Programmable zones are checked in groups.If 3 axes are assigned to a group, a cube shaped zone is formed. If onlytwo axes are assigned to that group, then the two sides of ...

  • Page 132

    Zone/Overtravel ParametersChapter 66-6Figure 6.3 shows the zone resulting from the conditions described inthis example.Figure 6.3Zone 2 Programmable Zone GroupsZ=11Z=10X=5, Y=2ZXYZ motion restricted onlyby Software OvertravelX and Y motionrestricted only bySoftware OvertravelMachine Coordinatezer...

  • Page 133

    Zone/Overtravel ParametersChapter 66-7Group 3 -- If this is selected for an axis, it indicates that its values forprogrammable zones 2 and 3 are checked simultaneously with any otheraxis in group 3.AxisParameterNumberAxisParameterNumber(1)[1009](7)[7009](2)[2009](8)[8009](3)[3009](9)[9009](4)[400...

  • Page 134

    Zone/Overtravel ParametersChapter 66-8FunctionThere are 3 programmable zone groups for the programmable zones (seethe parameter Programmable Zone Group). By assigning an axis to agroup, that axis is checked simultaneously with any other axes inthat group.This parameter tells the system how many z...

  • Page 135

    Zone/Overtravel ParametersChapter 66-9FunctionThis parameter is used to enter the larger machine coordinate value thatdetermines the location of programmable zone 2. This value may bealtered on the control, if desired, by using the programmable zone table.When programmable zone 2 is active, the a...

  • Page 136

    Zone/Overtravel ParametersChapter 66-10FunctionUse this parameter to enter the smaller machine coordinate value thatdetermines the location of programmable zone 2. This value may bealtered on the control, if desired, by using the programmable zone table.When programmable zone 2 is active, the axi...

  • Page 137

    Zone/Overtravel ParametersChapter 66-11FunctionUse this parameter to enter the larger machine coordinate value thatdetermines the location of programmable zone 3. This value may bealtered on the control, if desired, by using the programmable zone table orby the proper programming commands. The ar...

  • Page 138

    Zone/Overtravel ParametersChapter 66-12FunctionUse this parameter to enter the smaller machine coordinate value thatdetermines the location of programmable zone 3. This value may bealtered on the control, if desired, by using the programmable zone table orby the proper programming commands. The a...

  • Page 139

    Zone/Overtravel ParametersChapter 66-13The software overtravel cannot be canceled on the control. AMP is theonly means available to activate, deactivate, and establish the range for thesoftware overtravel. These subsections offer a discussion of parametersused to establish the software overtravel...

  • Page 140

    Zone/Overtravel ParametersChapter 66-14FunctionUse this parameter to enter the larger machine coordinate value thatdetermines the location of the software overtravel. Provided that softwareovertravels are active, the axis is not permitted to exceed this value.AxisParameterNumberAxisParameterNumbe...

  • Page 141

    Zone/Overtravel ParametersChapter 66-15FunctionUse this parameter to enter the smaller machine coordinate value thatdetermines the location of the software overtravel. Provided that thesoftware overtravels are active, the axis is not permitted to move to aposition that is smaller than this value....

  • Page 142

    Zone/Overtravel ParametersChapter 66-16Interference checking parameters help prevent different process axes fromcolliding with each other. Interference axes decelerate to a stop whenposition to a location where they will collide. Before using theseparameters, you must configure your machine coord...

  • Page 143

    Zone/Overtravel ParametersChapter 66-17FunctionUse this parameter to specify the second axis you will check for the currentprocess. The second axis is usually the cross-slide axis and must be parallelto the second axis of the other process.AxisParameter NumberProcess 1Process 2All[20221][21221]Ra...

  • Page 144

    Zone/Overtravel ParametersChapter 66-18FunctionUse this parameter to specify the orientation of the axes in each group. Youcan define the positive directions of parallel axes to be opposite from eachother. Possible orientations are shown in Figure 6.4.Figure 6.4Four Types of Axes OrientationXZZ+X...

  • Page 145

    Zone/Overtravel ParametersChapter 66-19FunctionUse this parameter to specify the number of interference checking zonesavailable. The number of zones available should be equal to the number oftool stations available on the machine.AxisParameter NumberProcess 1Process 2All[20223][21223]Range1 to 32...

  • Page 146

    Zone/Overtravel ParametersChapter 66-20

  • Page 147

    Chapter77-1Servo ParametersUse the servo parameter group to configure information about the servoscontrolled by your 9/Series CNC. When you select the “Servo Parameters”group, the following parameters are available to you:Proj:AMPTESTAppl:AMPUtil:EditF2-Project F3-Application F4-UtilityF5-Con...

  • Page 148

    Servo ParametersChapter 77-2Proj:AMPTESTAppl:AMPUtil:EditF2-Project F3-Application F4-UtilityF1-FileF2-AxisF3-OptionsF4-Quick Edit!F5-ProcessControl: MillAXIS :X - linearFile :TEST- Servo Parameters -Proj:AMPTESTAppl:AMPUtil:EditF2-Project F3-Application F4-UtilityF5-ConfigurationF1-FileF2-AxisF3...

  • Page 149

    Servo ParametersChapter 77-3Servo Feedback OptionsEach servo system contains two loops:velocity loop, used to control motor speed vs commanded motor speedposition loop, used to control axis position vs commanded axis position.Hardware TypeHow It WorksFeedback MethodAnaloguses a drive to close the...

  • Page 150

    Servo ParametersChapter 77-4The loop types supported include:Servo Loop TypeDescriptionPosition or Analog SpindleTwo feedback devicesThis is the most common analog configuration. With this method, the velocityfeedback is generated by a motor--mounted tachometer and the velocity loop isclosed by t...

  • Page 151

    Servo ParametersChapter 77-5The servo parameters in the sections that follow are general servoparameters. General servo parameters are those servo parameters that mustbe set regardless of the type of servo hardware and type of servo loop youhave selected.FunctionThis parameter tells the control t...

  • Page 152

    Servo ParametersChapter 77-6In general, any servo attached to the CNC counts as a motor (the exceptionbeing a depth probe, which is also configured as an additional motor).When using the adaptive depth feature, the depth probe is configured as anaxis with no output port but with feedback, and is ...

  • Page 153

    Servo ParametersChapter 77-7Figure 7.2Typical Drive and Feedback Connections for a 9/440HR AnalogThree--axis Machine and Spindle with Feedback and Optional FeedbackPositionfeedback asoptionalfeedbackAxis 19/440 CNCSystem ModuleMotor 3HRincrTouch ProbeSpindle driveMotor 2HRabsMotor 1SpindlemotorFe...

  • Page 154

    Servo ParametersChapter 77-8Figure 7.3Typical Drive and Feedback Connections for a 9/230Two--axis Machine and Spindle with FeedbackSpindledriveSpindlemotorFeedbackDevicesDrive Signal(Spindle)Position feedbackFeedbackdevicesDrive Signal (Axis 2)Drive Signal(Axis 1)ServoAmplifier(Axis 2)ServoAmplif...

  • Page 155

    Servo ParametersChapter 77-9Figure 7.4Typical Drive and Feedback Connections for a 9/260 or 9/290Two--axis Machine and Spindle with FeedbackNUMBER OF MOTORS ON 1ST BOARD = ThreeSpindledriveSpindlemotorFeedbackDevicesDrive Signal(Spindle)Position feedbackFeedbackdevicesDrive Signal(Axis 2)Drive Si...

  • Page 156

    Servo ParametersChapter 77-10Figure 7.5Drive and Feedback Connections for a Two--axis Machine, Spindle withNo Feedback, and Second Feedback for Axis 2NUMBER OF MOTORS ON 1ST BOARD = ThreeSpindledriveSpindlemotorVelocity FeedbackDeviceDrive Signal(Spindle)Drive Signal(Axis 2)Drive Signal(Axis 1)Se...

  • Page 157

    If you are using a 9/230 or 9/440 CNC,you must make this selectionServo ParametersChapter 77-11FunctionThis parameter tells the control the number of motors that are connected tothe second servo module board. Include any motor that uses the auxiliaryTB2/TB3 or DAC Output Port (typically the spind...

  • Page 158

    Servo ParametersChapter 77-12FunctionThis parameter is only used for Allen--Bradley 8500 or 1394 digitalsystems. Analog system users (including the 1394 drive with analoginterface) ignore this parameter. Use this parameter to get a starting pointfor configuring and tuning 1326 and 8500 Series dig...

  • Page 159

    Servo ParametersChapter 77-13NotesA typical application of this parameter would be as follows:1.When you finish setting AMP on the ODS workstation, and haveselected standard motors wherever they are to be used, enter allappropriate data for the motors, except the parameters Motor RatedCurrent, Ve...

  • Page 160

    Servo ParametersChapter 77-14FunctionWe recommend setting this parameter by using the [F2] function key asdescribed on page 3-11, and selecting the “Configure Servo” option. Youcan however set this parameter directly from the servo parameter screen.This parameter is used to indicate the type ...

  • Page 161

    Servo ParametersChapter 77-15FunctionWe recommend setting this parameter by using the [F2] function key asdescribed on page 3-11, and selecting the “Configure Servo” option.However, you can set this parameter directly from the servo parameter screen.This parameter is used to indicate the type...

  • Page 162

    Servo ParametersChapter 77-16RangeServo Loop Type:Results in:CNC generates:(a) NoneControl behaves as if that servo is detached.--(b) Position orAnalog SpindleSelect this as the servo loop type for analog drivesystems that have an external tachometer mechanicallycoupled to the motor shaft. Feedba...

  • Page 163

    Servo ParametersChapter 77-17Figure 7.6Tachometer vs. Tachless Velocity LoopPosition feedbackEncoder powerVelocityFeedbackServoAmplifierExternal Hardware Tach LoopServo Loop Type = (b) Position (Analog with Tach)Tachless Software Velocity LoopServo Loop Type = (b) Position/Velocity (Tachless)Serv...

  • Page 164

    Servo ParametersChapter 77-18Figure 7.7Block Diagram Tachless Operation ( with ZFE)MotorEncoderFineinterpolationAcceleration Feed ForwardFinal VelocityVFF %K posKvKvintD/ALimit toMax Acc.ServoAmplifierPosition feedbackACPACFEVEIPCVCDEIACAnalog Servo InterfaceIPCIncremental Position Command. . .FE...

  • Page 165

    Select this option for TB2 of the 3 or 4-axisanalog servo card, TB2 of the 4-axis digitalservo card, TB3 of the 9/230, or CN8 of the3-axis digital servo card. Note CN8 is onlyavailable for spindles.Servo ParametersChapter 77-19Important: On 9/260 and 9/290 systems all axes with feedback must use ...

  • Page 166

    Servo ParametersChapter 77-20Figure 7.8Connectors on the Three--axis Analog Servo ModuleAXISANALOGBAT/TPRUN\FLTFBFLT1FBFLT2FBFLT3RUN\FLTFBFLT1FBFLT2FBFLT3TB1TB2P2CN1J1J2J3OUTFigure 7.9Connectors on the Four--axis 1394/Analog and Digital Servo ModulesP1(CN1)J1J2J3J2J3J4J1P3P2J4TB1TB2TOUCHPROBEANAL...

  • Page 167

    Servo ParametersChapter 77-21Figure 7.10Servo Connections on a Analog 9/230J1J2J3TB2TB3INPUT115/230V8A/5.5A47 - 63 HzServo connectorsTouchProbeAnalogOutProcessor BoardFigure 7.11Connectors on the 9/260 and 9/290 Three--axis Digital Servo ModuleDAC Output (CN8)Output Port 1 (CN2)Output Port 2 (CN3...

  • Page 168

    Servo ParametersChapter 77-22Figure 7.12Connectors on the 9/230 Digital CNCDAC OutputTouch ProbeJ1J2J3Figure 7.13Connectors on the 9/440 CNCSystem ModuleFront View with Cover RemovedTB2 and TB3Analog OutputsAX Mod 1AX Mod 4AX Mod 3AX Mod 2NotesThis parameter must be set independently for each servo.

  • Page 169

    Servo ParametersChapter 77-23FunctionUse this parameter to select the shunt resister value for your 22 kW systemmodule. This value must correspond to the hardware shunt module that itis connected to.AxisParameterNumberAxisParameterNumber(1)[1220](9)[9220](2)[2220](10)[10220](3)[3220](11)[11220](4...

  • Page 170

    Servo ParametersChapter 77-24FunctionUse this parameter to select the shunt resister value for your 5 or 10 kWsystem module. This value must correspond to the hardware shunt modulethat it is connected to.AxisParameterNumberAxisParameterNumber(1)[1219](9)[9219](2)[2219](10)[10219](3)[3219](11)[112...

  • Page 171

    Servo ParametersChapter 77-25FunctionThere are five different position loop algorithms that you can choose from.Open LoopThis is used for the spindle or for any motor that the control is not toclose the position loop. Typically these motors are connected throughthe ANALOG OUT connector, or TB3 on...

  • Page 172

    Servo ParametersChapter 77-26Closed LoopUse this for any axis that returns position feedback to the control for usein closing the position loop. The axis must be equipped with a positionfeedback device (e.g., encoder).In closed loop, the velocity command sent to the servo drive isproportional to ...

  • Page 173

    Servo ParametersChapter 77-27Advantages to ZFE Closed Loop are1) improved performance during high precision or high speedapplications;2) faster part program execution because velocity transition times arereduced.Important: A closed--loop axis requires homing. Refer to the homingparameters of chap...

  • Page 174

    Servo ParametersChapter 77-28AxisParameterNumberAxisParameterNumber(1)[1510](9)[9510](2)[2510](10)[10510](3)[3510](11)[11510](4)[4510](12)[12510](5)[5510](13)[13510](6)[6510](14)[14510](7)[7510](15)[15510](8)[8510]RangeSelectionResult if axis is linear or rotary(a)Open Loop(b)Closed Loop(c)ZFE Cl...

  • Page 175

    Servo ParametersChapter 77-29AxisParameterNumberAxisParameterNumber(1)[1590](7)[7590](2)[2590](8)[8590](3)[3590](9)[9590](4)[4590](10)[10590](5)[5590](11)[11590](6)[6590](12)[12590]Range0.000 to 254.000 mm0.000 to 10.000 in.NotesThis parameter must be set independently for each servo.FunctionWhen...

  • Page 176

    Servo ParametersChapter 77-30Figure 7.18Example of Reversal ErrorEncoder mounted onback of servomotorGear drivenby servomotorReversal Error Compensation distanceAxis driven by gearWhen axis motion is commanded in the oppositedirection, the motor and attached encoder can movethis far without causi...

  • Page 177

    Servo ParametersChapter 77-31FunctionThis parameter places an upper limit on following error for a servo. Whenthe magnitude of the following error exceeds the value entered here, thecontrol goes into E-Stop. The error message EXCESS FOLLOWINGERROR appears on the message line of the control.ATTENT...

  • Page 178

    Servo ParametersChapter 77-32FunctionWhen the following error exceeds the value entered here, the controlautomatically reduces the axis feedrate by 50%. Axis feedrates remainreduced by 50% until the following error drops below the value enteredhere. At that time, the control increases the feedrat...

  • Page 179

    Servo ParametersChapter 77-33FunctionSpecifies the amount of following error at which gain is reduced from theInitial Gain value.Following error increases with servo speed. When the following errorexceeds the value entered for this parameter, the gain is reduced on thebasis of the Position Loop G...

  • Page 180

    Servo ParametersChapter 77-34AxisParameterNumberAxisParameterNumber(1)[1730](9)[9730](2)[2730](10)[10730](3)[3730](11)[11730](4)[4730](12)[12730](5)[5730](13)[13730](6)[6730](14)[14730](7)[7730](15)[15730](8)[8730]Range0 to 214.10000 mm or 0 to 8.42913 in. (linear axes)0 to 720.00000 degrees (clo...

  • Page 181

    Servo ParametersChapter 77-35FunctionThe value entered here sets the furthest distance the axis can be from itscommanded destination to be considered in position when the control is inG00 (rapid mode), G09 (exact stop nonmodal), G61 (exact stop modal), orwhen homing.This does not affect the final...

  • Page 182

    Servo ParametersChapter 77-36FunctionThis parameter specifies the servo loop gain at speeds below the gainbreak speed.Gain is a function of the drives, servo motors, and machine. For example,many machines are sized with drives and motors so that the axes can run ata gain of 1 (0.001mm of followin...

  • Page 183

    Servo ParametersChapter 77-37AxisParameterNumberAxisParameterNumber(1)[1710](7)[7710](2)[2710](8)[8710](3)[3710](9)[9710](4)[4710](10)[10710](5)[5710](11)[11710](6)[6710](12)[12710]Range0 to 30.00000NotesIf the control is closing the velocity loop in addition to the position loop(loop type select...

  • Page 184

    Servo ParametersChapter 77-38FunctionSpecifies the ratio by which the control reduces position loop gain whenthe following error reaches the value entered for the Gain Break Pointparameter. A value of one entered here results in no gain break.A value of .5 reduces the gain by half at gain break.T...

  • Page 185

    Servo ParametersChapter 77-39FunctionThis parameter is significant only if the Servo Position Loop Type isZFE Closed Loop. It specifies the percentage that the following error isreduced as compared to simple Closed--loop operation.For example, if 80% is entered here, axis following error (after r...

  • Page 186

    Servo ParametersChapter 77-40FunctionThis parameter is used to configure which port will be receiving positionfeedback.You may choose to use optional feedback for position data. Optionalfeedback can be used for:a second feedback device to improve accuracy of a positioning axisspindle feedbackanal...

  • Page 187

    Servo ParametersChapter 77-419/440 SystemsOn a 9/440 resolver based system, there are seven feedback connectors, sixof which can be used at one time. On 9/440HR systems there are eightfeedback connectors, all of which can be used at one time. On bothsystems the first four connectors (J1 to J4) ar...

  • Page 188

    Servo ParametersChapter 77-42NotesFeedback ports J3 and J11 on 9/440 resolver based systems can not be usedon the same system. Refer to your 9/Series integration and maintenancemanual for details on the six feedback device maximum restriction on the9/440 resolver based systems.This parameter must...

  • Page 189

    Servo ParametersChapter 77-43Figure 7.22Connectors on Analog Servo Module for the 9/260 and 9/290AXISANALOGBAT/TPRUN\FLTFBFLT1FBFLT2FBFLT3RUN\FLTFBFLT1FBFLT2FBFLT3TB1TB2P2CN1J1J2J3OUTFigure 7.23Connectors on 9/260 and 9/290 8520 3 Axis Digital Servo ModuleDAC Output (CN8)Output Port 1 (CN2)Output...

  • Page 190

    Servo ParametersChapter 77-44Figure 7.24Connectors on the 9/440 Resolver Based CNCResolver 1J1Resolver 2J2Resolver 3J3Resolver 4J4Front of System ModuleSystem ModuleBottom Viewnot available on the single axis9/440 or the 3 axis 9/440not available on the single axis 9/440Encoder 1J9Encoder 2J10not...

  • Page 191

    Servo ParametersChapter 77-45Figure 7.25Connectors on the 9/440HR Encoder Based CNCJ4J3J2J1Front of System ModuleSystem ModuleBottom ViewMotor--mountedFeedbackJ12J11J10J9OptionalFeedbackPortsThe number and type of available feedback ports supported on your9/440HR system is defined by options inst...

  • Page 192

    Servo ParametersChapter 77-46Figure 7.26Connectors on the 9/230 Digital CNCDAC OutputTouch ProbeJ1J2J3Figure 7.27Connectors on the 4 Axis Analog/1394 and Digital Servo ModulesP1(CN1)J1J2J3J2J3J4J1P3P2J4TB1TB2TOUCHPROBEANALOGOUT1324FLTTB1 = Analog OutTB2 = Touch Probe

  • Page 193

    Servo ParametersChapter 77-47Figure 7.28Connectors on Optional Feedback Module(available only on the 9/260 and 9/290 3 Axis Digital servo card)CN16FCN15FCN14FImportant: Even though the optional feedback module provides additionalfeedback ports, there is still a maximum of 6 axes that can be confi...

  • Page 194

    Servo ParametersChapter 77-48Important: Absolute encoders are not not compatible with the analogservo interface. You should not select this feedback type whenconfiguring an analog servo interface.INC Encoder U/V/W on Dig. Mod. -- for 8520 digital and motorsusing an incremental encoder.U/V/W refer...

  • Page 195

    Use this selection for 9/440s and 1394 drivesbeing configured prior to release 10.0 of ODSUse this selection for 9/440s and 1394 drives beingconfigured using release 10.0 or higher ODSServo ParametersChapter 77-491326 4--pole Converted Resolver — Use this for 1326 servos equippedwith resolvers ...

  • Page 196

    Servo ParametersChapter 77-50AxisParameterNumberAxisParameterNumber(1)[1570](7)[7570](2)[2570](8)[8570](3)[3570](9)[9570](4)[4570](10)[10570](5)[5570](11)[11570](6)[6570](12)[12570]NotesImportant: An application note is available for integrating linear scales tothe control. Contact your local All...

  • Page 197

    Servo ParametersChapter 77-51FunctionPosition Feedback Counts/Cycle specifies the number of counts that areproduced by the encoder for each electrical cycle. For encoders with onemarker, an electrical cycle is one revolution. For encoders with twomarkers, an electrical cycle is one half revolutio...

  • Page 198

    Servo ParametersChapter 77-52Figure 7.30Encoder Input to the ControlNumber of countsA channelA channelB channelB channel012345Number of linesZ channel (Z < A)Z channel (Z > A)02468101214161820135791113151719AxisParameterNumberAxisParameterNumber(1)[1575](7)[7575](2)[2575](8)[8575](3)[3575](...

  • Page 199

    Servo ParametersChapter 77-53Important: The 9/440HR incremental feedback device is capable ofachieving 2,097,152 cnts/mm (53,267,660.8 cnts/in.). Exceeding thisnumber of feedback counts for any feedback/axis pitch combination holdsyour system in E--Stop, causing an error message to be displayed.N...

  • Page 200

    Servo ParametersChapter 77-54RangeSelectionResult(a)Plus(b)MinusNotesThis parameter must be set independently for each servo.After installing and wiring the feedback device, put the control in E-Stop,and set the axis display to monitor feedback. Manually rotate thefeedback device, noting axis dir...

  • Page 201

    Servo ParametersChapter 77-55between Teeth on Gear for Position Feedback and the parameter Teethon Lead Screw should be one to one. For example if the linear device has5000 lines per 1/2 inch enter 5000 as the Position FeedbackCounts/Cycle and .5 inch as the Lead Screw Thread Pitch. Both Teethon ...

  • Page 202

    Servo ParametersChapter 77-56AxisParameterNumberAxisParameterNumber(1)[1026](7)[7026](2)[2026](8)[8026](3)[3026](9)[9026](4)[4026](10)[10026](5)[5026](11)[11026](6)[6026](12)[12026]Range1 to 32767NotesWhen configuring any closed--loop axis you must configure two gear ratiosfor feedback; one for v...

  • Page 203

    Servo ParametersChapter 77-57Important: If configuring a linear position feedback device (excludingdistance--coded marker systems) use the parameters Position FeedbackCounts/Cycle and Lead Screw Thread Pitch to enter the number ofcounts returned by the device per revolution of the lead screw. The...

  • Page 204

    Servo ParametersChapter 77-58FunctionThis parameter is only available for analog servo hardware.This parameter is used to scale the signal sent from the analog servointerface to the servo amplifier. This signal may range from --10.0000 to+10.0000 volts. The lower portion of this range is set with...

  • Page 205

    Servo ParametersChapter 77-59NotesThis parameter must be set independently for each servo.Important: This parameter should have a value that is greater than that ofthe parameter Analog Servo Neg. Voltage.An example of this parameter would be if a 15 amp drive is combined witha servo motor rated a...

