Navigation

  • Page 1

    GE Fanuc AutomationComputer Numerical Control ProductsSeries 16i / 18i / 21i / 20i – Model AConnection Manual (Function)GFZ-63003EN-1/02September 1999

  • Page 2

    GFL-001Warnings, Cautions, and Notesas Used in this PublicationWarningWarning notices are used in this publication to emphasize that hazardous voltages, currents,temperatures, or other conditions that could cause personal injury exist in this equipment ormay be associated with its use.In situatio...

  • Page 3

    CONSTITUTION OF THIS MANUALThis Manual (B–63003EN–1) is composed of the following 2 volumes.DEFINITION OF WARNING, CAUTION, AND NOTEPREFACE1. AXIS CONTROLCONTROLLED AXES/SETTING EACH AXIS/ERROR COMPENSATION/SETTINGS RELATED TO SERVO–CONTROLLED AXES/SETTINGS RELATED WITH COORDINATE SYSTEMS/S...

  • Page 4

    6. INTERPOLATION FUNCTIONPOSITIONING/LINEAR INTERPOLATION/CIRCULAR INTERPOLATION/THREAD CUTTING/SINGLE DIRECTION POSITIONING (M SERIES)/HELICAL INTERPOLATION/INVOLUTE INTERPOLATION (M SERIES)/POLAR COORDINATE INTERPOLATION/CYLINDRICAL INTERPOLATION/POLYGONAL TURNING (T SERIES)/NORMAL DIRECTION CO...

  • Page 5

    14. MEASUREMENTTOOL LENGTH MEASUREMENT (M SERIES)/AUTOMATIC TOOL LENGTH MEASUREMENT (MSERIES)/AUTOMATIC TOOL OFFSET (T SERIES)/SKIP FUNCTION/ENTERING COMPENSATIONVALUES/TOOL LENGTH/WORKPIECE ORIGIN MEASUREMENT B (M SERIES)15. PMC CONTROL FUNCTIONPMC AXIS CONTROL/EXTERNAL DATA INPUT/EXTERNAL WORKP...

  • Page 6

    B–63003EN–1/02DEFINITION OF WARNING, CAUTION, AND NOTEs–1DEFINITION OF WARNING, CAUTION, AND NOTEÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂ...

  • Page 7

    Table of ContentsB–63003EN–1/02c–1Volume 1DEFINITION OF WARNING, CAUTION, AND NOTEs–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . PREFACEp–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...

  • Page 8

    TABLE OF CONTENTSB–63003EN–1/02c–21.9.3Composite Control124. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.9.3.1Setting124. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

  • Page 9

    TABLE OF CONTENTSB–63003EN–1/02c–32. PREPARATIONS FOR OPERATION222. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1EMERGENCY STOP223. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2...

  • Page 10

    TABLE OF CONTENTSB–63003EN–1/02c–45. AUTOMATIC OPERATION403. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1CYCLE START/FEED HOLD404. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

  • Page 11

    TABLE OF CONTENTSB–63003EN–1/02c–57.1.4Feed Per Revolution/Manual Feed Per Revolution532. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1.5F1-digit Feed (M series)534. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

  • Page 12

    TABLE OF CONTENTSB–63003EN–1/02c–6Volume 29. SPINDLE SPEED FUNCTION697. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.1SPINDLE SPEED FUNCTION (S CODE OUTPUT)698. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2SPINDLE ...

  • Page 13

    TABLE OF CONTENTSB–63003EN–1/02c–710.4CUTTER COMPENSATION922. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.4.1Cutter Compensation B, C (M Series)922. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

  • Page 14

    TABLE OF CONTENTSB–63003EN–1/02c–812.1.18External Operator Message Logging and Display1071. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.1.19Erase Screen Display/Automatic Erase Screen Display1073. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.1.20Touch Pa...

  • Page 15

    TABLE OF CONTENTSB–63003EN–1/02c–9APPENDIXA. INTERFACE BETWEEN CNC AND PMC1295. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.1LIST OF ADDRESSES1296. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A...

  • Page 16

    B–63003EN–1/02PREFACEp–1PREFACEThis manual describes all the NC functions required to enable machinetool builders to design their CNC machine tools. The following items areexplained for each function.1. GeneralDescribes feature of the function. Refer to Operator’s manual asrequied.2. Sig...

  • Page 17

    PREFACEB–63003EN–1/02p–2The models covered by this manual, and their abbreviations are :Model nameÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂAbbreviationÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂFANUC Series 16i–TAÂÂÂÂÂÂÂÂÂÂÂ16i–TAÂÂÂÂÂÂÂÂÂSeries...

  • Page 18

    B–63003EN–1/02PREFACEp–3Relation of interface signals among the CNC, the PMC and the machinetool is shown below:[For one–path control]G000–F000–X000–Y000–CNCPMCMachinetool[For two–path control]G000–F000–X000–Y000–CNCPMCPath 1G1000–F1000–Path 2MachinetoolNOTE1 In two...

  • Page 19

    PREFACEB–63003EN–1/02p–4One address accommodates eight signals.#7#6#5#4#3#2#1#0OPF000SASTLSPLRWDSymbol (#0 to #7 indicates bit position)AddressIn an item where both T series and M series are described, some signalsare covered with shade ( ) in the signal address figure as shownbelow. This...

  • Page 20

    B–63003EN–1/02PREFACEp–5#7#6#5#4#3#2#1#0Data (#0 to #7 indicates bit position)Data No.0000SEQINIISOTVC1023Servo axis number of a specific axisDataData No.NOTEIn an item where both T series and M series are described,parameters having different meanings between the T seriesand M series and p...

  • Page 21

    PREFACEB–63003EN–1/02p–6The table below lists manuals related to MODEL A of Series 16i, Series18i, Series 160i and Series 180i.In the table, this manual is marked with an asterisk(*).Table 1 Related manualsManual nameÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂSpecificationNumberÂÂÂÂÂÂÂÂ...

  • Page 22

    B–63003EN–1/02PREFACEp–7The following table lists the manuals related to the FANUC Series 20i–A.This manual is indicated by an asterisk (*).Table 3 Manuals related to the Series 20iManual nameÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂSpecificationnumberÂÂÂÂÂÂÂÂÂÂÂÂÂÂDescriptions...

  • Page 23

    B–63003EN–1/021. AXIS CONTROL11 AXIS CONTROLÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

  • Page 24

    B–63003EN–1/021. AXIS CONTROL2ItemÁÁÁÁÁÁÁÁÁÁM seriesÁÁÁÁÁÁÁÁÁÁT seriesÁÁÁÁÁÁÁÁÁNo. of basiccontrolled axesÁÁÁÁÁÁÁÁ1–pathÁÁÁÁÁÁ3 axesÁÁÁÁÁÁÁÁÁÁ2 axesÁÁÁÁÁÁÁÁÁcontrolled axesÁÁ2–pathÁÁÁÁÁÁ3 axes per pathÁÁÁÁÁÁÁÁÁ...

  • Page 25

    B–63003EN–1/021. AXIS CONTROL3ItemÁÁÁÁÁÁÁÁÁÁÁF seriesÁÁÁÁÁÁÁÁÁÁÁM seriesÁÁÁÁÁÁÁÁÁÁNumber ofbasic controlledaxesÁÁÁÁÁÁÁÁÁOnepathÁÁÁÁÁÁÁThree axesÁÁÁÁÁÁÁÁÁÁÁTwo axesÁÁÁÁÁÁÁÁÁÁTotal number ofcontrolled axesincludingextensionsÁ...

  • Page 26

    B–63003EN–1/021. AXIS CONTROL4NumberÁÁÁÁÁÁÁMessageÁÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ015ÁÁÁÁÁÁÁTOO MANY AXES COM-MANDED(M series)ÁÁÁÁÁÁÁÁÁÁÁThe number of the commanded axesexceeded that of simultaneously con-trolled axes. Correct the p...

  • Page 27

    B–63003EN–1/021. AXIS CONTROL5Each axis that is controlled by the CNC (including those controlled by thePMC) must be named. Select and set names from among X, Y, Z, A, B,C, U, V, and W (with parameter 1020).The names of the basic axes, however, are fixed (X, Y, and Z for the Mseries and X an...

  • Page 28

    B–63003EN–1/021. AXIS CONTROL6NOTEWith 2–path control, when information (such as the currentposition) about each axis is displayed on the screen, an axisname may be followed by a subscript to indicate a pathnumber (e.g.,X1 and X2). This is an axis name to help theuser to easily understand ...

  • Page 29

    B–63003EN–1/021. AXIS CONTROL7The increment system consists of the least input increment (for input ) andleast command increment (for output). The least input increment is theleast increment for programming the travel distance. The least commandincrement is the least increment for moving th...

  • Page 30

    B–63003EN–1/021. AXIS CONTROL8NOTEDiameter programming is used only for T series. Whetherdiameter programming or radius programming is used isselected by parameter DIAx (No. 1006#3) on each axis.Also, parameter IPR (No. 1004#7) can make the least inputincrement of IS–B and IS–C ten times...

  • Page 31

    B–63003EN–1/021. AXIS CONTROL9NOTEIS–A cannot be used at present.IPR Whether the least input increment for each axis is set to a value 10 times aslarge as the least command increment is specified, in increment systemsof IS–B and IS–C, mm input.0 : The least input increment is not set to...

  • Page 32

    B–63003EN–1/021. AXIS CONTROL10Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁÁII.2.3ÁÁÁÁÁÁÁIncrement SystemÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Lathe) (B–63004EN)ÁÁÁÁÁÁÁÁ...

  • Page 33

    B–63003EN–1/021. AXIS CONTROL11#7#6#5#4#3#2#1#01006ROSxROTxNOTEAfter setting this parameter, turn the power off then on againso that the setting will take effect.[Data type] Bit axisROTx, ROSx Setting linear or rotation axis.ROSxÁÁÁÁÁROTxÁÁÁÁÁMeaningÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ...

  • Page 34

    B–63003EN–1/021. AXIS CONTROL12NOTEROAx specifies the function only for a rotation axis (forwhich ROTx, #0 of parameter No. 1006, is set to 1)RABx In the absolute commands, the axis rotates in the direction0 : In which the distance to the target is shorter.1 : Specified by the sign of comma...

  • Page 35

    B–63003EN–1/021. AXIS CONTROL13NOTERotary axis roll–over function cannot be used together withthe indexing function of the index table.Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁII.20.2ÁÁÁÁÁÁRotary Axis Roll...

  • Page 36

    B–63003EN–1/021. AXIS CONTROL14These signals release the specified control axes from control.When attachments are used (such as a detachable rotary table), thesesignals are selected according to whether the attachments are mounted.The signals can also be used for switching the C axis and spin...

  • Page 37

    B–63003EN–1/021. AXIS CONTROL15[Classification] Output signal[Function] These signals notify the PMC that the corresponding axes have beenreleased from control.These signals are provided for each control axis; the affixed number of thesignal name shows the control axis number.1 ..... The 1st...

  • Page 38

    B–63003EN–1/021. AXIS CONTROL16MCCx When an axis is released from control, control for the MCC signal for thecorresponding servo amplifier is0 : Disabled1 : EnabledNOTEIf the servo motor for an axis is connected to a 2–axis orother multiaxis amplifier, releasing the axis from controlcauses ...

  • Page 39

    B–63003EN–1/021. AXIS CONTROL17The movement state of each axis can be output to the PMC.[Classification] Output signal[Function] These signals indicate that a control axis is moving.The signals are provided for each control axis, and the number in thesignal name corresponds to the control axi...

  • Page 40

    B–63003EN–1/021. AXIS CONTROL18[Classification] Output signal[Function] These signals indicate the movement direction of control axis.They are provided for each control axis, and the number in the signal namecorresponds to the control axis number.1 ..... The moving direction of the 1st axis...

  • Page 41

    B–63003EN–1/021. AXIS CONTROL19CAUTIONAxis moving signals and axis moving direction signals areoutput in both automatic and manual operations.Mirror image can be applied to each axis, either by signals or byparameters (setting input is acceptable). All movement directions arereversed during ...

  • Page 42

    B–63003EN–1/021. AXIS CONTROL201 ..... Applies mirror image to the 1st axis.2 ..... Applies mirror image to the 2nd axis.3 ..... Applies mirror image to the 3rd axis. :: ::MI 1The mirror image signal can be turned to “1” in the following cases:a) During offset cancel;b) When the CNC is...

  • Page 43

    B–63003EN–1/021. AXIS CONTROL21#7#6#5#4#3#2#1#00012MIRxSetting entry is acceptable.[Data type] Bit axisMIRx Mirror image for each axis0 : Mirror image is off.1 : Mirror image is on.WARNING1 When programmable mirror image and ordinary mirrorimage are specified at the same time, programmable mi...

  • Page 44

    B–63003EN–1/021. AXIS CONTROL22When position control is disabled for the controlled axes (when the servois off, during emergency stop, or during a servo alarm), if the machine ismoved, a positional error occurs. Follow–up is a function for changingthe current position of the CNC and reset ...

  • Page 45

    B–63003EN–1/021. AXIS CONTROL23#7#6#5#4#3#2#1#01819FUPx[Data type] Bit axisFUPx To perform follow–up when the servo is off is set for each axis.0 : The follow–up signal, *FLWU, determines whether follow–up isperformed or not.When *FLWU is 0, follow–up is performed.When *FLWU is 1, fol...

  • Page 46

    B–63003EN–1/021. AXIS CONTROL24Place the controlled axes in the servo off state; that is, they stop the currentto the servo motor, which disables position control. However, theposition detection feature functions continuously, so the current positionis not lost.These signals are used to prev...

  • Page 47

    B–63003EN–1/021. AXIS CONTROL25CAUTION1 In general, interlock is applied to an axis while the servo offsignal for that axis is 1.2 When one of these signals turns to “1”, the servo motor isturned off. The mechanical clamp is done by using theauxiliary function. Set the timing for the aux...

  • Page 48

    B–63003EN–1/021. AXIS CONTROL26Position switch signals can be output to the PMC while the machinecoordinates along a controlled axes are within a specified ranges.[Classification] Output signal[Function] Notifies that the machine coordinates along the controlled axes specifiedby parameters (6...

  • Page 49

    B–63003EN–1/021. AXIS CONTROL276910Axis corresponding to the first position switch6911Axis corresponding to the second position switch6912Axis corresponding to the third position switch6913Axis corresponding to the fourth position switch6914Axis corresponding to the fifth position switch6915A...