  • Page 206

    Servo ParametersChapter 77-60AxisNumberAxisNumber(1)[1024](7)[7024](2)[2024](8)[8024](3)[3024](9)[9024](4)[4024](10)[10024](5)[5024](11)[11024](6)[6024](12)[12024]Range--10.0000 to +10.0000 volts dcNotesThis parameter must be set independently for each servo.Important: This parameter should have ...

  • Page 207

    Servo ParametersChapter 77-61FunctionSelect the port and port connector number through which velocityfeedback is sent to the control, typically the same port used for PositionLoop Feedback Port.The standard servo feedback configuration uses one feedback device forboth positioning and velocity dat...

  • Page 208

    Servo ParametersChapter 77-62AxisParameterNumberAxisParameterNumber(1)[1520](7)[7520](2)[2520](8)[8520](3)[3520](9)[9520](4)[4520](10)[10520](5)[5520](11)[11520](6)[6520](12)[12520]RangeSelectionResult(a)No Feedback(b)Feedback Connector J1 or CN5(c)Feedback Connector J2 or CN6(d)Feedback Connecto...

  • Page 209

    Servo ParametersChapter 77-63Digital systems must use the motor--mounted feedback device (that comespreinstalled on the 8500 and 1326 digital motors) for velocity feedback.This encoder/resolver can not be removed from the motor or realigned withthe motor shaft. This device is used for motor commu...

  • Page 210

    Use this selection for 9/440s and 1394 drivesbeing configured prior to release 10.0 of ODSUse this selection for 9/440s and 1394 drives beingconfigured using release 10.0 or higher ODSServo ParametersChapter 77-64INC Encoder A/B/Z (Z > A) -- for axes that have a wide markerdifferential increme...

  • Page 211

    Servo ParametersChapter 77-65If not, an error will occur upon powering up the control after downloadingAMP.This parameter must be set independently for each axis.FunctionImportant: The standard servo feedback configuration uses one feedbackdevice for both positioning and velocity data. If this is...

  • Page 212

    Servo ParametersChapter 77-66Range4 to 4,194,304Important: The 9/440HR incremental feedback device is capable ofachieving 2,097,152 cnts/mm (53,267,660.8 cnts/in.). Exceeding thisnumber of feedback counts for any feedback/axis pitch combination forcesyour system into E--Stop, causing an error mes...

  • Page 213

    Servo ParametersChapter 77-67After installation of a separate velocity feedback device, it is determinedthat this velocity feedback is counting up when it should be countingdown, or counting down when it should be counting up, it can be correctedsimply by changing this parameter to “Minus.” W...

  • Page 214

    Servo ParametersChapter 77-68FunctionUse this parameter and the parameter Teeth on Lead Screw for VelocityFB to tell the control the gear ratio between the motor and velocityfeedback device. Typically the velocity feedback device is motor mounted.Regardless of where the velocity feedback is mount...

  • Page 215

    Servo ParametersChapter 77-69Range1 to 32767NotesThis parameter must be set independently for each servo.When configuring any closed--loop axis you must configure two gear ratiosfor feedback; one for velocity feedback, the other for position feedback.On axes with a single feedback device, the set...

  • Page 216

    Servo ParametersChapter 77-70NotesThis parameter must be set independently for each servo.FunctionThis is also a scaling parameter used to create a portion of the accelerationcommand for a particular servomotor.In the control, Velocity Proportional Gain is multiplied by the velocityerror. Velocit...

  • Page 217

    Servo ParametersChapter 77-71The following tables are provided for reference only.Table 7.BVelocity Proportional Gain Values for Standard Motors with Incremental FeedbackMOTOR:LOADINERTIA8500 MOTOR TYPESRATIO8500A1C8500A2C8500B1C8500B2C8500B3C8500A1D8500A2D8500A3D8500B1D8500B2D1 : 017408158722048...

  • Page 218

    Servo ParametersChapter 77-72AxisParameterNumberAxisParameterNumber(1)[1801](7)[7801](2)[2801](8)[8801](3)[3801](9)[9801](4)[4801](10)[10801](5)[5801](11)[11801](6)[6801](12)[12801]Range0 to 65535NotesThis parameter must be set independently for each servo.For assistance on determining the optima...

  • Page 219

    Servo ParametersChapter 77-73Important: On digital systems, if you use a standard motor, the correctvalue for this parameter is entered automatically by the control when AMPis downloaded or when the control is powered-up. When parameterStandard Motor Table Values is set to “Yes”, then the con...

  • Page 220

    Servo ParametersChapter 77-74Table 7.EVelocity Integral Gain Values for Standard Motors with Absolute EncodersMOTOR:LOADINERTIA8500 MOTOR TYPESRATIO8500A1C8500A2C8500B1C8500B2C8500B3C8500A1D8500A2D8500A3D8500B1D8500B2D1 : 0827094949482747294941 : 11641411881881881641481441881881 : 224621129329329...

  • Page 221

    Servo ParametersChapter 77-75FunctionThis parameter is available on all digital systems version 12.xx and earlier,except 9/260 or 9/290 systems that use the three axis 8520 Digital servocards. Analog systems only use this parameter when the loop type isconfigured as position/velocity.During stead...

  • Page 222

    Servo ParametersChapter 77-76When this program is executed with the position loop type set to “ZFEClosed Loop” and feed forward set to 100%, changing the VE IntegratorDischarge Rate has noticeable results during the velocity transitions(especially if a strip chart recorder is used). If the po...

  • Page 223

    Servo ParametersChapter 77-77FunctionAnalog SystemsThis parameter is used to specify the servo motors nominal rated currentfor continuous duty. This parameter is entered as a percentage of theparameter Analog Servo Pos. Voltage or Analog Servo Neg Voltage(whichever is smaller). Calculate what ser...

  • Page 224

    Servo ParametersChapter 77-78AxisParameterNumberAxisParameterNumber(1)[1660](7)[7660](2)[2660](8)[8660](3)[3660](9)[9660](4)[4660](10)[10660](5)[5660](11)[11660](6)[6660](12)[12660]RangeSelectionResult(a)200%(b)300%NotesThis parameter must be set independently for each axis.FunctionEnter the peak...

  • Page 225

    Servo ParametersChapter 77-79We recommend that the default value of 200% be left here if using astandard 1326 motor paired with a 9/440 or 1394 drive (Standard MotorValues is set to “Yes”). When using the standard motor table settings, the9/Series will override the value you enter here and us...

  • Page 226

    Servo ParametersChapter 77-80AxisParameterNumberAxisParameterNumber(1)[1670](9)[9670](2)[2670](10)[10670](3)[3670](11)[11670](4)[4670](12)[12670](5)[5670](13)[13670](6)[6670](14)[14670](7)[7670](15)[15670](8)[8670]Range0 to 300%NotesThis parameter must be set independently for each axis.This peak...

  • Page 227

    Servo ParametersChapter 77-81AxisParameterNumberAxisParameterNumber(1)[1690](7)[7690](2)[2690](8)[8690](3)[3690](9)[9690](4)[4690](10)[10690](5)[5690](11)[11690](6)[6690](12)[12690]Range0 to 100 %NotesThis parameter must be set independently for each servo.FunctionEnter the direction in which the...

  • Page 228

    Servo ParametersChapter 77-82NotesThis parameter must be set independently for each servo.FunctionFeed--to--Hard--Stop is only available on mill control types.Use the Feed--to Hard--Stop feature when an axis is fed up to a fixedmechanical stop that physically halts axis travel. This parameterconf...

  • Page 229

    Servo ParametersChapter 77-83FunctionFeed to hard stop is only available on mill control types.Use this parameter to have the servo for an axis that has reached a hardstop maintain a holding torque to keep constant pressure against the hardstop. If all motor torque was removed from an axis that h...

  • Page 230

    Servo ParametersChapter 77-84FunctionThis parameter is only available on 9/230 analog systems or 9/260 and9/290 systems that use the three axis analog servo card. This parameteronly appears on those systems when the analog servo is a tachless system(loop type selected as velocity/position).Import...

  • Page 231

    Servo ParametersChapter 77-85Effective Inertia -- This includes the rotary inertia of all items being drivenby the servo (such as gears and ball screws) and the effective inertia of thetable, turret or other mechanical entity. Part mass should be considered ifit is expected to be significant. Als...

  • Page 232

    Servo ParametersChapter 77-86FunctionThis parameter is used on all digital systems and on analog systems thatuse the Tachless Software Velocity Loop feature (loop type digital orposition/velocity). This filter can be used to remove some oscillations thatcan occur in your drive systems (typically ...

  • Page 233

    Servo ParametersChapter 77-87The servo parameters in the sections that follow are available to configuredigital systems only. They specify important motor and machineinformation necessary for proper motor commutation and digital driveoperation. These parameters become available when the servo loo...

  • Page 234

    Servo ParametersChapter 77-88RangeSelectionResult(a)1 : 0(b)1 : 1(c)1 : 2(d)1 : 3NotesThis parameter must be set independently for each servo.Select the value from the options provided that is closest to the calculatedratio. Generally it is better to round up rather than rounding down ifbetween v...

  • Page 235

    Servo ParametersChapter 77-89Range8500 Standard Motors1326 Standard MotorsSelectionResultSelectionResult(a)8500 A1C(a)1326AB-B410G(b)8500 A2C(b)1326AB-B420E(c)8500 B1C(c)1326AB-B430E(d)8500 B2C(d)1326AB-B515E(e)8500 B3C(e)1326AB-B520E(f)8500 A1D(f)1326AB-B530E(g)8500 A2D(g)1326AB-B410J(h)8500 A3D...

  • Page 236

    Servo ParametersChapter 77-90FunctionEnter the number of poles on the motor. For both standard andnonstandard digital servomotor(s), the number of poles from the motorspecification literature should be entered here.Important: If using a standard motor, the correct value for this parameteris enter...

  • Page 237

    Servo ParametersChapter 77-91FunctionThis parameter is not available for digital servos connected to the 4-axis8520 digital servo card or to the 9/230 8520 digital CNC. It is used for9/260 or 9/290 systems that use the 3-axis 8520 digital servo cards andservo systems designed to connect to any 13...

  • Page 238

    Servo ParametersChapter 77-92On both the 9/230 Analog and Digital, you must enter these parameterscorrectly to be within the rated maximum motor speeds.Thread Lead Screw PitchRapid Positioning FeedrateFunctionEnter the motor’s rated current in amps.Important: If the motor is not a digital servo...

  • Page 239

    Servo ParametersChapter 77-93FunctionThis parameter is used when your servo is connected to an Allen--Bradley1394 digital drive (CNC interface or Serial Drive version).1394 SystemsUse this parameter to indicate to the control the fiber optic I/O ring addressof the 1394 drive that you are connecti...

  • Page 240

    Servo ParametersChapter 77-94FunctionUse this parameter when your servo is connected to an Allen Bradley 1394digital drive. This parameter selects the 1394 drive axis module to whichthe servo is connected. Each 1394 drive in your I/O ring can have up tofour amplifier axis modules (slots). They nu...

  • Page 241

    Servo ParametersChapter 77-95FunctionThis parameter lets you select the servo amplifier type and amplifierconnector.The digital servo amplifiers are not available for use with the spindle. Ifthe axis is configured as a spindle, this parameter is not available.ATTENTION: Only one motor can be conn...

  • Page 242

    Servo ParametersChapter 77-96NotesThis parameter must be set independently for each servo.Examples:Using a non-digital servo amplifier for the motor connected to theDAC output (typically the spindle): Use aUsing the 3-axis servo amplifier with all axes on that amplifierpositioned by the same serv...

  • Page 243

    Servo ParametersChapter 77-97FunctionThis parameter is only available on 9/260 or 9/290 systems that use the8520 digital 3 axis servo cards.This is a scaling parameter used to create a portion of the current commandfor a particular servomotor.In the control, Current Proportional Gain is multiplie...

  • Page 244

    Servo ParametersChapter 77-98AxisParameterNumberAxisParameterNumber(1)[1015](7)[7015](2)[2015](8)[8015](3)[3015](9)[9015](4)[4015](10)[10015](5)[5015](11)[11015](6)[6015](12)[12015]Range0 to 32768NotesThis parameter must be set independently for each axis.FunctionThis parameter is only available ...

  • Page 245

    Servo ParametersChapter 77-99Table 7.G is provided for reference only.Table 7.GCurrent Integral Gain values for Standard MotorsMOTOR TYPE8500A1C8500A2C8500B1C8500B2C8500B3C8500B3A8500A1D8500A2D8500A3D8500B1D8500B2DPeak Current200%2322242528272221212730Peak Current300%2524303132312423233334If a no...

  • Page 246

    Servo ParametersChapter 77-100FunctionThe parameters in this section appear only if you have configured the servoas a spindle. A 9/260 system or a 9/440 system can have up to twospindles, and a 9/290 system can have up to three spindles. Refer tochapter 3 for information on the parameter Specifyi...

  • Page 247

    Servo ParametersChapter 77-1019/440 CNCSystem ModuleTouch ProbeAnalog OutAxisModuleAxisModuleAxisModulePosition feedbackVelocity feedbackModuleAxis1326 Servoused asSpindle1326 MotorMounted ResolverOptional SpindleMounted EncoderSpindle“No of Teeth on Motor Gear”“No of Teeth on Spindle Shaft...

  • Page 248

    Servo ParametersChapter 77-102Use of different gear ranges is not supported when using the 1394 driveas a spindle. The AMP parameter “Number of Gears Used” is forced toone in software. Values entered into AMP for spindle gear ranges otherthan gear one are ignored.Many of the gear parameters f...

  • Page 249

    Servo ParametersChapter 77-103FunctionFor each spindle configured, this parameter identifies the type of spindle.You cannot have any spindle axes identified as the same type in onesystem. If you are using more than one spindle, you must configure thespindles in this order:the first spindle is spi...

  • Page 250

    Servo ParametersChapter 77-104FunctionFor each spindle configured, this parameter identifies the servo modulethat the spindle is connected to. You can connect only one spindle to eachservo module.AxisParameterNumberAxisParameterNumber(1)[1045](9)[9045](2)[2045](10)[10045](3)[3045](11)[11045](4)[4...

  • Page 251

    Servo ParametersChapter 77-105FunctionThis parameter is used only for 9/440 or 1394 drives configured to use oneof their axis modules as a spindle drive. See page 7-100 for details.Use the parameters No of Teeth on Motor Gear and No of Teeth onSpindle Shaft to identify the gear ratio between the ...

  • Page 252

    Servo ParametersChapter 77-106FunctionThis parameter is used only for 9/440 or 1394 drives configured to use oneof their axis modules as a spindle drive. See page 7-100 for details.Use the parameters No of Teeth on Motor Gear and No of Teeth onSpindle Shaft to identify the gear ratio between the ...

  • Page 253

    Servo ParametersChapter 77-107The parameters in this section are typically used on systems where frictionis a problem. Symptoms of high friction systems can include:position error lag at the beginning of a moveposition overshoot and slow recovery at the end of a moveposition error on a circular q...

  • Page 254

    Servo ParametersChapter 77-108FunctionThis parameter specifies the velocity (in terms of feedback counts offollowing error) at which the control adds the “Stiction CompensationTorque” value to the positive or negative dynamic friction value. Whenthe following error drops below this threshold ...

  • Page 255

    Servo ParametersChapter 77-109AxisParameterNumberAxisParameterNumber(1)[1810](9)[9810](2)[2810](10)[10810](3)[3810](11)[11810](4)[4810](12)[12810](5)[5810](13)[13810](6)[6810](14)[14810](7)[7810](15)[15810](8)[8810]Range0 to 1000 feedback countsFunctionThis parameter specifies any additional torq...

  • Page 256

    Servo ParametersChapter 77-110NotesThe same percentage of torque is applied to the axis in both directions forstatic friction. You can not differentiate between positive and negativemoves when using stiction compensation.FunctionThis parameter specifies any additional torque to be applied to the ...

  • Page 257

    Servo ParametersChapter 77-111FunctionThis parameter specifies any additional torque to be applied to the motor,for moves in the negative direction, to overcome dynamic friction once anaxis is moving (as selected with the parameter Threshold for FrictionCompensation).AxisParameterNumberAxisParame...

  • Page 258

    Servo ParametersChapter 77-112

  • Page 259

    Chapter88-1Jog ParametersJogging covers all axis motion that is controlled by the use of push buttons,switches, or hand pulse generators (HPGs). Typically these are mountedon or near the MTB panel. This does not include any of the homingoperations. Homing operations are discussed in chapter 5.Con...

  • Page 260

    Jog ParametersChapter 88-2After you select “Jog Parameters” from the main menu, these screensbecome available:Proj:AMPTESTAppl:AMPUtil:EditF2-Project F3-Application F4-UtilityF5-ConfigurationF1-FileF2-AxisF3-OptionsF4-Quick Edit!F5-ProcessControl Type : MillAxis :X - linearFile :TEST- Jog Par...

  • Page 261

    Jog ParametersChapter 88-3The three different parameters may range between the following values;however, keep in mind that none of the values for these parameters mayoverlap (the value must increase as the higher switch positions are set).This is the acceptable range for pulse count multiplier:0....

  • Page 262

    Jog ParametersChapter 88-4FunctionThis parameter sets the resolution of the HPG (distance the axes travels perHPG pulse) when performing an HPG jog with <SPEED/MULTIPLY> onthe MTB panel set to the MEDL X10.AxisParameterNumberAxisParameterNumber(1)[1356](7)[7356](2)[2356](8)[8356](3)[3356](9...

  • Page 263

    Jog ParametersChapter 88-5FunctionThis parameter sets the resolution of the HPG (distance the axes travels perHPG pulse) when performing an HPG jog with <SPEED/MULTIPLY> onthe MTB panel set to MED X100.AxisParameterNumberAxisParameterNumber(1)[1357](7)[7357](2)[2357](8)[8357](3)[3357](9)[93...

  • Page 264

    Jog ParametersChapter 88-6FunctionThis parameter is used to determine if a selected axis is available for anarbitrary angle jog. Setting this parameter true allows the operator to usethis axis to perform an arbitrary angle jog. Setting this parameter falseprevents the operator from using this axi...

  • Page 265

    Jog ParametersChapter 88-7There are five Jog Speed parameters used to set the speed at whichcontinuous jogs take place:Parameter:Page:Lowest Jog Speed8-8Second Jog Speed8-9Third Jog Speed8-10Fourth Jog Speed8-11Highest Jog Speed8-12Important: Incremental jogs jog at the value assigned to the Thir...

  • Page 266

    Jog ParametersChapter 88-8FunctionThe value specified for this parameter is equal to the speed at which acontinuous jog move takes place when <SPEED/MULTIPLY> on theMTB panel is set LOW X1.AxisParameterNumberAxisParameterNumber(1)[1370](7)[7370](2)[2370](8)[8370](3)[3370](9)[9370](4)[4370](...

  • Page 267

    Jog ParametersChapter 88-9FunctionThe value specified for this parameter is equal to the speed at which acontinuous jog move takes place when <SPEED/MULTIPLY> on the MTBpanel is set to the second position.AxisParameterNumberAxisParameterNumber(1)[1371](7)[7371](2)[2371](8)[8371](3)[3371](9)...

  • Page 268

    Jog ParametersChapter 88-10FunctionThe value specified for this parameter is equal to the speed at which acontinuous jog move takes place when <SPEED/MULTIPLY> on the MTBpanel is set to MED X100.Important: Incremental jogs jog at the value assigned to the Third JogSpeed parameter. This valu...

  • Page 269

    Jog ParametersChapter 88-11FunctionThe value specified for this parameter is equal to the speed at which acontinuous jog move takes place when <SPEED/MULTIPLY> on the MTBpanel is set to MEDH X1000.AxisParameterNumberAxisParameterNumber(1)[1373](7)[7373](2)[2373](8)[8373](3)[3373](9)[9373](4...

  • Page 270

    Jog ParametersChapter 88-12FunctionThe value specified for this parameter is equal to the speed at which acontinuous jog move takes place when <SPEED/MULTIPLY> on theMTB panel is set to HIGH X10000.AxisParameterNumberAxisParameterNumber(1)[1374](7)[7374](2)[2374](8)[8374](3)[3374](9)[9374](...

  • Page 271

    Jog ParametersChapter 88-13There are five Jog Increment parameters used to set the distance thatincremental jogs travel:Parameter:Page:Smallest Jog Increment8-14Second Jog Increment8-15Third Jog Increment8-16Fourth Jog Increment8-17Largest Jog Increment8-18Important: Incremental jogs jog at the v...

  • Page 272

    Jog ParametersChapter 88-14FunctionThe value specified for this parameter is equal to the distance that anincremental jog move travels when <SPEED/MULTIPLY> on the MTBpanel is set to LOW X1.AxisParameter NumberAxisParameter Number(1)[1360](7)[7360](2)[2360](8)[8360](3)[3360](9)[9360](4)[436...

  • Page 273

    Jog ParametersChapter 88-15FunctionThe value specified for this parameter is equal to the distance that anincremental jog move travels when <SPEED/MULTIPLY> on the MTBpanel is set to MEDL X10.AxisParameter NumberAxisParameter Number(1)[1361](7)[7361](2)[2361](8)[8361](3)[3361](9)[9361](4)[4...

  • Page 274

    Jog ParametersChapter 88-16FunctionThe value specified for this parameter is equal to the distance that anincremental jog move travels when <SPEED/MULTIPLY> on the MTBpanel is set to MED X100.AxisParameter NumberAxisParameter Number(1)[1362](7)[7362](2)[2362](8)[8362](3)[3362](9)[9362](4)[4...

  • Page 275

    Jog ParametersChapter 88-17FunctionThe value specified for this parameter is equal to the distance that anincremental jog move travels when <SPEED/MULTIPLY> on the MTBpanel is set to MEDH X1000.AxisParameter NumberAxisParameter Number(1)[1363](7)[7363](2)[2363](8)[8363](3)[3363](9)[9363](4)...

  • Page 276

    Jog ParametersChapter 88-18FunctionThe value specified for this parameter is equal to the distance that anincremental jog move travels when <SPEED/MULTIPLY> on the MTBpanel is set to HIGH X10000.AxisParameter NumberAxisParameter Number(1)[1364](7)[7364](2)[2364](8)[8364](3)[3364](9)[9364](4...

  • Page 277

    Jog ParametersChapter 88-19By pressing the CYCLE START button, the jog retract feature lets you:1.stop part program execution2.jog the tool to another location3.return the tool to its original position (see Figure 8.1)The control remembers up to the number of jog moves specified by theparameter M...

  • Page 278

    Jog ParametersChapter 88-20Figure 8.1Jog Retract ParametersJog RetractReturn fromJog RetractJog RetractVelocityMaximum JogRetract Moves(1 to 15 moves)Considered to be onemove (consecutive movesof the same axis)

  • Page 279

    Jog ParametersChapter 88-21FunctionThis parameter specifies the speed at which the control moves the toolwhen returning from jog retract to the position where jog retract began.A return from jog retract is usually done when <CYCLE START> ispressed, after performing a jog retract.AxisParamet...

  • Page 280

    Jog ParametersChapter 88-22FunctionThis parameter specifies the maximum number of jog retract moves thatthe control can retrace. The value set for this parameter applies to the totalnumber of jog retract moves that may be remembered by the control. Thisnumber is the combined moves on all of the a...

  • Page 281

    Jog ParametersChapter 88-23FunctionThe value specified for this parameter is equal to the speed at which acontinuous jog move takes place when the traverse jog speed is selected(typically this is selected by holding down the <TRVRS> button whenjogging). This traverse feedrate may be modifie...