  • Page 50

    B–63003EN–1/021. AXIS CONTROL286930Maximum operation range of the first position switch6931Maximum operation range of the second position switch6932Maximum operation range of the third position switch6933Maximum operation range of the fourth position switch6934Maximum operation range of the f...

  • Page 51

    B–63003EN–1/021. AXIS CONTROL296950Minimum operation range of the first position switch6951Minimum operation range of the second position switch6952Minimum operation range of the third position switch6953Minimum operation range of the fourth position switch6954Minimum operation range of the f...

  • Page 52

    B–63003EN–1/021. AXIS CONTROL30If pitch error compensation data is specified, pitch errors of each axis canbe compensated in detection unit per axis. Pitch error compensation data is set for each compensation position at theintervals specified for each axis. The origin of compensation is th...

  • Page 53

    B–63003EN–1/021. AXIS CONTROL31·Interval of the pitch error compensation positions (for each axis):Parameter 3624Procedure for displaying and setting the pitch error compensation data1Set the following parameters:⋅Number of the pitch error compensation position at thereference position (fo...

  • Page 54

    B–63003EN–1/021. AXIS CONTROL32To assign the compensation positions for each axis, specify the positivedirection or the negative direction in reference to the compensationposition No. of the reference position. If the machine stroke exceeds thespecified range on either the positive direction...

  • Page 55

    B–63003EN–1/021. AXIS CONTROL33Therefore, set the parameters as follows:ParameterÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSetting valueÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ3620 : Compensation number for the reference positionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ40Á...

  • Page 56

    B–63003EN–1/021. AXIS CONTROL34⋅Amount of movement per rotation: 360°⋅ Interval between pitch error compensation positions: 45°⋅ No. of the compensation position of the reference position: 60If the above is specified, the No. of the farthest compensation position inthe negative dir...

  • Page 57

    B–63003EN–1/021. AXIS CONTROL35The following is an example of compensation amounts.(deg)060 61 62 63 64 65 66 67 68+1 –2 +1 +3 –1 –1 –3 +2 +1NoCompensationvalue61 62 63 64 65 66 6768(60)–1–2–3–4+1+2+3+4Pitch error compensation value(absolute value)Reference position4590 135 18...

  • Page 58

    B–63003EN–1/021. AXIS CONTROL363622Number of the pitch error compensation position at extremely positive posi-tion for each axisNOTEAfter setting this parameter, turn the power off then on againso that the setting will take effect.[Data type] Word axis[Unit of data] Number[Valid data range] 0...

  • Page 59

    B–63003EN–1/021. AXIS CONTROL37[Valid data range] 0 to 99999999The pitch error compensation positions are arranged with equally spaced.Set the space between two adjacent positions for each axis.The minimum interval between pitch error compensation positions islimited and obtained from the fol...

  • Page 60

    B–63003EN–1/021. AXIS CONTROL38Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁIII.8.6.3ÁÁÁÁÁÁInputting pitch error compensa-tion dataÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ(B–63014EN)ÁÁÁIII.8.6.4ÁÁÁÁÁÁOutp...

  • Page 61

    B–63003EN–1/021. AXIS CONTROL39Function for compensating for lost motion on the machine. Set acompensation value in parameter No. 1851, in detection units from 0 to" 9999 pulses for each axis.More precise machining can be performed by changing the backlashcompensating value depending on...

  • Page 62

    B–63003EN–1/021. AXIS CONTROL40#7#6#5#4#3#2#1#01800RBK[Data type] BitRBK Backlash compensation applied separately for cutting feed and rapidtraverse0 : Not performed1 : Performed1851Backlash compensating value for each axis[Data type] Word axis[Unit of data] Detection unit[Valid data range] ...

  • Page 63

    B–63003EN–1/021. AXIS CONTROL41For a machine tool with a long stroke, deviations in straightness betweenaxes may deteriorate machining accuracy. For this reason, when an axismoves, other axes are compensated in detection units to improvestraightness. This improvement results in better machi...

  • Page 64

    B–63003EN–1/021. AXIS CONTROL425721Axis number of compensation axis 1 for moving axis 15722Axis number of compensation axis 2 for moving axis 25723Axis number of compensation axis 3 for moving axis 3[Data type] Byte[Unit of data] Axis number (When 0, compensation is not performed.)[Valid data...

  • Page 65

    B–63003EN–1/021. AXIS CONTROL435761Compensation corresponding to compensation position number a of moving axis 15762Compensation corresponding to compensation position number b of moving axis 15763Compensation corresponding to compensation position number c of moving axis 15764Compensation co...

  • Page 66

    B–63003EN–1/021. AXIS CONTROL44NOTE1 The straightness compensation function can be used aftera moving axis and its compensation axis have returned tothe reference position.2 After setting parameters for straightness compensation, besure to turn off the NC power.3 Set parameters for straightne...

  • Page 67

    B–63003EN–1/021. AXIS CONTROL45The servo interface of the Series 16 features the following:Digitally controlled AC servo motorMotor feedback with serial pulse coders(1) Absolute pulse coder with a resolution of 1,000,000 pulses/rev (2) Absolute pulse coder with a resolution of 65,536 pulse...

  • Page 68

    B–63003EN–1/021. AXIS CONTROL46#7#6#5#4#3#2#1#01800CVR[Data type] BitCVR When velocity control ready signal VRDY is set ON before positioncontrol ready signal PRDY comes ON0 : A servo alarm is generated.1 : A servo alarm is not generated.#7#6#5#4#3#2#1#01815APCxAPZxOPTxNOTEWhen this parameter...

  • Page 69

    B–63003EN–1/021. AXIS CONTROL47[Data type] Bit axisDM1x to DM3x Setting of detection multiplierSet valueÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁDetection m ltiplierÁÁÁÁÁÁÁÁÁÁÁÁDM3xÁÁÁÁÁÁÁDM2xÁÁÁÁÁÁÁÁDM1xÁÁÁÁÁÁÁDetection multiplierÁÁÁÁ00001111ÁÁÁÁÁÁÁÁÁÁ...

  • Page 70

    B–63003EN–1/021. AXIS CONTROL48(2) When command multiplier is 1 to 48Set value = 2 command multiplierValid data range: 2 to 96NOTEWhen command multiplier is 1 to 48, the set value must bedetermined so that an integer can be set for commandmultiplier.1821Reference counter size for each axis...

  • Page 71

    B–63003EN–1/021. AXIS CONTROL49Set the positioning deviation limit in movement for each axis.If the positioning deviation exceeds the positioning deviation limit duringmovement, a servo alarm is generated, and operation is stoppedimmediately (as in emergency stop).Generally, set the positioni...

  • Page 72

    B–63003EN–1/021. AXIS CONTROL50Even when the power to the CNC is turned off, a battery–powered pulsecoder stores the current position. No reference position return is requiredwhen the power to the CNC is turned on next.#7#6#5#4#3#2#1#01815APCxNOTEWhen this parameter has been set, the power...

  • Page 73

    B–63003EN–1/021. AXIS CONTROL51Connecting the CNC control section to servo amplifiers via a high–speedserial bus (FANUC Serial Servo Bus, or FSSB), which uses only one fiberoptics cable, can significantly reduce the amount of cabling in machinetool electrical sections.In a system using the ...

  • Page 74

    B–63003EN–1/021. AXIS CONTROL52In an FSSB–based system, a fiber optics cable is used to connect the CNCto servo amplifiers and pulse modules. These amplifiers and pulsemodules are called slaves. The two–axis amplifier consists of two slaves,and the three–axis amplifier consists of thr...

  • Page 75

    B–63003EN–1/021. AXIS CONTROL53By manual setting 1, some of the following functions and values cannotbe used, as described below. They should be used in automatic setting ormanual setting 2.D No pulse module can be used; hence, no separate position detectorscan be used.D No number can be ski...

  • Page 76

    B–63003EN–1/021. AXIS CONTROL54If the following parameter is set, manual setting 2 can be used for eachparameter axis setting.Bit 0 of parameter No. 1902 = 1To perform manual setting 2, set parameter Nos. 1023, 1905, 1910 to1919, 1936, and 1937. Refer to the Parameter Manual for the meaningo...

  • Page 77

    B–63003EN–1/021. AXIS CONTROL55The FSSB setting screen displays FSSB–based amplifier and axisinformation. This information can also be specified by the operator.1. Press the SYSTEM function key.2. To display [FSSB], press the next menu page key several times.3. Pressing the [FSSB] soft ke...

  • Page 78

    B–63003EN–1/021. AXIS CONTROL56D AMPamplifier type. . . . The amplifier type display consists of the letter A, which stands for“amplifier”, a number that indicates the placing of the amplifier, ascounted from that nearest to the CNC, and a letter such as L (firstaxis) or M (second axis) i...

  • Page 79

    B–63003EN–1/021. AXIS CONTROL57D AXIScontrolled axis number. . . . This item is the placing of the NC controlled axis.D NAMEcontrolled axis name. . . D AMPtype of the amplifier connected to each axis. . . . D M1connector number for pulse module 1. . . . . . This item is the number of the conn...

  • Page 80

    B–63003EN–1/021. AXIS CONTROL58AMPLIFIER MAINTENANCEO1000 N00001AXISNAMEEDITIONTESTMEINTE–NO.1X01A970123012Y01A970123013Z01A970123014A02B970123015B02B970123016C02B97012301>_MDI **** *** ***13:11:56[ AMP ][ AXIS ][ MAINTE ][ ][ ]The amplifier maintenance screen displays the ...

  • Page 81

    B–63003EN–1/021. AXIS CONTROL59When the power is switched on, values are read from the parameters anddisplayed on the screen.NOTE1 For the parameters to be specified on the FSSB settingscreen, do not attempt to enter values on the parameterscreen using the MDI or a G10 command. Use only theF...

  • Page 82

    B–63003EN–1/021. AXIS CONTROL60(2) Axis setting screenÁÁÁÁAXIS SETTINGO1000 N00001AXISNAMEAMP M1 M21–DSP CSTNDM1XA1–L000012YA1–M101003ZA2–L000104AA3–L000025BA3–M000006CA4–L00000>_MDI **** *** ***13:11:56[ SETING ][ ][ CANCEL ][ ][ INPUT ]On the axis setting sc...

  • Page 83

    B–63003EN–1/021. AXIS CONTROL61D A duplicate value is specified for M1.D A duplicate value is specified for M2.D A duplicate value is specified for CS.D A duplicate value is specified for TNDM.D An invalid master/slave axis pair is specified for TNDM.#71902#6#5#4#3#2#1ASE#0FMD[Data type] BitF...

  • Page 84

    B–63003EN–1/021. AXIS CONTROL62D For two–axis amplifiers, do not use fast type interfaces for both axessimultaneously. Slow types can be used simultaneously for both axes.D For three–axis amplifiers, the same rules as those for two–axisamplifiers apply to the first and second axes, wh...

  • Page 85

    B–63003EN–1/021. AXIS CONTROL631910Address conversion table value for slave 1 (ATR)1911Address conversion table value for slave 2 (ATR)1912Address conversion table value for slave 3 (ATR)1913Address conversion table value for slave 4 (ATR)1914Address conversion table value for slave 5 (ATR)19...

  • Page 86

    B–63003EN–1/021. AXIS CONTROL64f Example of axis configuration and parameter setting1021324354616758489401040SlavenumberATRNo.1910to 1919XAYZB(M1)C(M2)(None)(None)Axis1X12Y33Z44A25B56C6Controlledaxis numberProgramaxis name(No. 1020)Servo axisnumber(No. 1023)CNCTwo–axisamplifierSingle–axis...

  • Page 87

    B–63003EN–1/021. AXIS CONTROL65f Example of axis configuration and parameter setting when the simpleelectronic gearbox (EGB) function is used(EGB workpiece axis = A–axis; EGB axis = B–axis (parameter No.7771 = 5))1021324455616748839401040ÁÁÁÁÁÁÁÁÁÁÁÁXYAZC(M1)(M2)(Dummy)(None)(...

  • Page 88

    B–63003EN–1/021. AXIS CONTROL661931Connector number for first pulse module (FSSB setting screen only)1932Connector number for second pulse module (FSSB setting screen only)[Data type] Byte axis[Valid data range] 0 to the number of connectors in each pulse moduleTo use a pulse module, the user...

  • Page 89

    B–63003EN–1/021. AXIS CONTROL67Example)ControlledaxisÁÁÁÁÁÁÁÁConnectornumber forfirst pulsemoduleÁÁÁÁÁÁÁÁÁConnectornumber forsecond pulsemoduleÁÁÁÁÁÁÁÁÁNo.1936ÁÁÁÁÁÁÁÁNo.1937ÁÁÁÁÁÁÁÁNo.1905(#7, #6)ÁÁÁÁÁÁÁÁÁÁÁÁXÁÁÁÁÁÁ1ÁÁÁÁÁÁÁNo...

  • Page 90

    B–63003EN–1/021. AXIS CONTROL68NumberDescriptionMessageÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ466ÁÁÁÁÁÁÁn AXIS : MOTOR/AMPCOMBINATIONÁÁÁÁÁÁÁÁÁÁÁThe maximum current rating for the am-plifier does not match that for the motor.ÁÁÁÁÁÁÁÁÁÁ...

  • Page 91

    B–63003EN–1/021. AXIS CONTROL69Machine coordinate system is a coordinate system set with a zero pointproper to the machine system. A coordinate system in which the reference position becomes theparameter-preset (No. 1240) coordinate value when manual referenceposition return is performed, is...

  • Page 92

    B–63003EN–1/021. AXIS CONTROL70Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁÁII.7.1ÁÁÁÁÁÁÁMACHINE COORDINATE SYSTEMÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Lathe) (B–63004EN)ÁÁÁÁ...

  • Page 93

    B–63003EN–1/021. AXIS CONTROL71The user can choose from set workpiece coordinate systems as describedbelow.(1) Selecting a workpiece coordinate system set by G92 (G50) orautomatic workpiece coordinate system settingOnce a workpiece coordinate system is selected, absolute commandswork with the...

  • Page 94

    B–63003EN–1/021. AXIS CONTROL72When the coordinate system actually set by the G92 (G50) command orthe automatic coordinate system setting deviates from the programmedworkpiece coordinate, the set coordinate system can be shifted.Set the desired shift amount in the workpiece coordinate system ...

  • Page 95

    B–63003EN–1/021. AXIS CONTROL73ZPI Coordinates at the reference position when a coordinate system is setautomatically0 : Value set in parameter No. 1250 is used.1 : For input in mm, the value set in parameter 1250 is used, or for input ininches, the value set in parameter No. 1251 is used.AWK...