  • Page 282

    Jog ParametersChapter 88-24

  • Page 283

    Chapter99-1Feedrate ParametersThis section describes the parameters that affect programmed feedrates,with the exception of jogging feedrates (which are discussed in chapter 9).We describe these programmed feedrate parameters:Parameter:Page:Standard Motion Feedrate parameters9-2Feedrate Override p...

  • Page 284

    Feedrate ParametersChapter 99-2Standard motion feedrate parameters include:Parameter:Page:Rapid Feedrate For Positioning9-2Maximum Cutting Feedrate9-3FunctionUse this parameter to determine the feedrate that is used by the control forrapid positioning. This mainly includes the feedrate of axis mo...

  • Page 285

    Feedrate ParametersChapter 99-3On angled-wheel grinding systems the rapid feedrate for positioning forthe virtual axis is a function of the angle of the wheel axis, and the rapidfeedrate for positioning for the wheel axis and the axial axis. The physicalspeed of any given axis will not exceed its...

  • Page 286

    Feedrate ParametersChapter 99-4Refer to chapter 13 of your lathe or mill programming and operationmanual for additional information.AxisParameterNumberAxisParameterNumber(1)[1201](7)[7201](2)[2201](8)[8201](3)[3201](9)[9201](4)[4201](10)[10201](5)[5201](11)[11201](6)[6201](12)[12201]Range0.00000 ...

  • Page 287

    Feedrate ParametersChapter 99-5FunctionThis parameter determines whether the Rapid Feedrate Override switchaffects the Feedrate when Dry Run is active. Note that Dry Run replacesall feedrates programmed with an F-word in a program with the Maximumcutting feedrate. Rapid moves remain at the rapid ...

  • Page 288

    Feedrate ParametersChapter 99-6FunctionUse this parameter to set a value for the first position of the Rapid FeedrateOverride switch (labeled F1 on the MTB panel). Enter a percent value forthis parameter. The value for the other three switch positions is determinedin PAL. The axis travels in norm...

  • Page 289

    Feedrate ParametersChapter 99-7FunctionEnter the feedrate at which all axes decelerate to when an externaldeceleration request is sent to PAL during a cutting move (G01, G02,G03 active).This feature requires coordination with the PAL program and is usually setup to operate as follow:An axis trave...

  • Page 290

    Feedrate ParametersChapter 99-8FunctionEnter the feedrate to which the axis is to decelerate when an externaldeceleration request is sent to PAL during a positioning move (G00 active).This feature requires coordination with the PAL program and is usually setup to operate as follows:An axis travel...

  • Page 291

    Feedrate ParametersChapter 99-9FunctionUse these 9 parameters to determine the feedrate when a single-digitfeedrate word is programmed. These values are used when a feedrate isprogrammed as a whole integer value (F1 through F9).When the control executes a one-digit feedrate word, F1 through F9, i...

  • Page 292

    Feedrate ParametersChapter 99-10Skip Cycle Feedrate Parameters include:Parameter:Page:Use AMP Skip Feedrate9-11Feedrates for G31 and G37 Skip cycles9-12These parameters apply to the Skip cycles that are executed when one ofthese G-codes is programmed:G31G37G31.1G37.1G31.2G37.2G31.3G37.3G31.4G37.4...

  • Page 293

    Feedrate ParametersChapter 99-11FunctionUse this parameter to determine whether the Skip cycles, which areexecuted when a G31 - G31.4 or G37 - G37.4 is programmed, use thecurrent programmed feedrate or the feedrate entered as an AMP parameter.NO -- entered as a value for this parameter causes the...

  • Page 294

    Feedrate ParametersChapter 99-12FunctionUse these parameters to establish the feedrate that the skip cycles use whenexecuted. The feedrate set here for these parameters is used only if theparameter Use AMP Skip Feedrate is “yes.” If this parameter is “no,” thenthese parameters are ignored...

  • Page 295

    Feedrate ParametersChapter 99-13FunctionUse this parameter to enter the amount of inaccuracy permitted whenprogramming the creation of an arc. The control takes the distance fromthe start-point of the arc to the center-point, and the distance from theend-point of the arc to the center-point, and ...

  • Page 296

    Feedrate ParametersChapter 99-14

  • Page 297

    Chapter1010-1Acc/Dec ParametersThis chapter covers the acceleration and deceleration AMP parameters forthe control.Use acceleration and deceleration (Acc/Dec) parameters to control themethod and rate of speed change when an axis is starting or stopping.When you select the “Acc/Dec Parameters”...

  • Page 298

    Acc/Dec ParametersChapter 1010-2The parameters in these subsections cover linear and exponentialacceleration for the control. Some are global parameters (they affect allaxes) and some can be entered independently for each axis.Proper setting of these parameters is necessary for accurate, efficien...

  • Page 299

    Acc/Dec ParametersChapter 1010-3Important: If the selected position loop type is Zero Following Error, youmust use the Rapid Traverse instead of Maximum Contouring Speed.This calculation results in a ramp expressed in inches per minute permillisecond. Apply the appropriate conversion factors to c...

  • Page 300

    Acc/Dec ParametersChapter 1010-4Figure 10.1Exponential Acc/DecTime constant defined by the parametersMANUAL or PROGRAMMED DELAY CONSTANTTime (seconds)063% of commandedchange in speedEXPONENTIALDecelerationEXPONENTIALAccelerationCommandedFeedrateFeedrateImportant: Rapid moves that are made for a l...

  • Page 301

    Acc/Dec ParametersChapter 1010-5Figure 10.2Linear Acc/DecTimeTimeAccelerationJerkTimeVelocityJerk isInfinite

  • Page 302

    Acc/Dec ParametersChapter 1010-6Figure 10.3S--Curve Acc/DecAccelerationRampJerkTime (sec)Time (sec)AccelerationJerkTime (sec)VelocityS--CurveDecelerationJerkCommandedFeedrateS--CurveAccelerationLinearAccLinearDecJerkJerkJerkRefer to the following table to determine the type of acc/dec mode that w...

  • Page 303

    Acc/Dec ParametersChapter 1010-7AxisParameterNumberSingle ProcessAll[402]NotesThis is a global parameter. The value set here applies to all axes.Axis jogging moves use either linear or exponential Acc/Dec as defined inAMP via Manual Acc/Dec (refer to page 10-19 for more information aboutManual Ac...

  • Page 304

    Acc/Dec ParametersChapter 1010-8Range0.00000 to 169.33333 mm/secor0.0000 to 25 deg/secor0.00000 to 787.40157 in/sec.NotesThis parameter must be set independently for each axis.FunctionUse this parameter to select the acceleration rate for each axis duringLinear Acc/Dec Mode (G47). A 0.0 value in ...

  • Page 305

    Acc/Dec ParametersChapter 1010-9or0.00000 to 20,000.00000 deg/sec/secNotesThis parameter must be set independently for each axis.Important: If the Servo Position Loop Type parameter (chapter 7) is setfor “ZFE Closed Loop” and the Feed Forward Percentage is set relativelyhigh, then it is impor...

  • Page 306

    Acc/Dec ParametersChapter 1010-10AxisParameterNumberAxisParameterNumber(1)[1211](7)[7211](2)[2211](8)[8211](3)[3211](9)[9211](4)[4211](10)[10211](5)[5211](11)[11211](6)[6211](12)[12211]Range0.00000 to 20,000.00000 mm/sec/secor0.00000 to 787.4015 inch/sec/secor0.00000 to 20,000.00000 deg/sec/secNo...

  • Page 307

    Acc/Dec ParametersChapter 1010-11Figure 10.5Matching Linear Dec Ramp to the Natural Response of the AxisTime (seconds)FeedrateRapidLinear Dec Ramp(slope of this line)Natural responsecurve of axisFunctionUse this parameter while S--Curve Acc/Dec (G47.1) is active to select thedesired acceleration ...

  • Page 308

    Acc/Dec ParametersChapter 1010-12Range0.00000 to 20,000.00000 mm/sec/secor0.00000 to 787.4015 inch/sec/secor0.00000 to 20,000.00000 deg/sec/secNotesThis parameter must be set independently for each axis.Important: If the Servo Position Loop Type parameter (chapter 7) is setfor “ZFE Closed Loop...

  • Page 309

    Acc/Dec ParametersChapter 1010-13FunctionThis parameter allows you to select the deceleration rate for each axisduring S--curve Acc/Dec Mode (G47.1). A 0.0 value in this parameterforces the system to replace this value with the value set for S--CurveAcceleration Ramp.If a large value is entered h...

  • Page 310

    Acc/Dec ParametersChapter 1010-14This is a simplified procedure for determining the Dec Ramp value incases where it is critical to axis performance:Important: The deceleration ramp value may be slightly higher than theacceleration rate due to friction.Figure 10.7Matching S--Curve Dec Ramp to the ...

  • Page 311

    Acc/Dec ParametersChapter 1010-15For all practical purposes, acceleration or deceleration is completed afterfive time constants. Therefore, the total acceleration or deceleration timecan be determined by multiplying the value entered here first by 20milliseconds, and then by 5.AxisParameterNumber...

  • Page 312

    Acc/Dec ParametersChapter 1010-16Figure 10.8Exponential Acceleration Example.20.40.60.801.00Time (seconds)01008663FeedrateCommandedfeedrateEXPONENTIALAccelerationThe following equation can be used to approximate axis speed at any timeduring exponential axis deceleration:Speed = (Sin) - (Sin - Sco...

  • Page 313

    Acc/Dec ParametersChapter 1010-17After .16 seconds (one time constant), the axis has decelerated from 200ipm to 137 ipm. After .32 seconds, the axis has decelerated to 114 ipm.Figure 10.9Exponential Deceleration Example0.16.32.48.64.80Time (seconds)200137114100FeedrateInitialfeedrateEXPONENTIALDe...

  • Page 314

    Acc/Dec ParametersChapter 1010-18The value entered here indicates the number of “coarse iterations” thatmake up an Acc/Dec time constant. A coarse iteration is one of thecontrol’s software timing cycles and is equal to one system scan time. TheAcc/Dec time constant represents the amount of ...

  • Page 315

    Acc/Dec ParametersChapter 1010-19FunctionThis parameter allows you to select the Acc/Dec type (exponential orlinear) when you are performing manual motion on your control(e.g., continuous and incremental jogging).If you select “linear”, the parameter uses ramps AMPed for programmedmoves for e...

  • Page 316

    Acc/Dec ParametersChapter 1010-20Refer to the table below to determine the type of acc/dec performed formanual motion.Motion TypeAlways UsesExponential Acc/DecConfigurable in AMPby System InstallerHand--pulse generator(continuous and incremental)4Arbitrary angle moves(i.e., hand--pulse generator ...

  • Page 317

    Acc/Dec ParametersChapter 1010-21FunctionUse this parameter to select the maximum jerk for each axis used in aG48.5 block. This parameter is only used when in S--Curve Acc/Dec(G47.1) mode and when in one of the following modes: Positioning (G00)and Exact Stop (G09/nonmodal and G61/modal). Program...

  • Page 318

    Acc/Dec ParametersChapter 1010-22RT= -----andJRJMax = ------where JMax = 2 scans (0.04 s) andTMinRJMin = ------where JMin = 60 scans (1.20 s)TMaxWhere :Is :JAxis jerk valueRRamp valueTS--Curve time per system scan rate1,21Time is in seconds.2Maximum S--Curve time = 1.20 s (60 scans at 20 ms scan ...

  • Page 319

    Acc/Dec ParametersChapter 1010-23FunctionUse this parameter when in S--Curve Acc/Dec (G47.1) mode to specify theminimum allowable jerk value that the part program can set for each axisused in a G48.5 block. Programming G48.5 values that are out of rangegenerates the decode error, “RAMP/JERK OUT...

  • Page 320

    Acc/Dec ParametersChapter 1010-24or0.00000 to 1,000,000.0000 deg/sec/sec/secor0.0000 to 39370.0787 in/sec/sec/secNotesThis parameter must be set independently for each axis.Changing the Rapid Feedrate or Acceleration Ramp affects the MinimumProgrammable Jerk value.To manually calculate the Minimu...

  • Page 321

    Acc/Dec ParametersChapter 1010-25Ramp ValueS--Curve Timeper System ScanRateCoarse ForegroundScan TimeAxis Jerk Value1,000 ipm/s0.04 s20 ms25,000 ipm/s/s (max)1.20 s833 ipm/s/s (min.)0.16 s6,250 ipm/s/s(example permachine parameters)2,500 ipm/s0.028 s14 ms89,286 ipm/s/s (max)0.84 s2,976 ipm/s/s (m...

  • Page 322

    Acc/Dec ParametersChapter 1010-26

  • Page 323

    Chapter1111-1Constant Surface SpeedAs a cutting tool’s distance from the center of a rotating part changes, thesurface speed also changes. Use the constant surface speed feature (CSS)to maintain a tool’s cutting speed on a rotating part regardless of thediameter of the part. Refer to your pro...

  • Page 324

    Constant Surface SpeedChapter 1111-2When you select the “CSS Parameters” group from the main menu, theworkstation displays this screen:Proj:AMPTESTAppl:AMPUtil:EditF2-Project F3-Application F4-UtilityF5-ConfigurationF1-FileF2-AxisF3-OptionsF4-Quick Edit!Control Type:CylindricalAxis :X - linea...

  • Page 325

    Constant Surface SpeedChapter 1111-3FunctionUse this parameter to establish the default CSS axis. Typically you wouldselect an axis that is perpendicular to the center line of the rotating part.The axis named here is used if a programmable CSS axis (P1-P9) is notprogrammed in the G96 block.If an ...

  • Page 326

    Constant Surface SpeedChapter 1111-4FunctionUse these parameters to establish the programmable CSS axes. These axesbecome the CSS axes when their corresponding P-word is programmed ina G96 block. This provides a quick way to change the CSS axis from thedefault axis to a different axis. Refer to y...

  • Page 327

    Constant Surface SpeedChapter 1111-5FunctionWhen a rapid move (or many consecutive rapid moves) takes place if CSSis active, undesirable results may occur when the rotating part attempts toincrease or decrease rpm rapidly as the tool moves. This parameter allowsthe option of the spindle speed bei...

  • Page 328

    Constant Surface SpeedChapter 1111-6FunctionThis parameter is used only for Grinder control types. This parameterspecifies the time units for constant surface speed (CSS). You can choosebetween:seconds, i.e., feet/second or meters/secondminutes, i.e., feet/minute or meters/minuteThis parameter se...

  • Page 329

    Chapter1212-1Spindle 1 ParametersUse these parameters to define spindle operation for spindle 1.These parameters must be set separately for each spindle.These parameters include:Spindle DAC Output RampingVoltage at Max for Gear 1-8Spindle Deviation ToleranceNumber of Gears UsedMinimum Spindle Spe...

  • Page 330

    Spindle 1 ParametersChapter 1212-2To edit the spindle parameters, select “Spindle 1 Parameters” from the firstpage of the main menu screen. The workstation displays these 4 screens:Proj:AMPTESTAppl:AMPUtil:EditF2-Project F3-Application F4-UtilityF5-ConfigurationF1-FileF2-AxisF3-OptionsF4-Quic...

  • Page 331

    Spindle 1 ParametersChapter 1212-3These parameters deal with the DAC output voltage and spindle gears.“DAC” stands for “Digital to Analog Converter.” This is in reference toanalog outputs from either the analog output port on the digital servointerface, or any output port on the analog se...

  • Page 332

    Spindle 1 ParametersChapter 1212-4FunctionThis parameter determines whether the DAC output is a gradual voltageramp or a voltage step. For this parameter:If you select:then:ONany change in DAC output voltages is made as a ramp-up or ramp-down.The actual spindle ramp duration is selected using the...

  • Page 333

    Spindle 1 ParametersChapter 1212-5RangeSelectionResult(a)On(b)OffNotesThe following notes assume you have chosen yes for this parameterenabling spindle ramping:Open Loop SpindlesDuring normal open loop operation any change in commanded spindlespeed is ramped. Any time that the commanded spindle s...

  • Page 334

    Spindle 1 ParametersChapter 1212-6FunctionThis parameter is used to set the maximum DAC output voltage for eachgear range of the spindle.The maximum spindle rpm for each gear range is defined by the parameterMaximum Spindle Speed. It is necessary to determine what DAC outputvoltage is required to...

  • Page 335

    Spindle 1 ParametersChapter 1212-7FunctionSpecifies the percentage by which the actual spindle speed can deviatefrom the anticipated spindle speed before the control sets the PAL flag“Spindle Speed Deviation Excessive” to “TRUE.”Corrective action by the control is limited to setting this ...

  • Page 336

    Spindle 1 ParametersChapter 1212-8Generally the PAL program is written to display a warning messagewhenever the control sets the Spindle Speed Deviation Excessive flag to“TRUE.” The PAL program may also include a timer that forces moreaggressive action if the flag remains true for an extended...

  • Page 337

    Spindle 1 ParametersChapter 1212-9FunctionThis parameter specifies the number of available spindle gear ranges for aspecific machine application. The control allows for 8 spindle gear ranges.Important: If the machine does not have multiple spindle gear ranges,enter 1 for this parameter.SpindlePar...

  • Page 338

    Spindle 1 ParametersChapter 1212-10Values must be entered for all gear ranges specified by the parameterNumber of Gears Used. If any of the gears used has no value or an illegalvalue entered here, the control assumes that no gears are available andnever requests a gear change.SpindleParameterPara...

  • Page 339

    Spindle 1 ParametersChapter 1212-11For example, if it takes 20 msec for a small change in spindle speed (suchas from 0 to 5 rpm) and 160 msec for the maximum change in spindlespeed (such as from 0 to 4000 rpm), a good value to enter here would bethe average transition time, 90 msec.Refer to the d...

  • Page 340

    Spindle 1 ParametersChapter 1212-12These parameters are relevant only if your spindle provides positionfeedback and is capable of orienting to a specific position.Important: It is possible to perform coarse spindle orients withoutposition feedback through proper PAL programming and the use ofmech...

  • Page 341

    Spindle 1 ParametersChapter 1212-13FunctionUse this parameter to define a precise mechanical zero position for thespindle without requiring a mechanical adjustment of the encodermounting on the spindle shaft. When the spindle is homing, the control islooking for the location of the encoder marker...

  • Page 342

    Spindle 1 ParametersChapter 1212-14FunctionThis parameter determines the spindle speed in RPM that the control useswhen positioning the spindle during a spindle orient (M19).Refer to your programming and operation manuals for more informationon spindle orient.SpindleParameterNumber1[858]Range0.0 ...

  • Page 343

    Spindle 1 ParametersChapter 1212-15FunctionThis parameter specifies the direction the spindle rotates during:any open loop spindle orientany closed loop spindle orient that takes place before the spindle hasfound a marker.Spindle is:Encoder Markeris:The Orient is Performed in theDirection:closed ...

  • Page 344

    Spindle 1 ParametersChapter 1212-16RangeSelectionResult(a)Clockwise(b)Counter ClockwiseNotesThis parameter must be set for each spindle.The servo parameters Excess Error and Gain Break Point apply to closedloop spindles while they are orienting or tapping.FunctionThis parameter determines the abs...

  • Page 345

    Spindle 1 ParametersChapter 1212-17FunctionThis parameter determines a positioning range (in degrees) that the spindlemust be within for the control to consider the spindle “in position.”When the spindle position is within this range, the control closes thepositioning loop (even though spindl...

  • Page 346

    Spindle 1 ParametersChapter 1212-18FunctionEnter the gain in units of rpm per .001 revolutions for this spindle in thisgear.ParameterParameter NumberGain for Spindle 1, Gear 1[777]Gain for Spindle 1, Gear 2[778]Gain for Spindle 1, Gear 3[779]Gain for Spindle 1, Gear 4[780]Gain for Spindle 1, Gear...

  • Page 347

    Chapter1313-1Spindle 2 ParametersUse these parameters to define spindle operation for Spindle 2. Eachspindle is considered a separate axis. These parameters must be setseparately for each spindle.These parameters include:DAC Voltage and Spindle Gear ParametersSpindle DAC Output RampingVoltage at ...

  • Page 348

    Spindle 2 ParametersChapter 1313-2To edit the spindle parameters, select “Spindle 2 Parameters” from the firstpage of the main menu screen. The workstation displays these 4 screens:Proj:AMPTESTAppl:AMPUtil:EditF2-Project F3-Application F4-UtilityF5-ConfigurationF1-FileF2-AxisF3-OptionsF4-Quic...

  • Page 349

    Spindle 2 ParametersChapter 1313-3These parameters deal with the DAC output voltage and spindle gears.“DAC” stands for “Digital to Analog Converter.” This is in reference toanalog outputs from either the analog output port on the digital servointerface, or any output port on the analog se...

  • Page 350

    Spindle 2 ParametersChapter 1313-4FunctionThis parameter determines whether the DAC output is a gradual voltageramp or a voltage step. For this parameter:If you select:then:ONany change in DAC output voltages is made as a ramp-up or ramp-down.The actual spindle ramp duration is selected using the...

  • Page 351

    Spindle 2 ParametersChapter 1313-5RangeSelectionResult(a)On(b)OffNotesThe following notes assume you have chosen yes for this parameterenabling spindle ramping:Open Loop SpindlesDuring normal open loop operation any change in commanded spindlespeed is ramped. Any time that the commanded spindle s...

  • Page 352

    Spindle 2 ParametersChapter 1313-6FunctionThis parameter is used to set the maximum DAC output voltage for eachgear range of the spindle.The maximum spindle rpm for each gear range is defined by the parameterMaximum Spindle Speed. It is necessary to determine what DAC outputvoltage is required to...

  • Page 353

    Spindle 2 ParametersChapter 1313-7FunctionSpecifies the percentage by which the actual spindle speed can deviatefrom the anticipated spindle speed before the control sets the PAL flag“Spindle Speed Deviation Excessive” to “TRUE.”Corrective action by the control is limited to setting this ...

  • Page 354

    Spindle 2 ParametersChapter 1313-8Generally the PAL program is written to display a warning messagewhenever the control sets the Spindle Speed Deviation Excessive flag to“TRUE.” The PAL program may also include a timer that forces moreaggressive action if the flag remains true for an extended...

  • Page 355

    Spindle 2 ParametersChapter 1313-9FunctionThis parameter specifies the number of available spindle gear ranges for aspecific machine application. The control allows for 8 spindle gear ranges.Important: If the machine does not have multiple spindle gear ranges,enter 1 for this parameter.ParameterN...

  • Page 356

    Spindle 2 ParametersChapter 1313-10FunctionIt is necessary to enter the lowest and highest spindle rpm for each gearrange to optimize a machine’s performance. Overlapping ranges arepermitted. The maximum value for a specific gear must be greater than theminimum value for that gear.Gear change o...

  • Page 357

    Spindle 2 ParametersChapter 1313-11RangeMin. Spindle Speed:0 to Max. Spindle Speed (rpm)Max. Spindle Speed:Min. Spindle Speed to 99999.9(rpm)NotesThis parameter must be set for each spindle axis.Digital Spindle users must set this parameter (for gear 1 only) in additionto setting the servo parame...

  • Page 358

    Spindle 2 ParametersChapter 1313-12FunctionIf spindle DAC output ramping is off:This parameter specifies the spindle acceleration / deceleration time to beused by the control only for simulated feedback. Simulated feedback isexplained with the parameter Spindle Deviation Tolerance.Since the value...

  • Page 359

    Spindle 2 ParametersChapter 1313-13These parameters are relevant only if your spindle provides positionfeedback and is capable of orienting to a specific position.Important: It is possible to perform coarse spindle orients withoutposition feedback through proper PAL programming and the use ofmech...

  • Page 360

    Spindle 2 ParametersChapter 1313-14FunctionUse this parameter to define a precise mechanical zero position for thespindle without requiring a mechanical adjustment of the encodermounting on the spindle shaft. When the spindle is homing, the control islooking for the location of the encoder marker...

  • Page 361

    Spindle 2 ParametersChapter 1313-15FunctionThis parameter determines the spindle speed in RPM that the control useswhen positioning the spindle during a spindle orient (M19).Refer to your programming and operation manual for more information onspindle orient.ParameterNumber[864]Range0.0 to 99999....

  • Page 362

    Spindle 2 ParametersChapter 1313-16ParameterNumber[852]RangeSelectionResult(a)Clockwise(b)Counter ClockwiseNotesThis parameter must be set for each spindle axis.This feature is not available on the 9/230 control.FunctionThis parameter determines the absolute angle that the spindle rotates todurin...

  • Page 363

    Spindle 2 ParametersChapter 1313-17FunctionThis parameter determines a positioning range (in degrees) that the spindlemust be within for the control to consider the spindle “in position.”When the spindle position is within this range, the control closes thepositioning loop (even though spindl...

  • Page 364

    Spindle 2 ParametersChapter 1313-18FunctionEnter the gain in units of rpm per .001 revolutions for this spindle in thisgear.ParameterParameter NumberGain for Spindle 2 -- Gear 1[785]Gain for Spindle 2 -- Gear 2[786]Gain for Spindle 2 -- Gear 3[787]Gain for Spindle 2 -- Gear 4[788]Gain for Spindle...

  • Page 365

    Chapter1414-1Spindle 3 ParametersUse these parameters to define spindle operation for Spindle 3.These parameters must be set separately for each spindle.These parameters include:Spindle DAC Output RampingVoltage at Max for Gear 1-8Spindle Deviation ToleranceNumber of Gears UsedMinimum Spindle Spe...

  • Page 366

    Spindle 3 ParametersChapter 1414-2To edit the spindle parameters, select ‘‘Spindle 3 Parameters” from the firstpage of the main menu screen. The workstation displays these 3 screens:Proj:AMPTESTAppl:AMPUtil:EditF2-Project F3-Application F4-UtilityF5-ConfigurationF1-FileF2-AxisF3-OptionsF4-Q...

  • Page 367

    Spindle 3 ParametersChapter 1414-3These parameters deal with the DAC output voltage and spindle gears.“DAC” stands for “Digital to Analog Converter.” This is in reference toanalog outputs from either the analog output port, connector CN8 on thedigital servo module, or any output port on t...

  • Page 368

    Spindle 3 ParametersChapter 1414-4FunctionThis parameter determines whether the DAC output is a gradual voltageramp or a voltage step. For this parameter:If you select:then:ONany change in DAC output voltages is made as a ramp-up or ramp-down.The actual spindle ramp duration is selected using the...

  • Page 369

    Spindle 3 ParametersChapter 1414-5RangeSelectionResult(a)On(b)OffNotesThe following notes assume you have chosen yes for this parameterenabling spindle ramping:Open Loop SpindlesDuring normal open loop operation any change in commanded spindlespeed is ramped. Any time that the commanded spindle s...

  • Page 370

    Spindle 3 ParametersChapter 1414-6FunctionThis parameter is used to set the maximum DAC output voltage for eachgear range of the spindle.The maximum spindle rpm for each gear range is defined by the parameterMaximum Spindle Speed. It is necessary to determine what DAC outputvoltage is required to...

  • Page 371

    Spindle 3 ParametersChapter 1414-7FunctionSpecifies the percentage by which the actual spindle speed can deviatefrom the anticipated spindle speed before the control sets the PAL flag“Spindle Speed Deviation Excessive” to “TRUE.”Corrective action by the control is limited to setting this ...

  • Page 372

    Spindle 3 ParametersChapter 1414-8Generally the PAL program is written to display a warning messagewhenever the control sets the Spindle Speed Deviation Excessive flag to“TRUE.” The PAL program may also include a timer that forces moreaggressive action if the flag remains true for an extended...

  • Page 373

    Spindle 3 ParametersChapter 1414-9FunctionThis parameter specifies the number of available spindle gear ranges for aspecific machine application. The control allows for 8 spindle gear ranges.Important: If the machine does not have multiple spindle gear ranges,enter 1 for this parameter.ParameterN...

  • Page 374

    Spindle 3 ParametersChapter 1414-10FunctionIt is necessary to enter the lowest and highest spindle rpm for each gearrange to optimize a machine’s performance. Overlapping ranges arepermitted. The maximum value for a specific gear must be greater than theminimum value for that gear.Gear change o...

  • Page 375

    Spindle 3 ParametersChapter 1414-11RangeMin. Spindle Speed:0 to Max. Spindle Speed (rpm)Max. Spindle Speed:Min. Spindle Speed to 99999.9(rpm)NotesThis parameter must be set for each spindle axis.Digital Spindle users must set this parameter (for gear 1 only) in additionto setting the servo parame...

  • Page 376

    Spindle 3 ParametersChapter 1414-12FunctionIf spindle DAC output ramping is off, this parameter specifies thespindle acceleration / deceleration time to be used by the control only forsimulated feedback. Simulated feedback is explained with the parameterSpindle Deviation Tolerance.Since the value...

  • Page 377

    Spindle 3 ParametersChapter 1414-13These parameters are relevant only if your spindle provides positionfeedback and is capable of orienting to a specific position.Important: It is possible to perform coarse spindle orients withoutposition feedback through proper PAL programming and the use ofmech...

  • Page 378

    Spindle 3 ParametersChapter 1414-14FunctionUse this parameter to define a precise mechanical zero position for thespindle without requiring a mechanical adjustment of the encodermounting on the spindle shaft. When the spindle is homing, the control islooking for the location of the encoder marker...

  • Page 379

    Spindle 3 ParametersChapter 1414-15FunctionThis parameter determines the spindle speed in RPM that the control useswhen positioning the spindle during a spindle orient (M19).Refer to your programming and operation manuals for more informationon spindle orient.ParameterNumber[870]Range0.0 to 99999...

  • Page 380

    Spindle 3 ParametersChapter 1414-16ParameterNumber[853]RangeSelectionResult(a)Clockwise(b)Counter ClockwiseNotesThis parameter must be set for each spindle axis.This feature is not available on the 9/230, 9/260 or 9/440 controls.FunctionThis parameter determines the absolute angle that the spindl...

  • Page 381

    Spindle 3 ParametersChapter 1414-17FunctionThis parameter determines a positioning range (in degrees) that the spindlemust be within for the control to consider the spindle “in position.”When the spindle position is within this range, the control closes thepositioning loop (even though spindl...

  • Page 382

    Spindle 3 ParametersChapter 1414-18FunctionEnter the gain in units of rpm per .001 revolutions for this spindle in thisgear.ParameterParameter NumberGain for Spindle 3 -- Gear 1[793]Gain for Spindle 3 -- Gear 2[794]Gain for Spindle 3 -- Gear 3[795]Gain for Spindle 3 -- Gear 4[796]Gain for Spindle...

  • Page 383

    Chapter1515-1Spindle SynchronizationUse the spindle synchronization parameters to synchronize velocity orposition and velocity between two spindles with feedback using your9/260, 9/290, or 9/440 control.The feedback ratio between the two spindles must be a simple ratio witheither side no greater ...

  • Page 384

    Spindle SynchronizationChapter 1515-2Important: Make sure you take into consideration other parameters thatwill be used in conjunction with the synchronized spindle parameter(e.g., Gain for Spindles and Excess Error).FunctionThis parameter determines the controlling spindle for a synchronized pai...

  • Page 385

    Spindle SynchronizationChapter 1515-3FunctionThis parameter determines the follower spindle for a synchronized pair.Use the spindle number to define this parameter. Spindle numbers areidentified by the Spindle Type for Axis parameter (refer to page 7-103 formore information about this parameter)....

  • Page 386

    Spindle SynchronizationChapter 1515-4The following example shows the value at which the follower spindleramps to when:No overlap occurs between the controlling and follower spindles’gear rangesThe controlling spindle has a higher gear range than the followerspindleThe controlling spindle has a ...

  • Page 387

    Spindle SynchronizationChapter 1515-5FunctionThis parameter determines whether reversed rotation is required on thefollower spindle to synchronize with the controlling spindle. Thisparameter also determines if orient angles are reversed (after the zeropoints are designated on both spindle markers...

  • Page 388

    Spindle SynchronizationChapter 1515-6FunctionThe servos of a synchronized spindle pair are always given the samecommands. Thus, a well--balanced, synchronized spindle pair with equallysized motors that operate on fairly symmetric loads may not need to usethis parameter. The normal spindle positio...

  • Page 389

    Spindle SynchronizationChapter 1515-7FunctionThis parameter denotes how much the controlling spindle’s marker leadsthe follower spindle’s zero position during positional synchronization. Thezero point is determined by the marker and Spindle Marker Calibration(page 12-13, 13-14, or 14-14). If ...

  • Page 390

    Spindle SynchronizationChapter 1515-8FunctionThis parameter determines the maximum amount of positional deviationallowed between synchronized spindle markers after synchronization isachieved. When this maximum deviation is exceeded, the PAL flag,$SYNE is set.ParameterNumber[595]Range0.000 to 360....

  • Page 391

    Spindle SynchronizationChapter 1515-9FunctionThis parameter sets the time frame within which synchronization shouldoccur. If spindle synchronization is not successful within the timespecified, an error message is posted and the PAL flag, $SYNTO is set.See your PAL manual for more information abou...

  • Page 392

    Spindle SynchronizationChapter 1515-10

  • Page 393

    Chapter1616-1Axis Program Format ParametersThis chapter covers the Axis Program Format parameters. Theseparameters specify the word formats that must be used when specifyingaxis position and/or distance in part programs. The specified format limitsthe number of digits that may be entered to the l...

  • Page 394

    Axis Program Format ParametersChapter 1616-2FunctionThis parameter specifies the word format of the word used to specify theaxis position and distance of axes 1-12. It specifies the maximum numberof digits that can be entered to the left and to the right of the decimal pointwhen the control is co...

  • Page 395

    Axis Program Format ParametersChapter 1616-3The zero suppression mode parameters are covered in the followingsections:Parameter:Page:Leading Zero Suppression Mode16-3Trailing Zero Suppression Mode16-4Error if Letter Numeric Missing16-5FunctionThis parameter specifies whether leading zero suppress...

  • Page 396

    Axis Program Format ParametersChapter 1616-4FunctionThis parameter specifies whether trailing zero suppression mode is activewhen a programmed word is decoded by the control. It should be disabledwhen decimal point programming is being performed. When thisparameter is enabled, the control “left...

  • Page 397

    Axis Program Format ParametersChapter 1616-5FunctionThis parameter specifies whether a part program format error is generatedif a letter is programmed without a succeeding numeric digit (for example,programming the block XYZ; would generate an error). When thisparameter is disabled, the control a...

  • Page 398

    Axis Program Format ParametersChapter 1616-6

  • Page 399

    Chapter1717-1Letter Format ParametersThis chapter covers the Letter Format parameters that specify the wordformats that must be used when entering D--, E--, F--, H--, Lead, P--, Q--,R--, S--, and T--words in part programs. These parameters specify thenumber of digits that may be entered to the le...

  • Page 400

    Letter Format ParametersChapter 1717-2When you select the “Letter Format” group and the control type “Lathe,”the workstation displays these screens:Proj:AMPTESTAppl:AMPUtil:EditF2-Project F3-Application F4-UtilityF5-ConfigurationF1-FileF2-AxisF3-OptionsF4-Quick Edit!F5-ProcessType : Lathe...

  • Page 401

    Letter Format ParametersChapter 1717-3The D-word integer and word letter format parameters are covered in thefollowing sections:Parameter:Page:D: Integer Format17-3D: Word Format17-4FunctionThis parameter specifies the maximum number of digits that are permittedto the left of the decimal point in...

  • Page 402

    Letter Format ParametersChapter 1717-4FunctionThis parameter is set for lathe controls and grinder applications only.For Lathe fixed cycles, it refers to the D-word programmed in thesecompound turning routines:G Code SystemABCDescriptionG71G71G73O.D. & I.D. Roughing RoutineG72G72G74Rough Faci...

  • Page 403

    Letter Format ParametersChapter 1717-5The E-word letter format parameter is covered in E: # THRDS/INCHWord Format on page 17-5.FunctionThis parameter is used for lathe controls and grinder applications only. Itcorresponds to the E-word that is used to program the thread lead in one ofthese thread...

  • Page 404

    Letter Format ParametersChapter 1717-6NotesThis parameter is a global parameter; it applies to all axes and processes.This parameter is not used for decoding the E-word when E is being usedto program the reciprocation feedrate, or when E is used in a G38 block.In these cases, the current F-word f...

  • Page 405

    Letter Format ParametersChapter 1717-7FunctionThis parameter specifies the maximum number of digits that are permittedto the left and to the right of the decimal point in the F-word format. Thisparameter specifies the format of an F-word that is used to program afeedrate in inches or millimeters ...

  • Page 406

    Letter Format ParametersChapter 1717-8FunctionThis parameter is used for mill and surface grinder controls only. Itspecifies the maximum number of digits that are permitted to the left andto the right of the decimal point in the F-word format. This parameterspecifies the format of an F-word that ...

  • Page 407

    Letter Format ParametersChapter 1717-9The H-integer and word letter format parameters are covered onthese pages:Parameter:Page:H: Integer Format17-9H: Word Format17-10FunctionThis parameter is used for mill and surface grinder controls only. It is usedfor an H-word that programs a tool length off...

  • Page 408

    Letter Format ParametersChapter 1717-10FunctionThis parameter is used for mill and surface grinder controls only.It corresponds to the H-word used in the G38 hole probing feature. In thisfeature, the H-word is used to program the expected diameter of the hole.This parameter specifies the maximum ...

  • Page 409

    Letter Format ParametersChapter 1717-11The Lead word letter format parameter is covered in Lead: Word Formaton page 17-11.FunctionThis parameter is used for lathe controls and cylindrical grinderapplications only. It refers to the F-word that is used to program the threadlead in one of these thre...

  • Page 410

    Letter Format ParametersChapter 1717-12The P-word letter format parameters are covered on these pages:Parameter:Page:P dwell type : integer/decimal17-12P: Integer Format17-13FunctionThis parameter specifies whether the dwell time should be interpreted as ininteger format or as in decimal point fo...

  • Page 411

    Letter Format ParametersChapter 1717-13FunctionThis parameter specifies the integer format of the P-word that is used tocall subprograms, paramacro programs or dressing programs.This parameter specifies the maximum number of digits that are permittedto the left of the decimal point in the P-word ...

  • Page 412

    Letter Format ParametersChapter 1717-14The Q-word letter format parameters are covered on these pages:Parameter:Page:Q: Integer Format17-14Q: Word Format17-15Q: Thread Marker Angle Shift17-16FunctionThis parameter is used for lathe controls only, and refers to the Q-word thatis used in the compou...

  • Page 413

    Letter Format ParametersChapter 1717-15FunctionThis parameter is used for the milling cycles of mill controls, the drillingcycles of lathe controls and the grinding cycles of grinder controls.A Q-word in a cycle block is used to program various informationdepending on the cycle. Generally it is u...

  • Page 414

    Letter Format ParametersChapter 1717-16FunctionThis parameter specifies the Q-word for threading blocks. It provides arelative value for the start offset angle of the thread. Its primary use is incutting multi-start threads.This parameter specifies the maximum number of digits that are permittedt...

  • Page 415

    Letter Format ParametersChapter 1717-17The R-word letter format parameters are covered on these pages:Parameter:Page:R: Word Format17-17R: Angle Word Format17-18FunctionThis parameter specifies the maximum number of digits that are permittedto the left and to the right of the decimal point in the...

  • Page 416

    Letter Format ParametersChapter 1717-18FunctionThis parameter is used for mill and surface grinder controls only. It refersto the R-word that is used when programming a coordinate system rotation(G68). This R-word specifies the angle of rotation (entered in units ofdegrees) at which the coordinat...

  • Page 417

    Letter Format ParametersChapter 1717-19The S-word letter format parameters are covered on these pages:Parameter:Page:S: CSS Word Format17-19S: Orient Angle Word Format17-20S: Spindle RPM Word Format17-21FunctionThis parameter specifies the format of the S-word that is used to program acutting spe...

  • Page 418

    Letter Format ParametersChapter 1717-20FunctionThis parameter specifies the format of an S-word that is used to programan angle when using the spindle orient feature (M19). This parameterspecifies the maximum number of digits that are permitted to the left andto the right of the decimal point in ...

  • Page 419

    Letter Format ParametersChapter 1717-21FunctionThis parameter specifies the format of the S-word that is used to program aspindle speed in units of rpm (revolution per minute). This parameterspecifies the maximum number of digits that are permitted to the left andto the right of the decimal point...

  • Page 420

    Letter Format ParametersChapter 1717-22The T-word letter format parameter is covered in T: Tool Number IntegerFormat on page 17-22.FunctionThis parameter specifies the integer format of a T-word that is used toprogram a tool number. This parameter specifies the maximum number ofdigits that are pe...

  • Page 421

    Letter Format ParametersChapter 1717-23The chamfer and radius letter format parameter is covered in ,C/,R WordFormat on page 17-23.FunctionThis parameter specifies the maximum number of digits that are permittedto the left and to the right of the decimal point when enteringChamfering/Cornering wo...

  • Page 422

    Letter Format ParametersChapter 1717-24

  • Page 423

    Chapter1818-1Plane Select ParametersThe control has a number of features that operate in specific planes. Forthat reason, it is frequently necessary to change the active plane by using aG17, G18, or G19. These G-codes may be used to activate 3 primaryplanes. These G-codes may also be used to acti...

  • Page 424

    Plane Select ParametersChapter 1818-2These subsections describe the parameters that are used to determine theplanes selected on the control when the G17, G18, and G19 codes areprogrammed.These parameters are available for plane selection. Note that theparameters for G17, G18, and G19 have been co...

  • Page 425

    Plane Select ParametersChapter 1818-3Changing the preceding definitions can have a dramatic change onoperation. For example, switching a lathe from the standard ZX plane tothe reversed XZ plane causes:G02 circular interpolation clockwise and G03 circular interpolationcounterclockwise to reverse. ...

  • Page 426

    Plane Select ParametersChapter 1818-4FunctionUse this parameter to determine the first primary axis that is used to makeup the plane called by G17, G18, or G19. This parameter sets which axisis first in the plane. For example, if the G17 plane is to be set as the XYplane, “G17 primary axis 1”...

  • Page 427

    Plane Select ParametersChapter 1818-5FunctionUse this parameter to determine an axis that is parallel to primary axis1 for this G-code. If no parallel axes are used, this parameter is setas “None.”Up to 4 parallel axes may be set for a select plane. Up to two parallel axesfor each primary axi...

  • Page 428

    Plane Select ParametersChapter 1818-6NotesThis is a global parameter; the value set here applies to all axes.For Dual Processing controls, this is a per process parameter. The value setin the parameters applies to all of the axes assigned to that process.Important: If you are performing planar fu...

  • Page 429

    Plane Select ParametersChapter 1818-7RangeSelectionResultsSelectionResults(a)A(i)Z(b)B(j)$B(c)C(k)$C(d)U(l)$X(e)V(m)$Y(f)W(n)$Z(g)X(o)none(h)YNotesThis is a global parameter; the value set here applies to all axes.For Dual Processing controls, this is a per process parameter. The value setin the ...

  • Page 430

    Plane Select ParametersChapter 1818-8RangeSelectionResultsSelectionResults(a)A(i)Z(b)B(j)$B(c)C(k)$C(d)U(l)$X(e)V(m)$Y(f)W(n)$Z(g)X(o)none(h)YNotesThis is a global parameter; the value set here applies to all axes.For Dual Processing controls, this is a per process parameter. The value setin the ...

  • Page 431

    Plane Select ParametersChapter 1818-9ParameterParameter NumberSingleMillDual MillProcess 1Dual MillProcess 2SingleLatheDual LatheProcess 1Dual LatheProcess 2G17 1st axis parallel to 2[545][20545][21554][574][20574][21574]G18 1st axis parallel to 2[551][20551][21551][551][20551][21551]G19 1st axis...

  • Page 432

    Plane Select ParametersChapter 1818-10A value for this parameter may be chosen from these allowable axisnames: A, B, C, U, V, W, X, Y, Z, $B, $C, $X, $Y, or $Z. A value of“None” may also be selected indicating that there are not two axes parallelto that primary axis in the plane selected with...

  • Page 433

    Chapter1919-1Power-up G-code ParametersThis chapter covers the Power-up G-code parameters. These parametersspecify which G-code is the default G-code for a specific modal G-codegroup. These default G-codes become effective when the control ispowered up or when a control reset is performed. A cont...

  • Page 434

    Power-up G-code ParametersChapter 1919-2Access these parameters by selecting the “Power-up G Codes” parametergroup displayed on the main AMP menu screen. When you select the“Power-up G Codes” parameter group, the workstation displaysthis screen:Proj:AMPTESTAppl:AMPUtil:EditF2-Project F3-A...

  • Page 435

    Power-up G-code ParametersChapter 1919-3FunctionUse this parameter to select the default G-code for modal group 5.The selected G-code specifies whether the control operates underfeedrate-per-minute or feedrate-per-revolution modes at power-up or reset(mill or grinder control types allow the selec...

  • Page 436

    Power-up G-code ParametersChapter 1919-4FunctionThis parameter selects the default G-code for modal group 6. The selectedG-code specifies whether the control operates under inch or metric mode atpower -up only. A control reset will not re-establish this mode. The lastprogrammed state remains in e...

  • Page 437

    Power-up G-code ParametersChapter 1919-5FunctionThis parameter selects the default G-code for modal group 1. The selectedG-code specifies whether the control operates under G-code G00 (rapidpositioning) or G01 (linear interpolation) at power-up or reset.LatheALatheBLatheCMillControlSurfaceGrinder...

  • Page 438

    Power-up G-code ParametersChapter 1919-6FunctionThis parameter selects the default G-code for modal group 2. The selectedG-code (G17, G18, G19) specifies the primary machining plane of thecontrol at power-up or reset.AxisNumberControl TypeAll[522]MillSurface Grinder[564]LatheCylindrical Grinder[2...

  • Page 439

    Power-up G-code ParametersChapter 1919-7FunctionThis parameter selects the default G-code for modal group 3. The selectedG-code specifies whether the control operates under G-code G90(Absolute) or G91 (Incremental) positioning at power-up or reset.Important: When control type “Lathe” and G-co...

  • Page 440

    Power-up G-code ParametersChapter 1919-8FunctionThis parameter selects the default G-code for modal group 8. The selectedG-code specifies whether the control operates under G43, G44, or G49 atpower-up or reset. This parameter is used for mill and surface grinderapplications only.G--codeActive Mod...

  • Page 441

    Power-up G-code ParametersChapter 1919-9FunctionThis parameter selects the default G-code for modal group 18. Theselected G-code specifies whether the control operates under G07 or G08at power-up or reset. This parameter is used for lathe and cylindricalgrinder applications only.LatheALatheBLathe...

  • Page 442

    Power-up G-code ParametersChapter 1919-10FunctionThis parameter selects the default work coordinate system. It determinesthe work coordinate system that is activated at power-up, control reset, orwhen a G92.1 is programmed. The default work coordinate system mayalso be be activated when the contr...

  • Page 443

    Power-up G-code ParametersChapter 1919-11FunctionUse this parameter to selects the default G-code for modal group 4.The G-code you select specifies which Programmable Zone willautomatically activate upon power up or reset.AxisParameter NumberSingle ProcessProcess 1Process 2All[524][20524][21524]R...

  • Page 444

    Power-up G-code ParametersChapter 1919-12FunctionThis parameter selects the default G-code for modal group 17.This parameter is available for grinder applications only.If this parameter is set to:the spindle is:ONunder CSS controlOFFin the RPM spindle speed modeAxisParameterNumberAll[21]RangeSele...