  • Page 96

    B–63003EN–1/021. AXIS CONTROL741220External workpiece zero point offset value[Data type] Two–word axisInput incrementÁÁÁÁÁÁÁÁÁÁÁIS–AÁÁÁÁÁÁIS–BÁÁÁÁÁÁIS–CÁÁÁÁÁÁUnitÁÁÁÁÁÁÁÁLinear axis (input in mm)ÁÁÁÁÁÁÁÁÁÁÁ0.01ÁÁÁÁÁÁ0.001ÁÁÁÁÁ...

  • Page 97

    B–63003EN–1/021. AXIS CONTROL75Workpiece coordinate system 1 (G54)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁWorkpiece zero point offsetOrigin of machine coordinate systemÁÁWorkpiece coordinate system 2 (G55)1250Coordinate value of the reference position used when...

  • Page 98

    B–63003EN–1/021. AXIS CONTROL76Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁÁII.7.2ÁÁÁÁÁÁÁWORK COORDINATE SYSTEMÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Lathe) (B–63004EN)ÁÁÁÁÁ...

  • Page 99

    B–63003EN–1/021. AXIS CONTROL77The roll–over function prevents coordinates for the rotation axis fromoverflowing. The roll–over function is enabled by setting bit 0 (ROAx)of parameter 1008 to 1.For an incremental command, the tool moves the angle specified in thecommand. For an absolute...

  • Page 100

    B–63003EN–1/021. AXIS CONTROL78#7#6#5#4#3#2#1#01008RRLxRABxROAxNOTEAfter setting this parameter, turn the power off then on againso that the setting will take effect.[Data type] Bit axisROAx The roll–over function of a rotation axis is0 : Invalid1 : ValidNOTEROAx specifies the function only...

  • Page 101

    B–63003EN–1/021. AXIS CONTROL79NOTEThis function cannot be used together with the indexingfunction of the index table (M series).Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁII.20.2ÁÁÁÁÁÁROTARY AXIS ROLL–OVERÁ...

  • Page 102

    B–63003EN–1/021. AXIS CONTROL80A movement along an axis can be executed simply by executing a movecommand specified for that axis or by synchronizing the movement withanother axis. Either of these two types can be selected by means of a signalsent from the machine.In synchronous operation, th...

  • Page 103

    B–63003EN–1/021. AXIS CONTROL81WARNING1 Before using the synchronization error check function, setidentical values for the reference positions of the masterand slave axes.2 To clear the alarm, first increase the maximumsynchronization error set in parameter 8314, then press thereset key. Nex...

  • Page 104

    B–63003EN–1/021. AXIS CONTROL82NOTE1 To use the synchronization compensation function, set theSOF bit, bit 7 of parameter 8301 (if only one master/slaveaxis pair is in sync) or SOFx bit, bit 7 of parameter 8303 (ifmore than one master/slave axis pair is in sync), to 1.2 The synchronization co...

  • Page 105

    B–63003EN–1/021. AXIS CONTROL83If the master and slave axes operate independently while simplesynchronous control is applied, the machine may be damaged. To preventthis, the torque command difference between the axes is monitored. If thedifference is found to be abnormal, an alarm can be is...

  • Page 106

    B–63003EN–1/021. AXIS CONTROL844 Set parameter No. 2115 to 22160.5 Connect a check board, and observe a signal at CH7 with the rotaryswitch on the check board set to 1.6 Convert the observed value, using the formula 1 V = 410 (specifiedthreshold value). Read the maximum value during ordinary...

  • Page 107

    B–63003EN–1/021. AXIS CONTROL85[Classification] Input signal[Function] synchronous control is performed in jog, handle, or incremental feedmode.The signal is provided for each controlled axis. The number at the endof the signal name represents the number of the controlled axis.1. ... The fir...

  • Page 108

    B–63003EN–1/021. AXIS CONTROL868311Axis number of master axis in synchronous control[Data type] Byte axis[Valid data range] 0 to 7Select a master axis for simple synchronous control. Set a master axisnumber for the axis used as a slave axis. If the value of this parameter is0, the first axi...

  • Page 109

    B–63003EN–1/021. AXIS CONTROL878312Enabling/disabling mirror image in synchronous control[Data type] Byte axis[Valid data range] –128 to +127This parameter sets the mirror image function. When 100 or a greatervalue is set with this parameter, the mirror image function is applied tosynchro...

  • Page 110

    B–63003EN–1/021. AXIS CONTROL88#78302#6#5#4#3#2#1ATS#0ATENOTEThe system power must be turned off then back on in orderfor this parameter setting to become effective.[Data type] BitATE Specify whether to enable the automatic setting of grid positioning undersimple synchronous control (one mast...

  • Page 111

    B–63003EN–1/021. AXIS CONTROL898311Axis number of master axis in synchronous control[Data type] Byte axis[Valid data range] 0 to 7Select a master axis and slave axis for simple synchronous control. Seta master axis number for the slave axis side.Example1: When using the first axis (X–axis...

  • Page 112

    B–63003EN–1/021. AXIS CONTROL908314Allowable error in synchronization error check[Data type] Word axisIncrement systemÁÁÁÁÁÁÁÁIS–AÁÁÁÁÁÁÁIS–BÁÁÁÁÁÁÁIS–CÁÁÁÁÁÁÁUnitÁÁÁÁÁÁÁÁMetric machineÁÁÁÁÁÁÁÁ0.01ÁÁÁÁÁÁÁ0.001ÁÁÁÁÁÁÁ0.0001ÁÁÁ...

  • Page 113

    B–63003EN–1/021. AXIS CONTROL918317Torque difference alarm detection timer (one master/slave axis pair under synchro-nous control)[Data type] Word[Unit of data] ms[Valid data range] 0 to 4000 (if 0 is specified, the system assumes 512 ms.)This parameter specifies the time between the servo pr...

  • Page 114

    B–63003EN–1/021. AXIS CONTROL928327Torque difference alarm detection timer (more than one master/slave axis pair under synchronous control)[Data type] Word axis[Unit of data] ms[Valid data range] 0 to 4000This parameter specifies the time between the servo preparationcompleted signal (SA [F00...

  • Page 115

    B–63003EN–1/021. AXIS CONTROL93NumberÁÁÁÁÁÁÁÁÁÁÁMessageÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ407ÁÁÁÁÁÁÁÁSERVO ALARM: EXCESS ERRORÁÁÁÁÁÁÁÁÁÁÁÁThe difference in position error be-tween the master a...

  • Page 116

    B–63003EN–1/021. AXIS CONTROL94CAUTION1 When a manual reference position return is executed,identical movements are performed along the master andslave axes until deceleration commences. Subsequently,grids are detected separately.2 Pitch error compensation and backlash compensation areexecut...

  • Page 117

    B–63003EN–1/021. AXIS CONTROL95If a single motor cannot produce sufficient torque to move a large table,for example, this function allows two motors to be used. By means of thisfunction, two motors can be used to perform movement along a singleaxis. Positioning is carried out only for the m...

  • Page 118

    B–63003EN–1/021. AXIS CONTROL96ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSpecifiedpulsePositionloopVelocityloop+--Built–in de-tectorSeparatedetectorScaleAver-age?Re-verse?PRM.1815#1PRM. 2008#2PRM. 2022Speed FBCurrentloopRotor positionServoamplifierP...