  • Page 445

    Power-up G-code ParametersChapter 1919-13FunctionUse this parameter to select the default G-code for modal group 10. Youcan use this parameter for lathe/mill applications only; however, thisparameter is not active on lathe A.The selected G-code specifies whether the control operates under G98 Ini...

  • Page 446

    Power-up G-code ParametersChapter 1919-14FunctionUse this parameter to select the default G-code for modal group 13. Youcan use this parameter for lathe/mill applications.The selected G-code specifies under which mode the control operates atpower-up or reset:·G61 Exact Stop·G63 Tapping·G62 Aut...

  • Page 447

    Power-up G-code ParametersChapter 1919-15FunctionUse this parameter to select the default G-code for modal group 15. Youcan use this parameter for grinder applications only.The selected G-code specifies under which mode the control operates atpower-up or reset:G15 - Angled Wheel Transforms OffG16...

  • Page 448

    Power-up G-code ParametersChapter 1919-16FunctionUse this parameter to select the default G-code for modal group 20. Youcan use this parameter for lathe/mill applications.The selected G-code specifies whether the control operates under G39Cutter Comp Linear or G39.1 Cutter Comp Rounding at power-...

  • Page 449

    Power-up G-code ParametersChapter 1919-17FunctionUse this parameter to select the default G-code for modal group 22. Youcan use this parameter for lathe/mill applications.The selected G-code specifies whether the control operates under G36Short Block Feed Clamped or G36.1 Short Block Full Feed at...

  • Page 450

    Power-up G-code ParametersChapter 1919-18FunctionUse this parameter to select the default G-code for modal group 24. Theselected G--code specifies the type of acc/dec mode (Linear, S--Curve, orAcc/Dec Disabled) is active.LatheALatheBLatheCMillControlActive ModeG47G47G47G47Linear ACC/DECG47.1G47.1...

  • Page 451

    Chapter2020-1PAL ParametersThis chapter covers the PAL parameters. Use these parameters to specifyPAL related options that are machine-dependant. Access these parametersby selecting the PAL Parameters group from the AMP main menu.The workstation displays this screen when the “PAL Parameters” ...

  • Page 452

    PAL ParametersChapter 2020-2FunctionThis parameter defines whether an axis is controlled by PAL only. PALhas the option to control any configured axis; however, axes selected withthis parameter as PAL-only axes can be controlled only by PAL. Thismeans the operator and part programmer have no mean...

  • Page 453

    PAL ParametersChapter 2020-3FunctionUse the PAL analog output port control parameters to assign an analogoutput port on the servo module(s) (or processor board for the 9/230) of thecontrol to one of the PAL analog output control flags ($AOUT00-$AOUT03). PAL can control up to four analog output po...

  • Page 454

    PAL ParametersChapter 2020-4Selection ResultSelection Result(a)No output(j)Board 2, Analog Out Connector J2(b)Board 1, Analog Out Connector J1(k)Board 2, Analog Out Connector J3(c)Board 1, Analog Out Connector J2(l)Board 2, Analog Out Connector J4(d)Board 1, Analog Out Connector J3(m)Board 2, Ana...

  • Page 455

    Chapter2121-1Paramacro ParametersThis section describes the parameters that are available for the paramacrofeature. The parameters are broken into these major sections:Section:Page:Paramacro Output parameters21-3T, S, and B code paramacro calls21-4G-code paramacro calls21-6M-code paramacro calls2...

  • Page 456

    Paramacro ParametersChapter 2121-2Proj:AMPTESTAppl:AMPUtil:EditF2-Project F3-Application F4-UtilityF5-ConfigurationF1-FileF2-AxisF3-OptionsF4-Quick Edit!Control Type : MillAxis :X - linearFile :TEST- Paramacro Parameters -Page 7 of 7G-CODE FOR MACRO CALL 15:245.0TYPE OF MACRO CALL 15:NOT USEDPROG...

  • Page 457

    Paramacro ParametersChapter 2121-3Refer to your programming and operation manual for details on theparamacro features.This subsection describes the PORT # FOR PARAMACRO EXTERNALSparameter that is used to determine the output parameters for theparamacro feature.FunctionUse this parameter to determ...

  • Page 458

    Paramacro ParametersChapter 2121-4This subsection describes the T, S, B -- CODE MAY BE A MACRO CALLparameter that is used for T--, S--, and B--code AMP-assigned paramacrocalls.The paramacro program names that are called by a T--, S--, or B--words are:T--word calls the paramacro program named 9000...

  • Page 459

    Paramacro ParametersChapter 2121-5FunctionUse these parameters to determine whether a paramacro program can becalled in a program with a T--, S--, or B--word.If the parameter is:then:Truethat word may be used to call a paramacroFalsethat word cannot be used to call a paramacroParameterParameterNu...

  • Page 460

    Paramacro ParametersChapter 2121-6This feature lets you define your own G-codes to be used in a partprogram. When executed, these G-codes call a specific paramacroprogram that you have previously written and stored in control memory.There are two types of AMP-defined G-codes: Type I and Type II. ...

  • Page 461

    Paramacro ParametersChapter 2121-7FunctionUse this parameter for Type I and II AMP-defined G-codes. AMP-definedG-code paramacro calls are either modal or non-modal. Use this parameterfor modal macro calls only. Whether an AMP-defined G-code paramacrocall is modal or non-modal is determined by usi...

  • Page 462

    Paramacro ParametersChapter 2121-8FunctionUse these parameters to determine the Type I AMP-defined G-codes usedto call paramacros program numbers 9010 to 9019. Specify the number ofthe G-code that is used to call a specific paramacro number. This G-codemust be an integer (no decimals allowed).Par...

  • Page 463

    Paramacro ParametersChapter 2121-9FunctionUse these parameters, #9010 to #9019, to determine whether a Type IAMP-assigned G-code paramacro is modal or non-modal. This parametermay also disable a paramacro from being called by a G-code if it is set at“Not Used.”ParameterParameter NumberTYPE OF...

  • Page 464

    Paramacro ParametersChapter 2121-10FunctionUse these parameters to define the Type II AMP-defined G-code used tocall your paramacro program. Up to 15 different G-codes may be definedto call 15 different paramacro programs. Specify the number of theG-code that is used to call a specific paramacro ...

  • Page 465

    Paramacro ParametersChapter 2121-11NotesYou cannot set this parameter equal to the value of G65; G66; G66.1; G70;G71, G72, G73, G74, G75 (lathe only); and G89.1 and G89.2 (mill only).If G65, G66, or G66.1 is assigned as an AMP-defined G-code, it isignored, and the system-defined G65, G66, or G66....

  • Page 466

    Paramacro ParametersChapter 2121-12RangeSelectionResult(a)NOT USED(b)NOT MODAL(c)MODALIf this parameter is set at:: this means:NOT USEDthis AMP-assigned G-code macro call is disabled and is not used.Any values assigned to the parameters G-CODE FOR MACROCALL and PROGRAM NUMBER FOR MACRO CALL are i...

  • Page 467

    Paramacro ParametersChapter 2121-13FunctionUse these parameters to define the program number called by the Type IIparamacro call. The program name entered here must be stored inmemory at the time the G-code macro call is executed.The program you call with a G-code macro must have a 5-digit numeri...

  • Page 468

    Paramacro ParametersChapter 2121-14This section describes the AMP parameters that are used when M-codesare required to call a paramacro. AMP-defined M-code paramacro callsmay call only non-modal paramacros (executed similarly to a G65paramacro call). Refer to your mill or lathe programming and op...

  • Page 469

    Paramacro ParametersChapter 2121-15Use these AMP parameters to modify how the control reacts when a macrocall is made by a G--, M--, T--, S--, or B--code. Specifically they areintended to give more definition to the operation of the codes whenconflicts occur between other features and these G--, ...

  • Page 470

    Paramacro ParametersChapter 2121-16NotesThis is a global parameter; the value set here applies to all axes.Note that T--, S--, and B--codes that are defined to call paramacros alwayscall the paramacro, and ignore the system-defined function in MDI unless anesting violation has occurred as shown i...

  • Page 471

    Paramacro ParametersChapter 2121-17Table 21.BWorks as the System-defined CodeCALLING-PROGRAMTYPE OF MACRO NESTED 1G65,G66,orG66.1AMP-GAMP-MAMP-TS or BG65, G66 or G66.1YesYesYesYesAMP G-codeYesNoNoNoAMP M-codeYesNoNoNoAMP-T, S or B codeYesNoNoNo1 What Yes/No means:Yes---- the macro type across the...

  • Page 472

    Paramacro ParametersChapter 2121-18

  • Page 473

    Chapter2222-1Tool Offset ParametersModern machining processes usually require a machine that is capable ofselecting different tools. Typically tools are mounted in a turret or chuckand assigned tool numbers. These sections describe the parameters that areused to set up tool offsets. Tool offsets ...

  • Page 474

    Tool Offset ParametersChapter 2222-2When you select “Tool Offset Parameters” from the main menu screen,these screens become available:Proj:AMPTESTAppl:AMPUtil:EditF2-Project F3-Application F4-UtilityF5-ConfigurationF1-FileF2-AxisF3-OptionsF4-Quick Edit!F5-ProcessType : MillAXIS: X<P1>- ...

  • Page 475

    Tool Offset ParametersChapter 2222-3These subsections describe the basic parameters that should be set toproperly use the tool offset feature.Parameter:Page:T-code Format22-3Tool Length Axis22-4Maximum Tool Offset Number22-5Tool Geometry Mode22-6Tool Wear Mode22-8Tool Offset Cancel22-9FunctionImp...

  • Page 476

    Tool Offset ParametersChapter 2222-4AxisParameter NumberSingle ProcessProcess 1Process 2All[205][20205][21205]RangeSelectionResultsSelectionResults(a)1 digit Geom + Wear(d)1 digit Wear(b)2 digit Geom + Wear(e)2 digit Wear(c)3 digit Geom + Wear(f)3 digit WearNotesThis is a global parameter; the va...

  • Page 477

    Tool Offset ParametersChapter 2222-5RangeSelectionResultsSelectionResults(a)Axis 1(g)Axis 7(b)Axis 2(h)Axis 8(c)Axis 3(i)Axis 9(d)Axis 4(j)Axis 10(e)Axis 5(k)Axis 11(f)Axis 6(l)Axis 12NotesThe part programer can temporarily override the axis selected here byprogramming a G43.1. Refer to your prog...

  • Page 478

    Tool Offset ParametersChapter 2222-6FunctionUse this feature to determine how the geometry tool offset takes place.This parameter determines when the work coordinate system is shifted, andwhen the axis position is returned to the programmed position after thecoordinate system shifts.AxisParameter...

  • Page 479

    Tool Offset ParametersChapter 2222-7immed shift -- When this parameter is set for “immed shift,” the workcoordinate system shifts when the control executes the block that activates,deactivates, or changes the tool length value.delay shift -- When this parameter is set for “delay shift,” t...

  • Page 480

    Tool Offset ParametersChapter 2222-8FunctionUse this feature to determine how the wear tool offset takes place. Thisparameter determines when the work coordinate system is shifted, andwhen the axis position is returned to the programmed position after thecoordinate system shifts.AxisParameter Num...

  • Page 481

    Tool Offset ParametersChapter 2222-9NotesThis is a global parameter; the value set here applies to all axes. Thisparameter does not affect the operation of the cutter compensation or theTTRC features in any way.Important: It is incompatible to select a geometry offset mode of “immedshift, immed...

  • Page 482

    Tool Offset ParametersChapter 2222-10Use the AMP parameter Cancel Tool Offsets on M02/M30 (page 37-12) todetermine if tool offsets are canceled at the end of a part program.RangeApplication type:SelectionResultsMill/Lathe(a)Do Not Cancel(b)Cancel Wear Only(c)Cancel Geom & WearGrinder(a)Do Not...

  • Page 483

    Tool Offset ParametersChapter 2222-11FunctionUse these parameters to determine the position tolerance for the fourdifferent skip cycles called by the G37 codes. This position tolerance isused to set a range ± from the nominal end-point that is programmed in theG37 block. The skip signal must be ...

  • Page 484

    Tool Offset ParametersChapter 2222-12FunctionTypically, when one of the G37 cycles is executed, the control movestoward a programmed position. A signal is sent to PAL from a devicewhen contact is made between the tool and the device. The control thensubtracts the actual position of the tool when ...

  • Page 485

    Tool Offset ParametersChapter 2222-13FunctionUse this parameter to determine what offset table is modified by the G37skip cycles. A choice of the wear table or the geometry table is provided.For lathe controls, the value always modifies the tool length data for theaxis programmed in the G37 block...

  • Page 486

    Tool Offset ParametersChapter 2222-14This section describes the parameters that are used to configure a toolmagazine or turret or other tool changing device. When a T-word isprogrammed that requires a tool change, these parameters are used to setthe number of different tool positions and the dire...

  • Page 487

    Tool Offset ParametersChapter 2222-15FunctionUse this parameter to determine the maximum number of tools that can beselected. These tool are arranged in a magazine, turret, or some other toolchanging device. Enter the number of tool pockets (sometimes called toolpots) that a specific system conta...

  • Page 488

    Tool Offset ParametersChapter 2222-16FunctionUse this parameter to determine the direction in which the tool magazine,turret, or other tool changing device can be rotated. This parameter allowsfor these direction options:Plus only -- If this parameter is set as “Plus only,” it indicates that ...

  • Page 489

    Tool Offset ParametersChapter 2222-17Use this section to set the parameters for the tool life monitor feature.Typically tools are classified into various groups, with the tool life for eachgroup specified. This feature accumulates the use of each tool in thegroups and compares this to the expecte...

  • Page 490

    Tool Offset ParametersChapter 2222-18FunctionThis parameter determines how a T-word may be programmed inconjunction with an M06 code. There are 4 methods available:MethodDescriptionReturn tool in M06With this method, the T-word to be activated is programmed in ablock that does not contain an M06....

  • Page 491

    Tool Offset ParametersChapter 2222-19These subsections describe the parameters used for tool offset rangeverification. These parameters check:the maximum values entering the tool offset tablesthe maximum change that can occur in either tableParameter:Page:Maximum Wear Offset Change22-19Maximum Ge...

  • Page 492

    Tool Offset ParametersChapter 2222-20AxisParameter NumberMillLatheAll[244] (single process)[20244] (process 1)[21244] (process 2)—(1)[1410](2)[2410](3)[3410](4)[4410](5)[5410](6)[6410](7)[7410](8)[8410](9)[9410](10)[10410](11)[11410](12)[12410]Range0.000000 to 390.000000 inches/9906.0000 mmNote...

  • Page 493

    Tool Offset ParametersChapter 2222-21Refer to your programming and operation manual for more information.AxisParameter NumberMillGrinderLatheAll[245] (single process)[20245] (process 1)[21245] (process 2——(1)[1410][1411](2)[2410][2411](3)[3410][3411](4)[4410][4411](5)[5410][5411](6)[6410][641...

  • Page 494

    Tool Offset ParametersChapter 2222-22FunctionUse this parameter to specify the maximum value that a Wear Offset maycontain. This value represents the absolute maximum value per table forall tool offsets in that table.If the operator enters:then:a positive number greater than the maximum valuethe ...

  • Page 495

    Tool Offset ParametersChapter 2222-23FunctionUse this parameter to specify the maximum value that a Geometry Offsetmay contain. This value represents the absolute maximum value per tablefor all tool offsets in that table.If the operator enters:then:a positive number greater than the maximum value...

  • Page 496

    Tool Offset ParametersChapter 2222-24FunctionUse this parameter to specify the maximum value that a Wear RadiusOffset may contain. This value represents the absolute maximum value pertable for all tool offsets in that table.If the operator enters:then:a positive number greater than the maximum va...

  • Page 497

    Tool Offset ParametersChapter 2222-25FunctionUse this parameter to specify the maximum value that a Geometry RadiusOffset may contain. This value represents the absolute maximum value pertable for all tool offsets in that table.If the operator enters:then:a positive number greater than the maximu...

  • Page 498

    Tool Offset ParametersChapter 2222-26FunctionUse this parameter to specify the amount that a Radius Offset may changebetween successive entries.If the operator exceeds the amount set by the system installer in AMP, thechange is not allowed. The control generates the error message “OFFSETEXCEEDS...

  • Page 499

    Tool Offset ParametersChapter 2222-27FunctionUse this parameter to specify the maximum value that a Radius Offset maycontain. This value represents the absolute maximum value per table forall tool offsets in that table.If the operator enters:then:a positive number greater than the maximum valueth...

  • Page 500

    Tool Offset ParametersChapter 2222-28

  • Page 501

    Chapter2323-1Cutter Comp/Tool Tip RadiusThis chapter describes the Cutter Compensation and Tool Tip RadiusCompensation (TTRC) parameters. This lets the part programmer programthe path the tool follows in terms of the tool’s center or gauge pointwithout regard to the diameter or tool-tip radius....

  • Page 502

    Cutter Comp/Tool Tip RadiusChapter 2323-2This set of parameters determines how the basic cutter compensation andTTRC features operate. They are described in detail on these pages:Parameter:Page:Cutter Compensation Type23-2Defines Offset as Diam. or Rad23-4Minimum Block Generation Length23-5Minimu...

  • Page 503

    Cutter Comp/Tool Tip RadiusChapter 2323-3Figure 23.1Type A vs Type B Cutter Compensation0° £ q £ 90°90° £ q £ 180°270° £ q £ 360°180° £ q £ 270°G41ProgrammedpathG42G41ProgrammedpathG42G41ProgrammedpathG42G41ProgrammedpathG42Start pointStart pointStart pointStart pointqqqqrrrrrrrrr...

  • Page 504

    Cutter Comp/Tool Tip RadiusChapter 2323-4AxisParameterNumberAll[24]RangeSelectionResult(a)Type A(b)Type BNotesThis is a global parameter. The value set here applies to all axesand processes.FunctionThis parameter allows for flexibility when entering the tool offset data intothe offset tables. Thi...

  • Page 505

    Cutter Comp/Tool Tip RadiusChapter 2323-5FunctionDuring cutter compensation, use this parameter to determine the minimumlength that a linear generated block may be. Note that these generatedblocks, as shown in Figure 23.2, are not created by the programmer; theyare blocks that the control generat...

  • Page 506

    Cutter Comp/Tool Tip RadiusChapter 2323-6Range0.00010 to 9.99900 mmor0.00000 to .39366 inchNotesThis is a global parameter. The value set here applies to all axes andprocesses.FunctionThis parameter limits the amount of automatic feedrate reduction thatoccurs under certain compensation conditions...

  • Page 507

    Cutter Comp/Tool Tip RadiusChapter 2323-7NotesConsider the following example:As the tool approaches an inside arc with compensation active at a feedrateof 200 mmpm, the control determines that the feedrate must be reduced to120 mmpm to maintain a constant cutting feedrate. If this parameter is se...

  • Page 508

    Cutter Comp/Tool Tip RadiusChapter 2323-8FunctionThe control is always looking ahead to the next motion block to determinethe actual tool path taken for a motion block in compensation. If the nextprogram block is not a motion block, the control continues to scan aheadfor a motion block until it e...

  • Page 509

    Cutter Comp/Tool Tip RadiusChapter 2323-9This set of parameters determines how the corner override feature operates.They are described in detail on these pages:Parameter:Page:Minimum Angle for Corner Override23-9Corner override distance (DTC)23-10Corner override distance (DFC)23-11Corner override...

  • Page 510

    Cutter Comp/Tool Tip RadiusChapter 2323-10NotesThe parameters for the override percent and the distance from the cornerthat the override is effective from are set under the “Acc/DecParameters” screen.This is a global parameter. The value set here applies to all axesand processes.FunctionEnter...

  • Page 511

    Cutter Comp/Tool Tip RadiusChapter 2323-11FunctionEnter the vector distance from the end-point of a move that creates acorner, to the point on the next move at which Automatic Corner Overrideis to be deactivated.(DFC stands for Distance From Corner)Refer to the discussion of the AMP parameter Min...

  • Page 512

    Cutter Comp/Tool Tip RadiusChapter 2323-12FunctionEnter the percentage to which the current feedrate is to be reduced whenAutomatic Corner Override has been activated.Refer to the discussion of the AMP parameter Min Angle for CornerOverride for a discussion of the overall operation of Corner Over...

  • Page 513

    Cutter Comp/Tool Tip RadiusChapter 2323-13This section describes the parameters that enable the control’s errordetection for compensation. Error detection can be disabled or enabled forall blocks, or temporarily enabled or disabled for a specific program block,by using these parameters:Paramete...

  • Page 514

    Cutter Comp/Tool Tip RadiusChapter 2323-14FunctionUse this parameter to activate or deactivate the Reverse CompensatedMotion Detection feature for cutter compensation. A reverse motion erroris generated when any two consecutive compensated tool paths reversedirection 180 degrees. This includes ge...

  • Page 515

    Cutter Comp/Tool Tip RadiusChapter 2323-15FunctionUse this parameter when the parameter for Interference Detection is set asenabled. If Interference Detection is enabled, it is possible to temporarilydisable interference detection by programming the M-word set with thisparameter in a block. Inter...

  • Page 516

    Cutter Comp/Tool Tip RadiusChapter 2323-16FunctionUse this parameter when the parameter for Interference Detection is set asdisabled. If Interference Detection is disabled, it is possible to temporarilyenable interference detection by programming the M-word set with thisparameter in a block. Inte...

  • Page 517

    Chapter2424-1QuickPath Plus ParametersThe QuickPath Plus feature provides a convenient programming methodthat simplifies programming of the control. Use this feature to create apart program from a part drawing through the use of common drawingdimensions such as angles, chamfer sizes, fillet radiu...

  • Page 518

    QuickPath Plus ParametersChapter 2424-2FunctionThis parameter lets you select the letter that programs an angle forQuickPath Plus programming.AxisParameterNumberAll[348]RangeSelectionResultSelectionResult(a)A(f)W(b)B(g)X(c)C(h)Y(d)U(i)Z(e)V(j),ANotesThis is a global parameter; the value set here ...

  • Page 519

    QuickPath Plus ParametersChapter 2424-3FunctionThis parameter specifies the maximum number of digits that are permittedto the left and to the right of the decimal point for an angle word used inQuickPath Plus programming.ParameterParameterNumberQPP Angle Word Format[512]RangeSelectionResult(a)3.1...

  • Page 520

    QuickPath Plus ParametersChapter 2424-4FunctionThis parameter specifies the maximum number of digits that are permittedto the left and to the right of the decimal point for an L-word used inQuickPath Plus programming in inch or metric modes. Use an L-word inQuickPath Plus programming to program t...

  • Page 521

    Chapter2525-1Fixed CyclesThis chapter describes the available milling and turning fixed-cycle AMPparameters.The fixed-cycle parameters are separated into these four sections:Parameter:Page:Milling fixed-cycle parameters25-3Threading cycle parameters25-10Turning cycle parameters25-167300 Tape Comp...

  • Page 522

    Fixed CyclesChapter 2525-2When you select control type “Mill,” the workstation displays thesescreens:Proj:AMPTESTAppl:AMPUtil:EditF2-Project F3-Application F4-UtilityF5-Configuration- Fixed Cycle Parameters -Page 2 of 2Proj:AMPTESTAppl:AMPUtil:EditF2-Project F3-Application F4-UtilityF5-Config...

  • Page 523

    Fixed CyclesChapter 2525-3The following sections describe the parameters that are used for the millingfixed cycles. Milling fixed cycles typically include the control’s drilling,tapping, and boring canned cycles.FunctionG73 mill control types.G83.1 lathe control types.Use this parameter to set ...

  • Page 524

    Fixed CyclesChapter 2525-4FunctionG76 mill control types.G86.1 lathe control types.This parameter specifies whether the distance of a cutting tool shift duringa fine boring cycle is determined by a programmed Q-word on an AMPassigned axis or if the distance is set with I, J, K, words in the curre...

  • Page 525

    Fixed CyclesChapter 2525-5FunctionG76 mill control types.G86.1 lathe control types.These parameters determine the axis and direction that the cutting toolshifts when executing a fine boring cycle. For these parameters to beeffective, it is necessary to program a shift amount using a Q-word (thepa...

  • Page 526

    Fixed CyclesChapter 2525-6FunctionThis parameter sets the clearance amount for the G83 peck drilling cycle,G88 pocket/post/hemisphere cycles, and G89 irregular pocket cycles.G83 Drilling cycle (mill and lathe control types)Use this parameter to set the clearance amount “d” for this cycle. Thi...

  • Page 527

    Fixed CyclesChapter 2525-7FunctionG84 and G74 for mill control types.G84 and G84.1 for lathe control types.This parameter determines whether the control allows a dwell at holebottom during the execution of either the tapping cycle or left hand tappingcycle. Dwells are normally programmed in the c...

  • Page 528

    Fixed CyclesChapter 2525-8FunctionAll milling cycles, lathe and mill controls.This parameter determines the speed at which the cutting tool will bepositioned above the point where the milling cycle is to be performed. Thecutting tool is always positioned to this point on a linear path.YES -- Sett...

  • Page 529

    Fixed CyclesChapter 2525-9FunctionAll milling and drilling cycles, lathe and mill controls.This parameter determines the axis on which drilling operations areperformed. This is the axis that the tool is actually feeding into the part.Other axes are used to position the cutting tool above the loca...

  • Page 530

    Fixed CyclesChapter 2525-10RangeSelectionResultSelectionResult(a)none(h)Axis 7(b)Axis 1(i)Axis 8(c)Axis 2(j)Axis 9(d)Axis 3(k)Axis 10(e)Axis 4(l)Axis 11(f)Axis 5(m)Axis 12(g)Axis 6NotesThis is a global parameter; the value set here applies to all axes.The following sections describe the parameter...

  • Page 531

    Fixed CyclesChapter 2525-11If a value has been set for this and the “Pullout Angle, Chamfered Thrd”parameters, and the PAL flag $FCPULL has been set true, then the controlautomatically cuts a chamfer at the end of each threading pass during theoperation of the threading cycles. This also lets...

  • Page 532

    Fixed CyclesChapter 2525-12FunctionUse this parameter for lathe controls when cutting either the single pass ormultiple pass threading cycles. The G-codes for these cycles are:G Code SystemSingle PassMultiple PassAG92G76BG78G76CG21G78This parameter determines the pullout angle “a” for the thr...

  • Page 533

    Fixed CyclesChapter 2525-13This angle is always measured from the axis parallel to the spindlecenter-line regardless of whether parallel or tapered threads are being cut.The angle direction, clockwise or counterclockwise, is always such that itwill increase the root diameter of the thread.Figure ...

  • Page 534

    Fixed CyclesChapter 2525-14FunctionThis parameter is for lathe controls that use multiple pass threading cycle,G-codes:SystemG CodeAG76BG76CG78This parameter enables the setting of the smallest amount of material thatmay be cut during the multiple pass threading cycle. The controlautomatically ge...

  • Page 535

    Fixed CyclesChapter 2525-15FunctionThis parameter is for lathe controls that use the multiple pass threadingcycle G-codes:SystemG CodeAG76BG76CG78This parameter determines whether the multiple-pass threading cycle isgoing to make a finishing pass and, if so, determines the depth of cut forthis fi...

  • Page 536

    Fixed CyclesChapter 2525-16The following sections describe the parameters that are used for turningfixed cycles. Turning fixed cycles typically include the controlrough-turning, face-turning, and grooving cycles.FunctionAll single-pass turning cycles (excluding threading and grooving) lathecontro...

  • Page 537

    Fixed CyclesChapter 2525-17FunctionThis parameter is used for lathe controls only.This parameter is used for the grooving cycles called by these G-codes:G Code SystemGrooving in XGrooving in ZAG75G74BG75G74CG76G76This parameter determines the retraction amount “e” for the groovingcycles. Norm...

  • Page 538

    Fixed CyclesChapter 2525-18Use the AMP parameters described in this section only when the control isoperating in 7300 mode. This feature allows existing part programs fromAllen-Bradley 7320 and 7360 tapes to be read, and executed using thecontrol. Refer to Appendix D of your programming and opera...

  • Page 539

    Fixed CyclesChapter 2525-19Range0.01000 to 99999.99000 secondsNotesThis is a global parameter; the value set here applies to all axes.This feature is not available on the 9/230 control and Grinderconfigurations.FunctionThis parameter is used by mill controls when operating in 7300 mode andcalling...

  • Page 540

    Fixed CyclesChapter 2525-20NotesThis is a global parameter; the value set here applies to all axes.This feature is not available on the 9/230 control and Grinderconfigurations.FunctionThis parameter is used by mill controls when operating in 7300 mode andcalling G83 deep hole drilling cycle. This...

  • Page 541

    Fixed CyclesChapter 2525-21NotesThis is a global parameter; the value set here applies to all axes.This feature is not available on the 9/230 control and Grinderconfigurations.Important: Be aware that the distance travelled over the time T1 isslightly less than the distance expected by multiplyin...

  • Page 542

    Fixed CyclesChapter 2525-22

  • Page 543

    Chapter2626-1Interrupt ParamacrosThis chapter discusses the AMP parameters that you can set for theinterrupt paramacro feature, which is used to interrupt normal programexecution in response to some external signal, and allow execution of aparamacro or subprogram. After execution of the paramacro...

  • Page 544

    Interrupt ParamacrosChapter 2626-2These screens become available when you select the “Interrupt MacroParameters” group from the main AMP menu:Proj:AMPTESTAppl:AMPUtil:EditF2-Project F3-Application F4-UtilityF5-ConfigurationF1-FileF2-AxisF3-OptionsF4-Quick Edit!Control Type : SurfaceAxis :X - ...

  • Page 545

    Interrupt ParamacrosChapter 2626-3NotesThis is a global parameter. The value set here applies to all axesand processes.FunctionThis parameter determines the M-code that is used to disable the interruptmacro feature. This M-code is modal with the one that is determined bythe parameter “Interrupt...

  • Page 546

    Interrupt ParamacrosChapter 2626-4ParameterParameterNumberTrigger method for interrupt 0[116]Trigger method for interrupt 1[117]Trigger method for interrupt 2[118]Trigger method for interrupt 3[119]RangeSelectionResult(a)Edge(b)LevelNotesThis is a global parameter. The value set here applies to a...

  • Page 547

    Interrupt ParamacrosChapter 2626-5ParameterParameterNumberInterrupt 0 routine call[120]Interrupt 1 routine call[121]Interrupt 2 routine call[122]Interrupt 3 routine call[123]RangeSelectionResult(a)Subprogram(b)MacroNotesThis is a global parameter. The value set here applies to all axesand process...

  • Page 548

    Interrupt ParamacrosChapter 2626-6ParameterParameterNumberInterrupt 0 service action[124]Interrupt 1 service action[125]Interrupt 2 service action[126]Interrupt 3 service action[127]RangeSelectionResult(a)Immediate(b)DelayedNotesThis is a global parameter. The value set here applies to all axesan...

  • Page 549

    Interrupt ParamacrosChapter 2626-7level — When a trigger method of level is selected, the controlrecognizes only whether the switch that calls a dressing macro is true orfalse. If this switch is inadvertently left on (true) when a dress interruptis enabled, the control immediately recognizes th...

  • Page 550

    Interrupt ParamacrosChapter 2626-8AxisNumberAll[141]RangeSelectionResult(a)Subprogram(b)MacroNotesThis is a global parameter; the value set here applies to all axes.END OF CHAPTER

  • Page 551

    Chapter2727-1Setting In-process Dresser ParametersConfigure these parameters so that the control automatically generates axesmotion, perpendicular to the direction of the motion between the grindingwheel and the part, to keep the wheel in contact with the part.Important: The parameters in this ch...

  • Page 552

    Setting In-process Dresser ParametersChapter 2727-2FunctionThis parameter defines to the CNC the minimum value to which the IPDsoftware can move the in-process roll surface (not axis position).In-process dresser motion is suspended when this size is reached.AxisNumberAll[1]Range0.000000 to 100.00...

  • Page 553

    Setting In-process Dresser ParametersChapter 2727-3RangeSelectionResultSelectionResult(a)A(i)Z(b)B(j)$B(c)C(k)$C(d)U(l)$X(e)V(m)$Y(f)W(n)$Z(g)X(j)none(h)YNotesThis is a global parameter; the value set here applies to all axes.

  • Page 554

    Setting In-process Dresser ParametersChapter 2727-4FunctionUse this parameter to define the axis that you want to use as the horizontalaxis with the in-process dresser. This axis is:in the plane of the grinding wheelperpendicular to the dresser axisthe axis that does not shrink as the wheel is dr...

  • Page 555

    Setting In-process Dresser ParametersChapter 2727-5RangeSelectionResultSelectionResult(a)A(i)Z(b)B(j)$B(c)C(k)$C(d)U(l)$X(e)V(m)$Y(f)W(n)$Z(g)X(j)none(h)YNotesThis is a global parameter; the value set here applies to all axes.FunctionUse this parameter to define the direction that the secondary d...

  • Page 556

    Setting In-process Dresser ParametersChapter 2727-6

  • Page 557

    Chapter2828-1Roughing Cycle ParametersThis chapter offers a discussion on the roughing cycle parameters(sometimes referred to as compound turning routines). Roughing cyclesare only available for lathe control types.The following screens become available when “Roughing CycleParameters” is sele...

  • Page 558

    Roughing Cycle ParametersChapter 2828-2FunctionThis parameter only applies to the O.D and I.D Roughing routine and theRough Facing routine. This parameter sets the default value of “R” for theroughing cycles. “R” is the distance that the cutting tool is retracted aftereach rough cut is ma...

  • Page 559

    Roughing Cycle ParametersChapter 2828-3AxisParameterNumberAll[22]Range0 to 255%NotesThis parameter is a global parameter. The value set here applies to all axesand processes.FunctionThis parameter applies only to the O.D and I.D Roughing Cycle and theRough Facing cycle. This parameter is used to ...

  • Page 560

    Roughing Cycle ParametersChapter 2828-4RangeSelectionResult(a)True(b)FalseNotesThis parameter is a global parameter. The value set here applies to all axesand processes.FunctionThis parameter applies to the O.D and I.D Roughing Cycle, and the RoughFacing cycle (G71 and G72 lathe G-code system C)....

  • Page 561

    Chapter2929-1Solid- tapping ParametersSolid--tapping parameters let you specify AMP ramps and maximumtapping speeds for each gear of each spindle. The two types ofsolid--tapping parameters are acceleration time and maximum tappingspeed.When you select the “Solid--tapping Parameters” group fro...

  • Page 562

    Solid--tapping ParametersChapter 2929-2Important: For solid--tapping, if the AMPed tapping axis is defined as azero following error (ZFE) position loop type, then during solid--tapping,the spindle will be forced to be the same loop type and have the samepercent feed forward as the tapping axis.Fu...

  • Page 563

    Solid--tapping ParametersChapter 2929-3NotesValues must be entered for all gear ranges specified by the parameterNumber of Gears Used. If any of the gears used has no value or an illegalvalue entered here, the control assumes that no gears are available andnever requests a gear change.Use these p...

  • Page 564

    Solid--tapping ParametersChapter 2929-4Range0.0 to Max. Spindle Speed for that gear for that spindle (rpm)NotesValues must be entered for all gear ranges specified by the parameterNumber of Gears Used. If any of the gears used has no value or an illegalvalue entered here, the control assumes that...

  • Page 565

    Chapter3030-1Cylindrical/Virtual C ParametersThese parameters specify the configuration of the axes during cylindricalinterpolation operations on a mill or virtual C operations on a lathe. Referto your programming and operation manual for more information. If youare using the multi-spindle featur...

  • Page 566

    Cylindrical/Virtual C ParametersChapter 3030-2The mill cylindrical interpolation parameters are covered on these pages:Parameter:Page:Cylindrical Feed Axis Name30-2Cylindrical Park Axis Name30-3Cylindrical Linear Axis Name30-4Cylindrical Rotary Axis Name30-5Rotary Center Feed Coordinate30-6Rotary...

  • Page 567

    Cylindrical/Virtual C ParametersChapter 3030-3FunctionThis parameter specifies the name of the machine axis that will be the parkaxis during cylindrical interpolation. The park axis is used to align the milltool with the center-line of the rotary axis.Important: The machine axis named as the park...

  • Page 568

    Cylindrical/Virtual C ParametersChapter 3030-4FunctionThis parameter specifies the name of the machine axis that will be thecylindrical linear axis during cylindrical interpolation. The linear axis andthe rotary axis will be the two axes of the circular plane during cylindricalinterpolation. Line...

  • Page 569

    Cylindrical/Virtual C ParametersChapter 3030-5FunctionThis parameter specifies the name of the machine axis that will be thecylindrical rotary axis during cylindrical interpolation. The rotary axis andthe linear axis will be the two axes of the circular plane during cylindricalinterpolation. Rota...

  • Page 570

    Cylindrical/Virtual C ParametersChapter 3030-6FunctionThis parameter specifies the cylindrical interpolation feed axis coordinatethat corresponds to the center of the cylindrical interpolation rotary axis.This coordinate is used to align the feed axis with the center-line of therotary axis.Import...

  • Page 571

    Cylindrical/Virtual C ParametersChapter 3030-7FunctionThis parameter specifies the cylindrical interpolation park axis coordinatethat corresponds to the center of the cylindrical interpolation rotary axis.This coordinate is used to align the park axis with the center-line of therotary axis.Import...

  • Page 572

    Cylindrical/Virtual C ParametersChapter 3030-8The lathe virtual C parameters are covered on these pages:Parameter:Page:Virtual C Rotary Axis30-8End Face Milling Axis30-9End Face Milling Incremental Axis30-10End Face Axis Integrand Name30-11Axis Along Center Line30-12Feed Axis Park Location26-13Au...

  • Page 573

    Cylindrical/Virtual C ParametersChapter 3030-9FunctionThis parameter specifies the name of the machine axis that will be end facemilling axis during virtual C end face milling. This axis will beperpendicular to the diameter and feed axes during virtual C endface milling.Important: The machine axi...

  • Page 574

    Cylindrical/Virtual C ParametersChapter 3030-10FunctionImportant: The End Face Milling Incremental Axis parameter is usedonly for lathe type A.This parameter specifies the name of the machine axis that will be end facemilling incremental axis during virtual C end face milling. Thisincremental axi...

  • Page 575

    Cylindrical/Virtual C ParametersChapter 3030-11FunctionThis parameter specifies the integrand name of the end face milling axisduring virtual C end face milling. The end face axis integrand name isused while programming in modes where an integrand letter is expected.The numeric value programmed w...

  • Page 576

    Cylindrical/Virtual C ParametersChapter 3030-12FunctionThis parameter specifies the name of the machine axis that is parallel to thespindle center-line during virtual C cylindrical interpolation. This axis isthe linear axis during virtual C cylindrical interpolation and the feed axisduring virtua...

  • Page 577

    Cylindrical/Virtual C ParametersChapter 3030-13FunctionThis parameter specifies whether the tool is positioned along the feed axisnearest to machine zero or farthest from machine zero of the cylindricalworkpiece. This parameter provides the option of cutting the contour oneither side of the cylin...

  • Page 578

    Cylindrical/Virtual C ParametersChapter 3030-14For orientation dependent applications it is recommended that a spindlehoming operation be performed prior to entering the virtual C mode.One method of performing a spindle home operation is to use spindleorient (M19). Spindle homing is performed aut...

  • Page 579

    Chapter3131-1Probing ParametersThe workstation displays this screen when the “Probing Parameters”group is selected:Proj:AMPTESTAppl:AMPUtil:EditF2-Project F3-Application F4-UtilityF5-ConfigurationF1-FileF2-AxisF3-OptionsF4-Quick Edit!Type : MillAXIS: X <P1> - linearP1:File :TESTProj:AMP...

  • Page 580

    Probing ParametersChapter 3131-2FunctionThe value entered for this parameter is the probe length used for probelength compensation in G37’s cycles. Probe length is the distance from thetool Gauge Point on the tool holder to the center of the probe radius, asmeasured only along the axis that the...

  • Page 581

    Probing ParametersChapter 3131-3FunctionThis parameter is used to determine when the control recognizes a signalfrom a probe to execute one of the skip or probing functions. The controlrecognizes a probe trigger when the probe signal is turned on or off.Low to High -- When this parameter is set a...

  • Page 582

    Probing ParametersChapter 3131-4NotesThis is a global parameter. The value set here applies to all axesand processes. All processes must use the same probe transition type.This and the following sections discuss the parameters that are used withthe G38 hole probing and G38.1 part rotation probing...

  • Page 583

    Probing ParametersChapter 3131-5FunctionThis parameter is used by both the G38 and G38.1 probing cycles.Enter the distance from the start-point of the probing cycle to a point wherethe feedrate is to be slowed. The feedrate should be slowed at a reasonabledistance from the expected end-point of t...

  • Page 584

    Probing ParametersChapter 3131-6FunctionThis parameter is used by both the G38 and G38.1 probing cycles.The value entered for this parameter defines a tolerance band on either sideof the coordinate of the expected firing point (as entered in the probingcycle block) for the probe. Enter a value fo...

  • Page 585

    Probing ParametersChapter 3131-7FunctionThis parameter is used by both the G38 and G38.1 probing cycles.The value entered for this parameter defines a feedrate at which the probeis to approach the location specified by the “R” parameter. This feedratemay be relatively high to allow for a fast...

  • Page 586

    Probing ParametersChapter 3131-8FunctionThis parameter is used by both the G38 and G38.1 probing cycles.The value entered for this parameter defines a feedrate at which the probeis to be moved after passing the point defined by the “R” parameter. Thisfeedrate should be relatively low to allow...

  • Page 587

    Chapter3232-1Adaptive Feed & Depth ParametersWhen you select the “Adaptive Feed & Depth” group the workstationdisplays this screen:Proj:TranLineAppl:AMPUtil:EditF2-Project F3-Application F4-UtilityF5-Configuration- Adaptive Feed & Depth Parameters -Page 1 of 1Feed Integral Torque ...

  • Page 588

    Adaptive Feed & Depth ParametersChapter 3232-2FunctionThis parameter specifies the integral torque gain for an axis move that isperformed in adaptive feed mode. Refer to your 9/Series Mill Operationand Programming Manual for details on this feature. This parameter isonly available on mill con...

  • Page 589

    Adaptive Feed & Depth ParametersChapter 3232-3FunctionThis parameter specifies the proportional torque gain for an axis move thatis performed in adaptive feed mode. Refer to your 9/Series Mill Operationand Programming Manual for details on this feature. This parameter isonly available on mill...

  • Page 590

    Adaptive Feed & Depth ParametersChapter 3232-4FunctionThe feedrate Acc/Dec Enable parameter is used to enable Acc/Dec for anaxis that is in adaptive feed mode. Adaptive feed mode is used to cause theservo to maintain a constant torque while cutting by varying the axisfeedrate. Refer to your 9...

  • Page 591

    Adaptive Feed & Depth ParametersChapter 3232-5The adaptive depth feature uses an adaptive depth probe that is attached toan axis on the control. Typically a probe returns feedback very similar toan A quad B incremental encoder. The control then uses this feedback todetermine the actual positi...

  • Page 592

    Adaptive Feed & Depth ParametersChapter 3232-6Configure an adaptive depth probe by first creating a normal linear axisusing the F2 [Configure Axis] option. Name the axis using F2 [NameAxis] option. This adaptive depth axis must be configured after allphysical axes including any deskew axis sl...

  • Page 593

    Adaptive Feed & Depth ParametersChapter 3232-7After you have copied the adaptive depth controlling axis into the adaptivedepth axis make the following additional settings:Servo Parameter:For Adaptive Depth Probe:Number of Motors on 1st BoardYou must count the adaptive depth probe as an active...

  • Page 594

    Adaptive Feed & Depth ParametersChapter 3232-8Assigning Trigger Direction and Feedback DirectionIf you are using an adaptive depth probe, it is very important to make surethat the probe’s position register (on the axis monitor page) is counting inthe same direction as the probe’s trigger ...

  • Page 595

    Adaptive Feed & Depth ParametersChapter 3232-9Dual Process ConsiderationsYou can configure up to one adaptive depth probe per process. Keep inmind that only one adaptive depth probe can be configured on each servomodule. The 9/230 and 9/440 CNCs in effect only have one servo moduleand thus ca...

  • Page 596

    Adaptive Feed & Depth ParametersChapter 3232-10RangeSelectionResultSelectionResult(a)A(i)Z(b)B(k)$B(c)C(l)$C(d)U(m)$X(e)V(n)$Y(f)W(o)$Z(g)X(p)none(h)YNotesThis parameter applies to the adaptive depth probe and selects what axis isprogrammed in a G26 block.Important: The direction the adaptive...

  • Page 597

    Adaptive Feed & Depth ParametersChapter 3232-11SpindleMotor20151050--5Drilling SurfaceProbeProbe AxisAs the drill plunges into thedrilling surface, the controllingaxis’ position registers aredecreasing (Z10 to Z5).Enter minus for this example.AxisParameter NumberSingle ProcessProcess 1Proce...

  • Page 598

    Adaptive Feed & Depth ParametersChapter 3232-12When probe deflection is less then the value entered for this parameter, thecontrol ignores the probe deflection.When probe deflection is greater than or equal to the value entered for thisparameter, the control considers the probe tripped. Any d...

  • Page 599

    Adaptive Feed & Depth ParametersChapter 3232-13Important: This depth sensor travel limit is not an absolute value. Assuch, the overall probe deflection allowed is dependent on where theoperator determines the probes’ zero point to be. Make sure this parameteris small enough to compensate fo...

  • Page 600

    Adaptive Feed & Depth ParametersChapter 3232-14Selecting the From Probe option with this parameter will cause the servoposition loop to be closed by the adaptive depth probe (once it has fired)when performing an adaptive depth move (G26). All other non G26moves will use normal adaptive depth ...

  • Page 601

    Chapter3333-1Remote I/O ParametersUse remote I/O communications to communicate data to/from a 1771remote I/O scanner to/from your 9/Series control. Through remote I/Ocommunications, the control is seen as a remote rack to a 1771 remote I/Oscanner. The parameters in this section configure remote I...

  • Page 602

    Remote I/O ParametersChapter 3333-2NotesThe 1771 system installer may be able to help you determine this value.The remote I/O port is always seen as an adapter by the scanner.FunctionEvery device on the remote I/O network is assigned a rack address used toidentify it to the scanner. This paramete...

  • Page 603

    Remote I/O ParametersChapter 3333-3FunctionThis parameter specifies the logical rack size of the remote I/O rack as itappears to the scanner. This is not the same as the physical rack of thecontrol. The scanner sees a full rack to be 128 I/O points (eight 16-bitwords). 128 I/O points is the maxim...

  • Page 604

    Remote I/O ParametersChapter 3333-4FunctionThis parameter specifies the starting quarter of the remote I/O rack.AxisParameter NumberMill/LatheGrinderAll[143][148]Range(a) SQ0(b) SQ1(c) SQ2(d) SQ3SelectionResult(a)SQ0(b)SQ1(c)SQ0(d)SQ3NotesIf the rack size is 1/4, you can start at any quarter addr...

  • Page 605

    Remote I/O ParametersChapter 3333-5FunctionThe parameter specifies if the remote I/O rack being simulated has thehighest starting module group address of any physical racks in the network.AxisParameter NumberMill/LatheGrinderAll[144][149]RangeSelectionResult(a)Not Last Rack(b)Last RackNotesThe PL...