  • Page 119

    B–63003EN–1/021. AXIS CONTROL97To specify the axis configuration in tandem control, follow the procedurebelow:(1) Tandem control can be performed for up to four pairs of axes.(2) In terms of controlled axes, the pair of axes is handled as two separateaxes. In terms of CNC–controlled axes (...

  • Page 120

    B–63003EN–1/021. AXIS CONTROL98By adding an offset to the torque controlled by the position (velocity)feedback device, the function can apply opposite torques to the master andslave axes so that equal and opposite movements are performed for bothaxes. This function can reduce the effect of b...

  • Page 121

    B–63003EN–1/021. AXIS CONTROL99The DI/DO signals, generally connected to each axis, must be connectedonly to the master axis of two axes of tandem control. The signals neednot be connected to the slave axis. The following signals, however, mayhave to be connected depending on the applicatio...

  • Page 122

    B–63003EN–1/021. AXIS CONTROL100The classifications of the parameters are described below. Any parameterthat is not listed in the tables for the three classifications should beprocessed as a parameter of type i) and, specify identical values for themaster and slave axes.WARNINGNote that, if ...

  • Page 123

    B–63003EN–1/021. AXIS CONTROL101Parameter No.ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁMeaning of parametersÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ0012#00012#71004#71005#41005#51005#710221220122112221223122412251226142314241425142714301815#11815#52008#2ÁÁÁÁÁÁÁ...

  • Page 124

    B–63003EN–1/021. AXIS CONTROL102Parameter No.ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁMeaning of parametersÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ1005#01005#11006#01006#11006#31006#5124012411242124312601420142116201621162216231624162516261627182018XX20XXÁÁÁÁÁÁ...

  • Page 125

    B–63003EN–1/021. AXIS CONTROL1032087Preload of each axis (Tcmd offset)[Data type] Word axis[Unit of data] (Preamplifier limit) /7282[Valid data range] –1821 to 1821An offset is added to a torque command to reduce backlash.Set a slightly large value than friction torque.As a reference set a ...

  • Page 126

    B–63003EN–1/021. AXIS CONTROL104This function enables synchronous control, in which an axis can besynchronized with another axis.An axis can be moved in synchronization with another axis. This is doneby issuing a move command for one axis (synchronous master axis) toanother axis so that both...

  • Page 127

    B–63003EN–1/021. AXIS CONTROL105When synchronous control is started for a workpiece coordinate system,it is possible to specify the workpiece coordinate system automatically.When synchronous control for a workpiece coordinate system isterminated, it is possible to return the workpiece coordin...

  • Page 128

    B–63003EN–1/021. AXIS CONTROL106(2) Workpiece coordinate system for ordinary operation(Master axis workpiece coordinate value) = (parameter No. 1250 for the master axis) + (master axis machine coordinate value)S If many slave axes are synchronized with one master axis, the masteraxis is set w...

  • Page 129

    B–63003EN–1/021. AXIS CONTROL107[Classification] Output signal[Function] These signals indicate each axis is being subjected to synchronouscontrol.[Operation] These signals become “1” under the following condition:S The corresponding axis is under synchronous control.These signals become ...

  • Page 130

    B–63003EN–1/021. AXIS CONTROL108#7#6#5#4#3#2#1#08162PKUxSMRx[Data type] Bit axisSMRx Synchronous mirror–image control is:0 : Not applied. (The master and slave axes move in the same direction.)1 : Applied. (The master and slave axes move in opposite directions.)PKUx In the parking sate,0 ...

  • Page 131

    B–63003EN–1/021. AXIS CONTROL109SCDx The positive (+) directions of the master axis and slave axis in thecoordinate system in synchronous control are:0 : Identical.1 : Opposite.8180Master axis with which an axis is synchronized under synchronous control[Data type] Byte axis[Valid data range] ...

  • Page 132

    B–63003EN–1/021. AXIS CONTROL110WARNING1 When synchronous control is started or terminated, thetarget axes must be at a stop.2 All axes subjected to synchronous control must have thesame least command increment, detection unit, anddiameter/radius specification. Otherwise, the amount ofmoveme...

  • Page 133

    B–63003EN–1/021. AXIS CONTROL111NOTE1 More than one axis can be placed in synchronous state atthe same time. However, an axis cannot be synchronizedwith more than one axis simultaneously.2 Synchronous control and simplified synchronous controlcannot be specified simultaneously.FunctionÁÁÁ...

  • Page 134

    B–63003EN–1/021. AXIS CONTROL112WARNINGIf a reference position return command is issued for asynchronous master axis during synchronous control, it isexecuted normally for the master axis, but the slave axisdoes not return to their reference position (the slave axisonly moves in synchronizati...

  • Page 135

    B–63003EN–1/021. AXIS CONTROL113Synchronous control is terminated not only when the correspondingsynchronization signal becomes off but also when one of the followingconditions occurs.(1) Emergency stop(2) Reset(3) Servo alarm(4) Servo off(5) Overtravel(6) Alarm related to synchronous control...

  • Page 136

    B–63003EN–1/021. AXIS CONTROL114The T series CNC has two independent control paths. For example, it canbe used to control two turrets of a multiple–turret lathe independently.The axes (such as X1–and Z1–axes) belonging to path 1 are controlled bycommands in path 1, and the axes (such a...

  • Page 137

    B–63003EN–1/021. AXIS CONTROL115ÁÁÁÁÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÁÁÁÁTurret 1X1WorkpieceZ1Z2 (synchronized with the Z1–axis)Machining is performed by a path 1 program.S Synchronization of an axis in one path with another axi...

  • Page 138

    B–63003EN–1/021. AXIS CONTROL116(2) Composite controlS Interchanging move commands for an axis in one path with those foran axis in the other path.(Example)Interchanging commands between the X1– and X2–axes→ Control both X2– and Z1–axes by commands in a path 1 programControl both X1...

  • Page 139

    B–63003EN–1/021. AXIS CONTROL117(3) Superimposed controlS Superimposing move commands for an axis in one path on an axis inthe other path(Example)Superimposing the movement of the Z1–axis on the Z2–axisÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÁ...

  • Page 140

    B–63003EN–1/021. AXIS CONTROL118Parameter No. 8180 specifies which axis is to be synchronized with whichaxis.(Example)To synchronize the Z1–axis with the Z2–axis:Parameter No. 8180z of path 1 = 2To synchronize the Y2–axis with the X1–axis: Parameter No. 8180y of path 2 = 1To synchron...

  • Page 141

    B–63003EN–1/021. AXIS CONTROL119ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁZ1Turret 1X1X2Turret 2Z2(Example 3)Synchronizing the B1–axis (tail stock axis) with theZ1–axisÁÁÁÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ...

  • Page 142

    B–63003EN–1/021. AXIS CONTROL120ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÁÁÁÁÁÁÁÁÁÁTurret 1X1The X2– and Z1–axes are moved bycommands in a path 2 program (bysynchronizing the Z1–axis with theZ2–axis). At this point, the Z2–axis iskept in a parking s...

  • Page 143

    B–63003EN–1/021. AXIS CONTROL121If a reference position return command is issued for a synchronous masteraxis during synchronous control, it is executed normally for the masteraxis, but the slave axis does not return to its reference position (the slaveaxis only moves in synchronization with ...

  • Page 144

    B–63003EN–1/021. AXIS CONTROL122If synchronous control is terminated during automatic operation, do notissue a move command or coordinate system setting for the synchronousslave axis in the current block and one or two (during tool–nose radiuscompensation) subsequent blocks. This restricti...

  • Page 145

    B–63003EN–1/021. AXIS CONTROL123(2) To resume the ordinary workpiece coordinate system automaticallywhen terminating synchronous controlSet parameter SPSx (parameter No. 8163) to “1”.Set parameter No. 1250 with the master axis coordinates in theworkpiece coordinate system when the master ...

  • Page 146

    B–63003EN–1/021. AXIS CONTROL124NOTE1 If more than one slave axis is synchronized with one masteraxis, the master axis is set with the workpiece coordinatesystem that corresponds to the current position of the firstslave axis that is synchronized with the master axis.2 The tool offset is take...

  • Page 147

    B–63003EN–1/021. AXIS CONTROL125Suppose that a machine has the X1– and Z1–axes belonging to path 1 andthe X2– and Z2–axes belonging to path 2 and that a workpiece movesalong the Z1– and Z2–axes as directed by move commands. Thefollowing examples interchange commands between the X...

  • Page 148

    B–63003EN–1/021. AXIS CONTROL126The composite control function does not switch the spindle speedcommand or the feed per rotation command based on feedback pulsesfrom the position coder. Therefore, the spindle speed command andfeedback pulses should be switched using the following signals. (...

  • Page 149

    B–63003EN–1/021. AXIS CONTROL127The superimposed control function adds the amount of movement of anaxis (superimposed control master axis) in one path to an axis(superimposed control slave axis) on the other path for which ordinarymove commands are being executed. This function is similar to...

  • Page 150

    B–63003EN–1/021. AXIS CONTROL128Suppose that a workpiece on the spindle (Z1–axis) that moves along theaxis is to be cut with a tool in path 1 and a tool in path 2 simultaneously.This example superimposes the amount of movement of the Z1–axis onthat of the Z2–axis.ÀÀÀÀÀÀÀÀÀÀÀ...

  • Page 151

    B–63003EN–1/021. AXIS CONTROL129These special parameters are used for both master and slave axes duringsuperimposed control. Appropriate values should be specified with theresulting feedrate taken into account. When superimposed control beginsor ends during automatic operation, it is imposs...

  • Page 152

    B–63003EN–1/021. AXIS CONTROL130If the corresponding axis is under synchronous control, it enters a parkingstate immediately regardless of whether the axis is moving. If a parkingsignal is set to “1” without specifying synchronous control, it is ignored.[Classification] Input signal[Func...

  • Page 153

    B–63003EN–1/021. AXIS CONTROL131These signals become “0” under the following condition:S The corresponding axis is not under synchronous, composite, orsuperimposed control.CAUTIONWhether each axis is under synchronous, composite, orsuperimposed control does not always match whether thecor...

  • Page 154

    B–63003EN–1/021. AXIS CONTROL132XSI When MXC = 1, the machine coordinates along the X–axis for the otherpath subject to mixed control are fetched:0 : With the sign as is1 : With the sign invertedZSI When MXC = 1, machine coordinates along the Z–axis for the other pathsubject to mixed cont...

  • Page 155

    B–63003EN–1/021. AXIS CONTROL133SERx The synchronization deviation is:0 : Not detected.1 : Detected.NOTEWhen both master and slave axes move in synchronization,the positioning deviations of the corresponding axes arecompared with each other. If the difference is larger than orequal to the va...

  • Page 156

    B–63003EN–1/021. AXIS CONTROL134MCDx The axes to be replaced with each other under composite control have thecoordinate systems placed:0 : In the same direction. Simple composite control is applied. (The axesof paths 1 and 2 move in the same direction.)1 : In opposite directions. Mirror–...

  • Page 157

    B–63003EN–1/021. AXIS CONTROL135#7#6#5#4#3#2#1#08163SCDxSCMxSPSxSPMxMDXxNOTESet the parameters SPMx, SPSx, SCMx, and SCDx for themaster axis. These settings are referenced duringautomatic workpiece coordinate setting for the master axisat the start of synchronous control.[Data type] Bit axis...

  • Page 158

    B–63003EN–1/021. AXIS CONTROL136Parameters SPMx, SPSx, SCMx, and SCDx must be specified for themaster axis. These parameter settings are referenced in automatic settingof the workpiece coordinates for the master axis when synchronizationcontrol begins.8180Master axis with which an axis is sy...

  • Page 159

    B–63003EN–1/021. AXIS CONTROL1378182Display of the synchronization error of an axis (synchronous or composite control)[Data type] Two–word axis[Unit of data] Unit of detection[Valid data range] 0 or moreWhen the synchronization deviation is detected (SERx of Bit #1parameter No. 8162 is set ...

  • Page 160

    B–63003EN–1/021. AXIS CONTROL138Coordinates of the reference point of an axis on the coordinate system ofanother axis under composite control8184[Data type] Two–word axisIncrement systemÁÁÁÁÁÁÁÁIS–AÁÁÁÁÁÁÁIS–BÁÁÁÁÁÁÁIS–CÁÁÁÁÁÁÁUnitÁÁÁÁÁÁÁÁMillimete...

  • Page 161

    B–63003EN–1/021. AXIS CONTROL139X1 = (Value specified for the X–axis of path 1)± (Machine coordinates of X2)Plus when parameterNo. 8162#6 MCDx ofpath 1 is set to 0Minus when parameterNo. 8162#6 MCDx ofpath 1 is set to 1ÁÁX2 =(Value specified for the X–axis of path 2)" (Machine coo...

  • Page 162

    B–63003EN–1/021. AXIS CONTROL1408190Rapid traverse rate of an axis under superimposed control[Data type] Two–word axisIncrement systemÁÁÁÁÁÁÁÁÁÁUnit of dataÁÁÁÁÁÁÁValid data rangeÁÁÁÁÁÁÁÁÁÁÁÁÁÁIncrement systemÁÁUnitofdataÁÁIS-A, IS-BÁÁÁÁÁÁÁÁIS-CÁ...

  • Page 163

    B–63003EN–1/021. AXIS CONTROL1418194Maximum cutting feedrate of an axis under superimposed control[Data type] Two–word axisIncrement systemÁÁÁÁÁÁÁÁÁÁUnit of dataÁÁÁÁÁÁÁValid data rangeÁÁÁÁÁÁÁÁÁÁÁÁÁÁIncrement systemÁÁUnitofdataÁÁIS-A, IS-BÁÁÁÁÁÁÁÁIS...

  • Page 164

    B–63003EN–1/021. AXIS CONTROL142NumberDescriptionMessageÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ229ÁÁÁÁÁÁÁÁÁÁÁÁSynchronization cannot bemaintained.ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁThis alarm occurs under either of thefollowing conditions.(1) Synchronou...

  • Page 165

    B–63003EN–1/021. AXIS CONTROL143WARNING1 When synchronous, composite, or superimposed controlbegins or ends, the target axes must be at a stop.2 All axes subjected to synchronous, composite, orsuperimposed control must have the same least command,detection increment, and diameter/radius speci...

  • Page 166

    B–63003EN–1/021. AXIS CONTROL144NOTE1 More than one axis can be subjected to synchronous,composite, or superimposed control. On the other hand, anaxis cannot be synchronized with more than one axissimultaneously. Moreover, an axis under composite controlcannot be synchronized with another a...

  • Page 167

    B–63003EN–1/021. AXIS CONTROL145FunctionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁDuring synchronouscontrolÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁDuring compositecontrolÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁDuring superimposedcontrolÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ...