  • Page 606

    Remote I/O ParametersChapter 3333-6FunctionThis parameter is used to enable the 9/Series remote I/O connection toperform block transfers thru PAL. Selecting “Enable” allows blocktransfer, single transfers, and pass through to occur. Selecting “Disabled”allows only single data transfers to...

  • Page 607

    Chapter3434-1Dual Axis ParametersThis section describes the parameters used to configure dual axes. Thedual axes feature lets the part programmer simultaneously control multipleaxes while programming commands for only one. This feature isespecially useful for gantry mills with dual cutting heads ...

  • Page 608

    Dual Axis ParametersChapter 3434-2The control can support five dual axis groups. A dual axis group consistsof two or more grouped axes coupled through AMP and commanded by amaster axis name. The master axis name is used by the part programmeror operator when commanding the dual axis group in part...

  • Page 609

    Dual Axis ParametersChapter 3434-3A warning message is generated at power up to indicate which axes havethese above features limited.If the dual group is to be the diameter axis (selected with G07 or G08 lathecontrols only), the master axis must be configured as the diameter axiswith the paramete...

  • Page 610

    Dual Axis ParametersChapter 3434-4FunctionThis parameter is used to logically couple axes that should move when thegroup master axis name is programmed. The number of axes allowed in adual group can range from a minimum of two to a maximum of nine.Assign all axes that are to be commanded in dual ...

  • Page 611

    Dual Axis ParametersChapter 3434-5RangeSelectionResult(a)independent axis(b)group 1(c)group 2(d)group 3(e)group 4(f)group 5NotesWhen defining integrand names for a dual axis, typically only the master axisshould have an integrand defined. Other axes assigned as members of thedual group typically ...

  • Page 612

    Dual Axis ParametersChapter 3434-6

  • Page 613

    Chapter3535-1Angled-wheel ParametersThis chapter covers parameters only available when cylindrical grindercontrol types are being configured. Use these parameters to configure yourangled wheel grinder or your G89/G89.1 grinding cycle.Most of the parameters in this group apply only to angled-wheel...

  • Page 614

    Angled Wheel ParametersChapter 3535-2FunctionUse this parameter to select the axial axis for angled-wheel grinders. Enterthe name of the axis that is parallel to the part spindle centerline.VirtualAxis(typically X)PartWheel Axis(typically W)Wheel AxisAngle +qAxialAxis(typically Z)AxisParameterNum...

  • Page 615

    Angled Wheel ParametersChapter 3535-3FunctionUse this parameter to select the physical axis of the grinding wheel. Thisaxis is perpendicular to the wheel spindle centerline.VirtualAxis(typically X)PartWheel Axis(typically W)Wheel AxisAngle +qAxialAxis(typically Z)AxisParameterNumberAll[610]Import...

  • Page 616

    Angled Wheel ParametersChapter 3535-4FunctionUse this parameter to select the virtual axis. This axis is perpendicular tothe axial axis.VirtualAxis(typically X)PartWheel Axis(typically W)Wheel AxisAngle +qAxialAxis(typically Z)AxisParameterNumberAll[611]The axis name selected here can not be:an a...

  • Page 617

    Angled Wheel ParametersChapter 3535-5NotesWhen the control enters angled-wheel mode (G16.3 or G16.4) this axis andthe Wheel Axial Axis Name parameter are used to define the active plane.This virtual axis does not require any additional axis configuration. Itemssuch as programming resolution, maxi...

  • Page 618

    Angled Wheel ParametersChapter 3535-6FunctionUse this parameter to select how the angle of the wheel axis is to bedetermined. The following table shows the available methods to determinethe wheel axis angle source:Use this Source:When:AMPa fixed angle from AMP is used. This method requires AMP to...

  • Page 619

    Angled Wheel ParametersChapter 3535-7FunctionUse this parameter to select the closed loop rotary axis that will alter thewheel axis angle. This parameter is only used if the parameter WheelAngle Source is set to rotary axis.WheelAxis TravelRotary AxisAxisParameterNumberAll[614]The axis name selec...

  • Page 620

    Angled Wheel ParametersChapter 3535-8NotesConfigure this rotary axis so that when positioned at angle zero the wheelaxis is at 90 degrees to the part spindle centerline. Accomplish this byeither:physically moving the home limit switch oroffsetting the home position on the rotary axis using the pa...

  • Page 621

    Angled Wheel ParametersChapter 3535-9FunctionUse this parameter to select the angle of the wheel when the parameterWheel Angle Source is set to AMP. The Fixed Wheel Angle parameterspecifies the angle of the wheel axis as measured from the virtual axis.Virtual Axis(typically X)PartWheel Axis(typic...

  • Page 622

    Angled Wheel ParametersChapter 3535-10FunctionThis parameter is available for both standard and angled-wheel cylindricalgrinders only. Define the microfeed amount for the G89 and G89.1multifeed plunge grinding with blend cycles using this parameter.The microfeed feature is enabled through PAL (se...

  • Page 623

    Angled Wheel ParametersChapter 3535-11FunctionUse this parameter to define the center of rotation for the wheel axis. On atypical angled-wheel grinder, the wheel axis rotates about its zero point.Leave this parameter at it’s default value (0) unless your wheel axis rotatesabout some other point...

  • Page 624

    Angled Wheel ParametersChapter 3535-12FunctionUse this parameter to tell the control the axial location of the wheel axiscenter of rotation. This location is measured from the zero point of theaxial axis (typically Z) to the center of rotation for the wheel axis(typically W).Wheel Axis(typically ...

  • Page 625

    Angled Wheel ParametersChapter 3535-13FunctionUse this parameter to tell the control the virtual diameter axis location ofthe wheel axis center of rotation. This location is measured from the zeropoint of the virtual diameter axis (typically X) to the center of rotation forthe wheel axis (typical...

  • Page 626

    Angled Wheel ParametersChapter 3535-14

  • Page 627

    Chapter3636-1Deskew Parameters for Split AxesWhen you select the “Deskew Parameters” group, the workstationdisplays this screen:Proj:AMPTESTAppl:AMPUtil:EditF1-FileF2-AxisF3-OptionsF4-Quick Edit!F5-ProcessControl Type : MillAxis :X - linearFile :TEST- Deskew Parameters -Deskew Master Servo Na...

  • Page 628

    Deskew ParametersChapter 3636-2Figure 36.1Split Axis ConfigurationLead screwServomotor 1EncoderLead screwServomotor 2EncoderSplit Axis - One moving axiscontrolled by two completelyseparate servos.AXISBoth servos that comprise a split axis must respond to the same partprogram and jog commands. Whe...

  • Page 629

    Deskew ParametersChapter 36gt36-3E-Stop resetImportant: The slave servo of the deskewed pair moves independentlyto compensate for any skew that may exist between the master and slaveservo when E-Stop is reset. This eliminates any skew that may haveoccurred from servo drift during E-Stop or any sk...

  • Page 630

    Deskew ParametersChapter 3636-4ATTENTION: Whenever two servos are configured to driveone axis, you must use the deskew feature to control servomisalignment. Failure to consider possible servo misalignmentmay result in damage to drive components.Each split axis can be driven by a maximum of two se...

  • Page 631

    Deskew ParametersChapter 36gt36-5Dual Processing ControlsOn dual processing controls you are restricted to having two split axisgroup per system (not per process). This means you can assign one splitaxes to each process. Additionally, if you choose to configure a split axisas shared (controlled b...

  • Page 632

    Deskew ParametersChapter 3636-6FunctionThis parameter selects the master servo and determines the axis name youprogram when commanding the split axis. Specifying this axis name in apart program causes the master servo selected here and the slave servo(selected later) to move the split axis to the...

  • Page 633

    Deskew ParametersChapter 36gt36-7Important: The master servo selected here must be assigned as any axisthat precedes the slave axis. The deskew slave axis must always be thehighest number axis in the process that precedes the spindle(s). Forexample, if configuring a three-axis system with no spin...

  • Page 634

    Deskew ParametersChapter 3636-8RangeSelectionResultSelectionResult(a)A(i)Z(b)B(j)$B(c)C(k)$C(d)U(l)$X(e)V(m)$Y(f)W(n)$Z(g)X(o)none(h)YNotesIf you intend to use the Gain Break feature, both the Gain Break Pointparameter and the Position Loop Gain Break Ratio parameter must be setto identical value...

  • Page 635

    Deskew ParametersChapter 36gt36-9FunctionSelect a slave servo for your split axis with this parameter. Only one slaveand one master servo can be configured to position a split axis.Important: The slave servo selected here must always be the last AMP’daxis that precedes the spindle(s). For examp...

  • Page 636

    Deskew ParametersChapter 3636-10NotesWhen defining integrand names for a split axis, only the master servoshould have an integrand defined. The slave axis selected with thisparameter should have its Integrand Name configured as “none.”Important: Both linear or rotary axes may be configured as...

  • Page 637

    Deskew ParametersChapter 36gt36-11FunctionThe servos of a split axis are always given the same positioning andcontouring commands.A well balanced split axis with equally sized motors operating on fairlysymmetric loads may not need to use this parameter. The normal deskewvelocity and positioning l...

  • Page 638

    Deskew ParametersChapter 3636-12NotesIt is important that the slave servo be capable of matching the masterservos response.If:And:Then:too great of a difference exists between the slaveand master servo’s response (i.e., greatly differentloads or very different motors)the slave servo’s best po...

  • Page 639

    Deskew ParametersChapter 36gt36-13FunctionThis parameter specifies the maximum difference in following errorallowable between servos of a split axis. This distance is actually themaximum skew limit.Figure 36.3Split Axis Skew DistanceLead screwLead screwThis distance is theamount of skeworthe diff...

  • Page 640

    Deskew ParametersChapter 3636-14Range0.00000 to 214.00000 mmor0.00000 to 8.42520 in.NotesIn the event that excess skew does occur, the control automatically cancelsany skew amount when E-Stop is reset. When E-Stop is reset, the slaveservo is moved to the same position as the master servo. Any dif...

  • Page 641

    Chapter3737-1Miscellaneous ParametersThis chapter describes miscellaneous parameters that should be set. Thesemiscellaneous parameters do not in any way refer to the miscellaneousfunctions that are called using an M- or B-code.The workstation displays these screens when the “MiscellaneousParame...

  • Page 642

    Miscellaneous ParametersChapter 3737-2Use these parameters as general control operating parameters, which areused to configure very basic control operations, such as E-Stop Reset,probe trigger signals, and PAL operation.If the application type is grinder:These parameters are not displayed:This ad...

  • Page 643

    Miscellaneous ParametersChapter 3737-3FunctionThis parameter is available when your [F3] option -- Control Type has beenselected as a mill. Use this parameter to indicate to the control that you areconfiguring a standard Mill or a transfer line control. This will enabletransfer line specific Quic...

  • Page 644

    Miscellaneous ParametersChapter 3737-4FunctionThis parameter forces the control to perform a control reset when thecontrol is brought out of E-Stop by performing an E-Stop Reset operation.Typically E-Stop reset is performed by pressing the <E-STOP RESET>key on the MTB panel.A control reset ...

  • Page 645

    Miscellaneous ParametersChapter 3737-5FunctionUse this parameter to determine when the control recognizes a high-speedtrigger signal from some external device to execute one of the skip orprobing functions. The control recognizes a high-speed trigger signalwhen the signal is turned on or off.Risi...

  • Page 646

    Miscellaneous ParametersChapter 3737-6Time -- When this parameter is selected as “Time,” a dwell is alwaysprogrammed in units of seconds regardless of the G94 or G95 mode.AxisParameterNumberAll[400]RangeSelectionResult(a)Time only(b)Time & spn revsNotesThis is a global parameter; the valu...

  • Page 647

    Miscellaneous ParametersChapter 3737-7FunctionThis is a lathe or grinder control parameter. It determines the units thatare used for the thread lead when programming an E- or F-word in athreading block. This parameter is set for all threading blocks.Use this parameter with these G-codes:G-Code Sy...

  • Page 648

    Miscellaneous ParametersChapter 3737-8FunctionThis parameter specifies the letter that is used to call the second auxiliaryfunction which is commonly used when the number of M-codes is notsufficient for the available number of miscellaneous functions. The systeminstaller determines what second au...

  • Page 649

    Miscellaneous ParametersChapter 3737-9FunctionThis parameter determines the operation of the block delete featureprogrammed in a block with a / code. There are 9 block delete charactersavailable ranging from /1 (the same as programming just /) to /9. Use thisfeature to let the operator delete eit...

  • Page 650

    Miscellaneous ParametersChapter 3737-10FunctionThis parameter determines how the control handles M- and G-codes whenthe control executes an end of program command (M02 or M30).Yes -- When this parameter is set as yes, the control sets all M- andG-codes back to their default values when the contro...

  • Page 651

    Miscellaneous ParametersChapter 3737-11FunctionUse this parameter to determine if the control resets to the default workcoordinate system when an end-of-program (M02 or M30) block is read.Yes -- Setting a value of Yes for this parameter causes the control to cancelall coordinate system offsets th...

  • Page 652

    Miscellaneous ParametersChapter 3737-12FunctionUse this parameter to determine if the control cancels the active tool lengthoffsets when an M02 or M30 end of program block is executed.Yes -- Selecting a value of Yes for this parameter causes the control tocancel all tool length offsets that are a...

  • Page 653

    Miscellaneous ParametersChapter 3737-13FunctionUse this parameter to determine the maximum number of motion blocksthat may be retraced using the block retrace feature. The block retracefeature is used to reverse execution of an active program. The controlexecutes blocks in reverse order and rever...

  • Page 654

    Miscellaneous ParametersChapter 3737-14Possible solutions include:- alter your part program by removing or combining consecutivenonmotion blocks that occur during cutter compensation, QPP, orCorner/Chamfer blocks.- reduce the Cutter Compensation Maximum Non--Motion BlockLimit in AMP (note this ma...

  • Page 655

    Miscellaneous ParametersChapter 3737-15FunctionUse this parameter for all single-pass turning cycles for grinder controltypes only.Normally, turning cycles only repeat after execution of a block thatcontains axis motion that changes the depth of a cut. Use this parameter tocause the turning cycle...

  • Page 656

    Miscellaneous ParametersChapter 3737-16Individual user passwords are assigned on the control to protect differentfeatures of the control from an unauthorized operator. The passwordnames and functions assigned to passwords are all determined on thecontrol. Refer to your mill or lathe programming a...

  • Page 657

    Miscellaneous ParametersChapter 3737-17Use the AMP parameters described in this section only when the control isoperating in 7300 mode. This feature allows existing part programs fromAllen-Bradley 7320 and 7360 tapes to be read and executed using your9/SERIES CNC.Important: To use the 7300 tape c...

  • Page 658

    Miscellaneous ParametersChapter 3737-18FunctionUse this parameter only in 7300 mode. Use this parameter to define thelocation to which the axes move when an M06 block is executed. Thisparameter is valid only if the parameter Move Tool to 7300/M06 Positionis set to “True.”The position you defi...

  • Page 659

    Miscellaneous ParametersChapter 3737-19FunctionUse this parameter to specify if you install battery back-up for theSuperCap on the CPU board. If you install battery back-up, select ‘yes’and the control displays status messages when the battery runs low. If youdo not install battery back-up, s...

  • Page 660

    Miscellaneous ParametersChapter 3737-20FunctionThis parameter specifies the system scan time. This is the time interval thatis used to restart the time critical functions of the control (systemforeground). The system interrupts the lower-priority tasks (systembackground) at this interval.Paramete...

  • Page 661

    Miscellaneous ParametersChapter 3737-21Analyzing Your System TimingFigure 37.1 and Figure 37.2 show the sequence in which the control scanssystem tasks and updates information. The system should be run underworst-case conditions with this parameter set to a value well above theexpected final sett...

  • Page 662

    Miscellaneous ParametersChapter 3737-22Figure 37.2Scan Sequence of the Main CPU and I/O CPU in a 9/290Servo ReadServo WritePart Program DecodeDisplay UpdateLow Level DiagnosticsServo ReadAxis ControlSystem ForegroundSystem BackgroundCritical Foregroundmust be greater than 2msPALForegroundInterpol...

  • Page 663

    Miscellaneous ParametersChapter 3737-23Determining System Scan TImeOnce you have determined your system foreground time, you can use thetimer function on the control to determine the total part program time.With this information, you can calculate the optimum system scan time foryour system. Use ...

  • Page 664

    Miscellaneous ParametersChapter 3737-24Guidelines on Setting System Scan TimeThe system scan time must be at least 2ms longer than the criticalforeground maximum value that is determined during the worst casetesting mentioned previously. Increasing the setting beyond this value isrecommended if:t...

  • Page 665

    Miscellaneous ParametersChapter 3737-25FunctionUse this parameter to determine if G92 and Set Zero offsets will clearwhen you perform a control reset. If you choose Yes, G92 and Set ZeroOffsets will clear by a control reset, a program command, or by power up.If you choose No, G92 and Set Zero Off...

  • Page 666

    Miscellaneous ParametersChapter 3737-26

  • Page 667

    Chapter3838-1Open Control Interface (OCI)ParametersThis chapter describes the parameters used to configure your 9/Series foruse with the open control interface (OCI). This interface allows theconnection of a personal computer to the 9/Series to serve as the primaryman machine interface or to allo...

  • Page 668

    OCI ParametersChapter 3838-2FunctionThis parameter specifies the number of PCs that can connect and createwatchlists on the 9/Series CNC. Any PC that connects to the CNC throughthe OCI interface creates a watchlist to access data. This does not includeODS workstations that may connect through the...

  • Page 669

    OCI ParametersChapter 3838-3FunctionUse this parameter to specify the frequency at which the control passesupdated information to the OCI station. This parameter specifies theshortest amount of time that can pass between control updates to the OCIstation. The actual time between updates may be gr...

  • Page 670

    OCI ParametersChapter 3838-4FunctionUse this parameter to specify the frequency at which the control checksdata for updated information. The application program running on the OCIstation (for example the AB OCI Basic Display Set) requests data from theOCI data server as either automatic (updates ...

  • Page 671

    OCI ParametersChapter 3838-5The following parameters allow the configuration of the watchlist buffersizes. One parameter is available to select the foreground watchlist buffersize for all connected OCI stations. Separate parameters are available foreach background watchlist created by connected O...

  • Page 672

    OCI ParametersChapter 3838-6Change the size of these watchlists when your OCI application programrequires a larger watchlist size or you suspect machine performance issuffering because the watchlist size is larger than necessary for yourapplication. To help you identify how large your watchlist m...

  • Page 673

    OCI ParametersChapter 3838-7FunctionBefore changing this parameter make sure you have read and understandthe watchlist concepts outlined on page 38-5.Use this parameter to specify the size (in bytes) of the foregroundwatchlists for all connected OCI stations. Each OCI station that connectsto the ...

  • Page 674

    OCI ParametersChapter 3838-8FunctionBefore changing this parameter make sure you have read and understandthe watchlist concepts outlined on page 38-5.There are four “OCI Backgrnd Buffer__Size” parameters. One for eachconnecting OCI station. Use this parameter to specify the size (in bytes) of...

  • Page 675

    Chapter3939-1Reserved Custom ParametersParameters found in this group of AMP parameters are for use withAllen-Bradley custom software that may have been ordered for yourspecific machine. It is not necessary to alter any of these parameters unlessone of the custom software packages has been purcha...

  • Page 676

    Reserved Custom ParametersChapter 3939-2FunctionUse this parameter to define the position loop feedback device type for a1326AS--xxxxx--xx rare--earth motor.AxisParameterNumberAxisParameterNumber(1)[1961](7)[7961](2)[2961](8)[8961](3)[3961](9)[9961](4)[4961](10)[10961](5)[5961](11)[11961](6)[6961...

  • Page 677

    Chapter 39Reserved Custom Parameters39-3FunctionUse this parameter to define the velocity loop feedback device type for a1326AS--xxxxx--xx rare--earth motor.AxisParameterNumberAxisParameterNumber(1)[1962](7)[7962](2)[2962](8)[8962](3)[3962](9)[9962](4)[4962](10)[10962](5)[5962](11)[11962](6)[6962...

  • Page 678

    Reserved Custom ParametersChapter 3939-4

  • Page 679

    Chapter4040-1Tuning AMP at the MachineThis chapter covers the Adjustable Machine Parameters (AMP) that can betuned at the machine. These parameters are tuned using the softkeys on thecontrol’s operator panel. Use this procedure to access the online AMPparameter softkeys:1.Press the {SYSTEM SUPO...

  • Page 680

    Tuning AMP at the MachineChapter 4040-2One of the softkeys displayed after accessing the online AMP softkeys isthe {AXIS PARAM}softkey. Pressing this softkey displaysthese softkeys:Softkey:Page:{REVERS ERROR}36-2{HOME CALIB}36-4{AXIS CALIB}36-6{SERVO PARAM}36-11{SPNDL PARAM}36-13These softkeys an...

  • Page 681

    Tuning AMP at the MachineChapter 4040-3When the {REVERS ERROR}softkey is pressed, this screen isdisplayed on the operator panel CRT:REVERSAL ERRORAXISVALUEX0.000[ MM ]Y0.000[ MM ]Z0.000[ MM ]U0.000[ MM ]REPLCEVALUEADD TOVALUEUPDATE& EXITQUIT3.Use the up or down cursor keys to highlight the ax...

  • Page 682

    Tuning AMP at the MachineChapter 4040-4To add to the current reversal error compensation data:cursor to the value you want to changepress the {ADD TO VALUE}softkeykey-in the new datapress the [TRANSMIT]keyImportant: If a parameter value that is out of range is entered, the errormessage “PARAM V...

  • Page 683

    Tuning AMP at the MachineChapter 4040-53.Press the {HOME CALIB}softkey.(softkey level 4)REVERSERRORHOMECALIBAXISCALIBSERVOPARAMSPNDLPARAMWhen the {HOME CALIB}softkey is pressed, this screen is displayedon the operator panel CRT:HOME CALIBRATIONAXISVALUEX0.000[ MM ]Y0.000[ MM ]Z0.000[ MM ]U0.000[ ...

  • Page 684

    Tuning AMP at the MachineChapter 4040-6To add to the current home calibration data:press the {ADD TO VALUE}softkeycursor to the position you wantkey-in the new datapress [TRANSMIT]Important: If a parameter value that is out of range is entered, the errormessage “PARAM VALUE OUT OF RANGE” appe...

  • Page 685

    Tuning AMP at the MachineChapter 4040-7Accessing Axis Calibration ParametersUse this procedure to access the axis calibration parameters:1.Press the {AXIS PARAM}softkey.(softkey level 3)AXISPARAMPATCHAMPUPDATEBACKUPUPLD/DWNLDBACKUPAMP2.Press the {AXIS CALIB}softkey.(softkey level 4)REVERSERRORHOM...

  • Page 686

    Tuning AMP at the MachineChapter 4040-83.To specify that the input data is the actual reading, type “M” andpress the [TRANSMIT]key or just press the [TRANSMIT]key at theprompt:“MEASUREMENT(M)/DEVIATION(D)?”.For Dual Processing controls, the status bar indicates which processis being displ...

  • Page 687

    Tuning AMP at the MachineChapter 4040-93.Move the axis to the next position and press the {INSERT POINT}softkey.Important: The maximum interval between consecutive axis calibrationpoints is 84 inches (2133.6 mm).If the first point is the most negative position on the axis, the controlreading is d...

  • Page 688

    Tuning AMP at the MachineChapter 4040-10Important: If the rotary axis does not have a net amount of zerocalibration, the control will still allow this calibration to be applied tothe axis.If data has been previously entered, the control displays a screen that listthe axis calibration points. This...

  • Page 689

    Tuning AMP at the MachineChapter 4040-11Changing Axis Calibration DataUse this procedure to change the axis calibration data shown inFigure 40.2.1.When the Axis Calibration screen is opened, data of the first axis ofthe control is displayed. Data of other axes can be displayed bypressing the {NEX...

  • Page 690

    Tuning AMP at the MachineChapter 4040-12Calibration Status On/OffAxis calibration is turned on whenever an axis is homed. When the axiscalibration is on for an axis the {CAL STATUS}softkey is shown in reversevideo.It is often helpful to turn axis calibration off when inserting a calibrationpoint....

  • Page 691

    Tuning AMP at the MachineChapter 4040-13The control displays this screen when the {SERVO PARAM}softkey ispressed:SERVO PARAMETERSX AXISFOLLOWING ERROR0.000[ MM ]AVERAGE VEL ERROR0 [ FBU / FIT ]TORQUE0[ %]MAX%RATED TORQUE (+)200[ %]MAX%RATED TORQUE (-)200[ %]TORQUE OFFSET PERCENTAGE0[ %]FEED FORWA...

  • Page 692

    Tuning AMP at the MachineChapter 4040-145.Press the {UPDATE & EXIT}softkey to save the modified servoparameter values. The control then returns to softkey level 4.If you have the parameter Standard Motor Table Values set to yes,and you edit either the Velocity Proportional Gain or VelocityInt...

  • Page 693

    Tuning AMP at the MachineChapter 4040-15When the {SPNDL PARAM}softkey is pressed, this screen is displayedon the operator panel CRT:ENTER VALUE:SPINDLE PARAMETERSMAX OUTPUT [VOLTS]GEAR RANGE 110.000GEAR RANGE 210.000GEAR RANGE 310.000GEAR RANGE 410.000GEAR RANGE 510.000GEAR RANGE 610.000GEAR RANG...

  • Page 694

    Tuning AMP at the MachineChapter 4040-164.When you have configured more than one spindle, the{NEXT SPINDL}prompt highlights. Use this softkey to toggle throughthe various spindles you have configured.5.Press the {UPDATE & EXIT}softkey to save the modified spindleparameter values. The control ...

  • Page 695

    Tuning AMP at the MachineChapter 4040-17To backup information from the control’s flash memory to the control’sRAM memory, press the {FROM BACKUP}softkey. The selectedinformation, AMP or axis calibration data, is copied from the control’sflash memory to the control’s RAM memory.The control...

  • Page 696

    Tuning AMP at the MachineChapter 4040-18At the control:1.Place the control in E-stop.2.Press the {UPLD/DWNLD}softkey to display the following screen onthe operator panel CRT:TOPORT AFROMPORT ATOPORT BFROMPORT BUPLD / DWNLDAMPPAL AND I/OSELECT OPTION USING THE UP/DOWN ARROW3.Use the up or down arr...

  • Page 697

    Tuning AMP at the MachineChapter 4040-19This screen is displayed on the operator panel CRT:ACTIVE COPY PARAMETERSFROM:PORT A (or PORT B)TO:AMPDEVICE:ALLEN-BRADLEY 1770-SBBAUD RATE:1200PARITY:NONESTOP BITS:1DATA LENGTH:8YESNOIf you want:Press this softkey:the control to download the AMP file to th...

  • Page 698

    Tuning AMP at the MachineChapter 4040-204.Set the baud rate switch to correspond to the baud rate parameter ofthe selected output port.5.Set the track select switch to “Continuous.”At the control:1.Place the control in E-stop.2.Press the {SYSTEM SUPORT}softkey, then the {AMP}softkey, and fina...

  • Page 699

    Tuning AMP at the MachineChapter 4040-21This screen is displayed on the operator panel CRT:ACTIVE COPY PARAMETERSFROM:AMPTO:PORT A (or PORT B)DEVICE:ALLEN-BRADLEY 1770-SBBAUD RATE:1200PARITY:NONESTOP BITS:1DATA LENGTH:8YESNOIf you want:Press this softkey:the control to upload the AMP file to thes...

  • Page 700

    Tuning AMP at the MachineChapter 4040-22When the {BACKUP AMP}softkey is pressed, the control displays this screenon the operator panel CRT:BACKUP AMPHOME CALIBRATIONREVERSAL ERRORAXIS CALIBRATIONSELECT OPTION USING THE UP/DOWN ARROWTOPORT AFROMPORT ATOPORT BFROMPORT BUse the up or down cursor key...

  • Page 701

    Tuning AMP at the MachineChapter 4040-23If the selected type of parameters are being backed up to a peripheral:1.Press the {TO PORT A}or {TO PORT B}softkey, depending on whichport the peripheral device is connected to.This screen is displayed on the operator panel CRT:ACTIVE COPY PARAMETERSFROM:A...

  • Page 702

    Tuning AMP at the MachineChapter 4040-24Important: Only axis calibration parameters can be backed up from astorage device.If the axis calibration parameters are being copied from a backup of theaxis calibration parameters stored on a storage device:1.Press the {FROM PORT A}or {FROM PORT B}softkey...

  • Page 703

    Chapter4141-1Patch AMPUse of the Patch AMP utility requires access to the highest user level, plusa special second password.ATTENTION: Altering AMP through the Patch AMP utilitybypasses the system software that checks AMP parameters. Youcan enter illegal and/or dangerous values that will not gene...

  • Page 704

    Patch AMPChapter 4141-2When AMP is modified using this utility, no cross-reference checking isperformed. This means that almost any value can be assigned to anyavailable parameter regardless of the consequences.Patch AMP contains a limited number of the total available AMPparameters and is not in...

  • Page 705

    Patch AMPChapter 4141-3The AMP parameter QuickEdit number is in the left column. Thevalue of that parameter is shown in the right column of the screen.Patch AMP Search FunctionsUse the search utility to quickly find the AMP parameter you need to edit.The following procedure outlines how to use th...

  • Page 706

    Patch AMPChapter 4141-4The control displays a message on its operator panel indicating AMP HASBEEN MODIFIED BY PATCH AMP. This message will appear at everypower up. Clear the message using the [CAN] key on the operator panel.After you have completed all of your AMP changes and your machine isrunn...

  • Page 707

    Patch AMPChapter 4141-5ParameterPatch AMP ValueDefault ValueParameter Name83 LRoughing cycle threshold depth0.00000 in0.00000 to 393.69685 inch86DAC monitor servo card 1or 9/230 controlsDisabled0 -- Disabled1 -- Enabled87DAC monitor servo card 2Disabled0 -- Disabled1 -- Enabled111 LMin infeed in ...

  • Page 708

    Patch AMPChapter 4141-6ParameterPatch AMP ValueDefault ValueParameter Name423Feedrate for F10.42333 mm/sec0.00000 to 169.33333 mm/sec424Feedrate for F20.84666 mm/sec0.00000 to 169.33333 mm/sec425Feedrate for F31.27000 mm/sec0.00000 to 169.33333 mm/sec426Feedrate for F41.69333 mm/sec0.00000 to 169...

  • Page 709

    Patch AMPChapter 4141-7ParameterPatch AMP ValueDefault ValueParameter Name633Controlling Axis for ProbeNone0 -- None65 -- A66 -- B67 -- C85 -- U86 -- V87 -- W88 -- X89 -- Y90 -- Z92 -- $B93 -- $C94 -- $X95 -- $Y96 -- $Z634Direction of Probe TripMinus1 -- Plus--1 -- Minus640Deskew Master Name -- S...

  • Page 710

    Patch AMPChapter 4141-8ParameterPatch AMP ValueDefault ValueParameter Name660Deskew Master Name -- Set 1None0 -- None65 -- A66 -- B67 -- C85 -- U86 -- V87 -- W88 -- X89 -- Y90 -- Z92 -- $B93 -- $C94 -- $X95 -- $Y96 -- $Z661Deskew Slave Name -- Set 1None0 -- None65 -- A66 -- B67 -- C85 -- U86 -- V...

  • Page 711

    Patch AMPChapter 4141-9ParameterPatch AMP ValueDefault ValueParameter Name753Max Tap Speed forSpindle 1, Gear 1500.0 rpm0.0 to 500.0 rpm754Max Tap Speed forSpindle 1, Gear 2500.0 rpm0.0 to 500.0 rpm755Max Tap Speed forSpindle 1, Gear 3500.0 rpm0.0 to 500.0 rpm756Max Tap Speed forSpindle 1, Gear 4...

  • Page 712

    Patch AMPChapter 4141-10ParameterPatch AMP ValueDefault ValueParameter Name775Max Tap Speed forSpindle 3, Gear 7500.0 rpm0.0 to 500.0 rpm776Max Tap Speed forSpindle 3, Gear 8500.0 rpm0.0 to 500.0 rpm777Gain for Spindle 1 -- Gear 11.000000.00000 to 100.00000778Gain for Spindle 1 -- Gear 21.000000....

  • Page 713

    Patch AMPChapter 4141-11ParameterPatch AMP ValueDefault ValueParameter Name814Accelerating Time forSpindle 2, Gear 30.50000 sec0.00000 to 1000.00000 sec815Acceleration Time forSpindle 2, Gear 40.50000 sec0.00000 to 1000.00000 sec816Acceleration Time forSpindle 2, Gear 50.50000 sec0.00000 to 1000....

  • Page 714

    Patch AMPChapter 4141-12ParameterPatch AMP ValueDefault ValueParameter Name840Voltage at Max forSpindle 3, Gear 110.0000 volts--10.0000 to 10.0000 volts841Voltage at Max forSpindle 3, Gear 210.0000 volts--10.0000 to 10.0000 volts842Voltage at Max forSpindle 3, Gear 310.0000 volts--10.0000 to 10.0...

  • Page 715

    Patch AMPChapter 4141-13ParameterPatch AMP ValueDefault ValueParameter Name873Spindle Deviation Tolerance,Spindle 3100 %0 to 100 %874Default Orient Angle, spindle 30.000000 degrees0.000000 to 360.000000 degrees875Dev. Detection Filter Time,spindle 220 msec20 to 400 msec876Dev. Detection Filter Ti...

  • Page 716

    Patch AMPChapter 4141-14ParameterPatch AMP ValueDefault ValueParameter Name912Maximum Spindle 1Speed -- Gear 3500.0 rpm0.0 to 500.0 rpm913Maximum Spindle 1Speed -- Gear 4500.0 rpm0.0 to 500.0 rpm914Maximum Spindle 1Speed -- Gear 5500.0 rpm0.0 to 500.0 rpm915Maximum Spindle 1Speed -- Gear 6500.0 r...

  • Page 717

    Patch AMPChapter 4141-15ParameterPatch AMP ValueDefault ValueParameter Name940Minimum Spindle 3Speed -- Gear 10.0 rpm0.0 to 500.0 rpm941Minimum Spindle 3Speed -- Gear 20.0 rpm0.0 to 500.0 rpm942Minimum Spindle 3Speed -- Gear 30.0 rpm0.0 to 500.0 rpm943Minimum Spindle 3Speed -- Gear 40.0 rpm0.0 to...

  • Page 718

    Patch AMPChapter 4141-16ParameterPatch AMP ValueDefault ValueParameter Name101820183018Teeth on lead screw for vel FB11 to 32,767101920193019Analog Servo Pos. Voltage10.0000 volts--10.0000 to 10.0000 volts102020203020Software Overtravel UsedFalse0 -- False1 -- True102120213021Maximum Servo Accele...

  • Page 719

    Patch AMPChapter 4141-17ParameterPatch AMP ValueDefault ValueParameter Name120122013201Maximum cutting feedrate42.33333 mm/sec0.00000 to 169.33333 mm/sec120222023202ACC/DEC ramp27.12674 mm/s/s0.00000 to 9999.99999 mm/s/s120322033203Rapid feedrate for positioning169.33333 mm/sec0.00000 to 4064.000...

  • Page 720

    Patch AMPChapter 4141-18ParameterPatch AMP ValueDefault ValueParameter Name133023303330Negative Software Overtravel0.00000 mm--2540000.00000 to 2540000.00000mm134023403340Reversal Error Compensation0.00000 mm--9.99900 to 9.99900 mm135023503350Home Speed from Limit Switch4.2333 mm/sec0.0001 to 169...

  • Page 721

    Patch AMPChapter 4141-19ParameterPatch AMP ValueDefault ValueParameter Name167026703670Max % rated torque (+)200 %0 to 200%168026803680Feed Forward Percent0 %0 to 100%169026903690Torque Offset Percentage0 %0 to 100%170027003700Torque Offset DirectionMinus1 -- Plus--1 -- Minus171027103710Initial G...

  • Page 722

    Patch AMPChapter 4141-20ParameterPatch AMP ValueDefault ValueParameter Name180028003800Velocity Integral Gain8233 to 32,768180128013801Velocity proportional gain174080 to 65,536When you modify AMP using patch AMP you are editing a copy of AMPthat is in volatile memory (maintained by a supercap or...

  • Page 723

    AppendixAA-1Tuning a Digital or Tachless AnalogSystemThe digital and analog tachless servo system differs from traditional drivesystems in that the velocity loop is closed by the 9/Series CNC using an Aquad B feedback device. Traditional systems typically use the driveamplifier to close the veloc...

  • Page 724

    Tuning a Digital or Tachless Analog SystemAppendix AA-2Use the following AMP parameters to configure your drive system:Table A.AVelocity Loop ParametersAMP ParameterDescriptionFor TuningProcedure:PageServo Loop TypeSelects the type of servo loop the axiswill be usingSet to final value:Digital orP...

  • Page 725

    Tuning a Digital or Tachless Analog SystemAppendix AA-3AMP ParameterPageFor TuningProcedure:DescriptionVE Integrator Discharge RateThis parameter is used when a largevariation in load may occur on a movingaxis. It reduces velocity overshoot andflattens the servo response curve.Set to 1 (one)7-75T...

  • Page 726

    Tuning a Digital or Tachless Analog SystemAppendix AA-4The Velocity LoopThe Optimal Acceleration Curve on the following chart is your desiredservo response. This curve is determined by your machine dynamics andthe amplifier/motor combination you have selected.TimeVelocityCommanded VelocityUnderda...

  • Page 727

    Tuning a Digital or Tachless Analog SystemAppendix AA-5Download AMP with the following consideration:Configure all velocity loop parameters as listed in Table A.A. Youshould be able to set most of the parameters to their final values (such asnumber of counts per rev and velocity feedback port).Co...

  • Page 728

    Tuning a Digital or Tachless Analog SystemAppendix AA-6This tuning procedure assumes you are using a strip chart recorder (anoscilloscope or other device may be used however we recommend it haseither printing or storage capability for comparison of curves). Since thisis a tachless servo system yo...

  • Page 729

    Tuning a Digital or Tachless Analog SystemAppendix AA-7DAC Monitor ParametersFunction# 133#133 enables the DAC monitor on the third servoboard of 9/260 and 9/290 systems.# 950Scales the DAC output for #133.Enable the DAC monitor on your system by setting parameters 86, 87, or133, depending on whi...

  • Page 730

    Tuning a Digital or Tachless Analog SystemAppendix AA-8Table A.CDAC Monitor Enable Values for 4 Axis Servo Cards and 9/440 CNC(version 11.xx and Earlier)Important: These DAC monitor values only apply to SM$ and ENC4boards, version 11.xx and earlier.Valid Parameter Values(for 86, 87, and 133):Outp...

  • Page 731

    Tuning a Digital or Tachless Analog SystemAppendix AA-9Table A.DDAC Monitor Enable Values for 4 Axis Servo Cards and 9/440 CNC(version 12.xx and Later)Important: These DAC monitor values only apply to 9/440s,version 12.xx and later.Valid Parameter Values(for 86 and/or 87):Output to DAC (spindle p...

  • Page 732

    Tuning a Digital or Tachless Analog SystemAppendix AA-1030Course Iteration Incremental Position Command for the 6th Servo on theservo card (typically the spindle)31Interpolated Final Velocity command for the 1st Servo on the servo card32Interpolated Final Velocity command for the 2nd Servo on the...

  • Page 733

    Tuning a Digital or Tachless Analog SystemAppendix AA-11Example Tuning Part ProgramN00001 G20 G94 G91 G94;N00002 #100=0;N00003 G01 X5 F1000;N00004 G04 P1N00005 X--5;N00006 G04 P1;N00007 #100=#100+1;N00008 If [#100 LT 6] GOTO 3;N00009 M02;This procedure assumes you have AMPed your system as descri...

  • Page 734

    Tuning a Digital or Tachless Analog SystemAppendix AA-12Find the Maximum Velocity Proportional Gain value:1.Activate and execute your tuning part program and record the servosvelocity response with the strip chart recorder.Figure A.1Acceleration Curve for TuningTimeVelocityCommanded VelocityUnder...

  • Page 735

    Tuning a Digital or Tachless Analog SystemAppendix AA-13Smaller lighter systems may become very unstable. Chatter canoccur instead of the smooth overshoot curve shown in Figure A.1which is typical of larger systems. With no integral gain, it isdoubtful you will see a stable curve on any type of s...

  • Page 736

    Tuning a Digital or Tachless Analog SystemAppendix AA-14Continue raising velocity integral gain and lowering velocityproportional gain until an oscillation occurs that can not be stabilizedby adjusting the velocity proportional gain. This “bounded”oscillation will appear different than the ve...

  • Page 737

    Tuning a Digital or Tachless Analog SystemAppendix AA-1511. Reconfigure and attach any devices (typically spindles) that are to beconnected to the analog out ports (DAC) in AMP and reset thespindle gear range parameters. Reset your ACC/DEC ramp for theaxis to an acceleration curve value below the...

  • Page 738

    Tuning a Digital or Tachless Analog SystemAppendix AA-16

  • Page 739

    AppendixBB-1Integrating a Linear Feedback DeviceTwo of the more common positioning feedback types supported by the9/Series are rotary encoders and linear scales. This appendix is designedas an overview to help you get the necessary information into the system tomake your linear scale work.The 9/S...

  • Page 740

    Integrating a Linear Feedback DeviceAppendix BB-2The feedback from the scale should produce an A quad B signal thatmatches the required signature given in chapter 7 of this document.Quadrature error should be less than 27 degrees. Scales with single--endedinputs are not supported.To properly conf...

  • Page 741

    Integrating a Linear Feedback DeviceAppendix BB-3AMP ParameterValue for HeidenhainDistance--coded Marker*DescriptionLarger Period forDCM ScalesThis parameter is used for scales with distance coded markers only. Thedistance coded marker supported by the 9/Series must have equallyspaced odd and eve...

  • Page 742

    Integrating a Linear Feedback DeviceAppendix BB-4To properly configure the velocity loop you must identify to the control thetype of feedback device expected, and the number of feedback counts thatshould be expected per unit of axis travel. We strongly recommend youuse motor mounted feedback to c...

  • Page 743

    9/Series CNC AMP Reference ManualIndexI--iSymbols,C/,R Word Format, 17-23(G17, G18, G19) 1st Axis Parallel to 1, 18-5(G17, G18, G19) 1st Axis Parallel to 2, 18-8(G17, G18, G19) 2nd Axis Parallel to 1, 18-6(G17, G18, G19) 2nd Axis Parallel to 2, 18-9(G17, G18, G19) Primary Axis 1, 18-4(G17, G18, G...

  • Page 744

    9/Series CNC AMP Reference ManualIndexI--iiAutomatic Home on Virtual C Entry, 30-13Automatic Homing (G28), Distance Coded Marker, 5-16Automatic Homing Parameters, 5-15Automatic Homing Sequence, 5-15AxisCopying, 3-9Deleting, 3-8horizontal compensation, 27-4Selecting, 3-2vertical compensation, 27-4...

  • Page 745

    9/Series CNC AMP Reference ManualIndexI--iiiCorner Override, 23-8CreatingDocument File, 2-34New AMP File, 2-5CSS (On/Off), 19-12CSS Parameters, 11-2CSS Radius During G00 Rapid, 11-5Current as a % of RMS, Peak, (Digital), 7-77Current Integral Gain, (Digital), 7-98Current Proportional Gain, (Digita...

  • Page 746

    9/Series CNC AMP Reference ManualIndexI--ivDocument FileCreating, 2-34Displaying, 2-37Printing, 2-37Downloading AMP, using DH+, 2-32Downloading AMP Files, 2-16, 40-17Dress interruptroutine call, 26-7trigger method, 26-6Dress-on-demand operation, 26-6, 26-7Dressing Interrupts, 26-6Drilling, Retrac...

  • Page 747

    9/Series CNC AMP Reference ManualIndexI--vFine Boring Shift in Q Word, 25-4Finish Allow in Mult Threading, 25-15First Interference Check Axis, 6-16Fixed Drilling Axis, 25-9Fixed wheel angle, 35-9Flash Memory for AMP, 41-20Follower Orientation, 15-5Follower Spindle, 15-3Forground Scan Time, 37-20F...

  • Page 748

    9/Series CNC AMP Reference ManualIndexI--viInitial Gain of Position Loop, (Analog), 7-35Initigral gain of position loop, online, 40-13Inposition Band, (Analog), 7-34Integral Torque Gain, 32-2Integrand, for parallel axes, 4-9Integrand Name for Axis, 4-8Integrator Discharge Rate, Velocity, (Analog)...

  • Page 749

    9/Series CNC AMP Reference ManualIndexI--viiMin Infeed in Multi Threading, 25-14Minimum Block Generated Length, 23-5Minimum Programmable Jerk, 10-23Monitor Frequency for Changes, 38-4Motion Feedrate Parameters, 9-2Motor Rated Current, (Digital), 7-92Motor Speed, Maximum, (Digital), 7-91Motor Tabl...

  • Page 750

    9/Series CNC AMP Reference ManualIndexI--viiigrinder-specificCSS (On/Off), 19-12per minute --or-- per second, 11-6Pass Through Enable, 2-32adapter block transfer, 33-6Password, for patch AMP, 41-2Password Parameters, 37-16Patch AMP, 41-1search functions, 41-3values, 41-4Patch AMP, Accessing, 41-1...

  • Page 751

    9/Series CNC AMP Reference ManualIndexI--ixQQ: Integer Format, 17-14Q: Thread Marker Angle Shift, 17-16Q: Word Format, 17-15QPP Angle Word, 24-2Qpp Angle Word Format, 24-3Quick Edit, Using, 2-12QuickPath Plus Parameters, 24-1RR: Angle Word Format, 17-18Radius Offset, Maximum +/--, 22-27Radius Off...

  • Page 752

    9/Series CNC AMP Reference ManualIndexI--xServo Off, (Analog), 7-27Servo Parameters, 41-15, 41-16, 41-17, 41-18, 41-19, 41-2022KW Shunt Resistor Pack, 7-235KW & 10KW Shunt Resistor Pack, 7-24Digital, 7-87Friction, 7-107General, 7-5online, 40-13Position Loop, 7-24Spindle, 7-100Velocity Loop, 7...

  • Page 753

    9/Series CNC AMP Reference ManualIndexI--xiTT: Tool Number Integer Format, 17-22T--Code Format, 22-3T--word Programming Method, 22-18Tapping Cycle, Ignore Dwell, 25-7Target Offset For Skip 01 -- 04, 22-13Teeth on gear for pos FB, 7-54Teeth on Lead Screw for pos FB, (Analog), 7-56Teeth on Lead Scr...

  • Page 754

    9/Series CNC AMP Reference ManualIndexI--xiiVirtual C Parametersautomatic home on virtual C entry, 30-13axis along center line, 30-12end face axis integrand name, 30-11end face milling axis, 30-9end face milling incremental axis, 30-10feed axis park location, 30-13virtual C rotary axis, 30-8Virtu...

  • Page 755

  • Page 756

    Publication 8520--RM064A--EN--P -- October 2000Supercedes Publication 8520--6.4 -- August 1998PN 176949Copyright 2000 Allen-Bradley Company, Inc. Printed in USA

x