  • Page 168

    B–63003EN–1/021. AXIS CONTROL146FunctionDuring superimposedcontrolDuring compositecontrolDuring synchronouscontrolÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁInterlockÁÁÁÁÁÁÁÁÁÁÁÁÁThe signals for the synchro-nous...

  • Page 169

    B–63003EN–1/021. AXIS CONTROL147The following list summarizes how positional information such ascustom macro system variables and current coordinates from the PMCwindow are read during synchronous, composite, or superimposedcontrol.Positional informationÁÁÁÁÁÁÁÁÁÁÁÁDuring synchron...

  • Page 170

    B–63003EN–1/021. AXIS CONTROL148Status output signalÁÁÁÁÁÁÁÁÁÁÁÁÁDuring synchronouscontrolÁÁÁÁÁÁÁÁÁÁÁÁÁDuring compositecontrolÁÁÁÁÁÁÁÁÁÁÁÁÁDuring superimposedcontrolÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁAxis moving signal MVnF0102/F1102(See Section 1.2.5.)Á...

  • Page 171

    B–63003EN–1/021. AXIS CONTROL149(1) Machine configuration(a) Independent controlÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÁÁÁÁÁÁTurret 1Turret 2Spindle S2Spindle S1X1X2Z1Z2Path 1 (X1– and Z1–axes)performs machining sepa-rately from path 2 (X2– a...

  • Page 172

    B–63003EN–1/021. AXIS CONTROL150S To apply mirror–image synchronization (because initially thepositive direction of one axis is opposite to that of the other axis),set SMRz (bit 0 of parameter No. 8162) of path 2 to “1”.S To detect out–of–synchronization (because both axes should mo...

  • Page 173

    B–63003EN–1/021. AXIS CONTROL151In this example, assume that M61 clamps the workpiece and sets signalG1138#1 SYNC2 to “1” and that M62 resets signal G1138#1 SYNC2 to“0” and unclamps the workpiece.NOTEIt is necessary to make the speed of spindle S1 equal thatof spindle S2. For example...

  • Page 174

    B–63003EN–1/021. AXIS CONTROL1521. The path 2 program directs the X2– and Z2–axes, synchronizes theX1–axis with the X2–axis, and causes the X2–axis to park. Thepath 1 program issues no move command.2. Composite control is performed in which move commands areswitched between the X1...

  • Page 175

    B–63003EN–1/021. AXIS CONTROL153N2050 T0212 ; Specifies an offset for turret 1.N2060 S1000 M4 ; Reverses the spindle.N2070 G0 X30. Z55. ;N2080 G1 F0. 2 W- 15. ;N2090 ·······N2100 M56 ; Terminates synchronization and parking.N1110 M201 ; N2110 M201 ; Wait...

  • Page 176

    B–63003EN–1/021. AXIS CONTROL154ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÁÁÁÁÁÁÁÁÁÁÁÁÁReference positionof turret 1150.0mmZ2X2(2) Signal operationS Set signal G0128#0 MIX1 to “1” when composite control beginsfor the X2– and X1–axes.S Reset signal G0128#0 MIX1 to “0” wh...

  • Page 177

    B–63003EN–1/021. AXIS CONTROL155N2110 M56 ;Terminates composite control (the position of turret 1 is set up asworkpiece coordinates in path 1.)N1120 M201;N2120 M201 ; Waits for composite control to beterminated.N1130 ; N2130 ; Dummy block (performing no move command)N1140 ··...

  • Page 178

    B–63003EN–1/021. AXIS CONTROL156(1) Machine configuration(a) Independent controlÁÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÁÁÁÁÁX1Turret 1Z2Spindle S2Spindle S1Turret 2X2Z1Workpiece 1 and turret 1are controlled by a path1 program.Workpiece 2 and turret 2are controlled by a path2 program.1...

  • Page 179

    B–63003EN–1/021. AXIS CONTROL157(b) Interpolation between the X1– and Z2–axes and between the X2– andZ1–axesÁÁÀÀÀÀÀÀÀÀÀÀÁÁÁÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÁX1Turret 1Z2Spindle S2Spindle S1Turret 2X2Z1Workpiece 1 and turret 2 arecontrolled by a path 1 program.Workpi...

  • Page 180

    B–63003EN–1/021. AXIS CONTROL158Reference position for turret 2ÁÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁReference positionfor turret 1Z2180.0mm120.0mm200.0mmX2Z1X1(3) Signal operationS Set signal G0128#0 MIX1 to “1” when composite contr...

  • Page 181

    B–63003EN–1/021. AXIS CONTROL159N1050 T0313 N2050 T0212 ; Selects a tool forcomposite control and sets the offset.N1060 G50 W120. ;N2060 G50 W120. ;Shifts the Z–axisworkpiece coordinate system.N1070 S1000 M4 ; N2070 S1500 M4 ; N1080 G0 X20. Z15. ;N2080 G0 X15. Z3...

  • Page 182

    B–63003EN–1/021. AXIS CONTROL160(1) Machine configuration(a) Independent controlÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÁÁÁÁÁÁÁÁX1Turret 1Z1Path 1 (X1– and Z1–axes)performs machining sepa-rately from path 2 (X2– andZ2–axes).Spindle S1Spindle S2Turret 2X2Z2(b) Superimpo...

  • Page 183

    B–63003EN–1/021. AXIS CONTROL161S Set the feedrate along each Z–axis for superimposed control inparameter Nos. 8190z, 8191z, and 8193 of both paths. Each valueto be set must be about half the one for independent control.S Set the rapid traverse time constant for each Z–axis undersuperimp...

  • Page 184

    B–63003EN–1/021. AXIS CONTROL162N1120 ·······N2120 ········Machining under control independent of the other pathWARNINGWhen using constant surface speed control, be carefulabout which path has the spindle command that is effectivefor spindle S1.NOTEThe speed of spindle S1 (fe...

  • Page 185

    B–63003EN–1/021. AXIS CONTROL1631.Synchronous, composite, or superimposed control cannot be started,but no alarm is issued.(1) The synchronous or composite control option has not beenspecified.⇒ The synchronous and composite control must be specified.(2) The G0128, G0138, G0190, G1128, G113...

  • Page 186

    B–63003EN–1/021. AXIS CONTROL1642. The P/S225 alarm occurs when a signal for synchronous, composite,or superimposed control arises.(1) An attempt was made to perform synchronous, composite, orsuperimposed control for an axis that was already undersynchronous, composite, or superimposed contro...

  • Page 187

    B–63003EN–1/021. AXIS CONTROL165(2) A move command was issued to an axis under composite controlfor which parameter MUMx (bit 7 of parameter No. 8162) is “1”.⇒ No move command (either automatic or manual) can be issuedto an axis under composite control for which parameter MUMx(bit 7 of ...

  • Page 188

    B–63003EN–1/021. AXIS CONTROL1668. An axis does not move to a specified position after synchronous orcomposite control switching.(1) A move command was issued within two blocks after synchronousor composite control.⇒ The coordinate system in the CNC must be re–set at synchronousor composi...

  • Page 189

    B–63003EN–1/021. AXIS CONTROL167This function sets an axis (B–axis) independent of the basic controlledaxes X1, Z1, X2, and Z2 and allows drilling, boring, or other machiningalong the B–axis, in parallel with the operations for the basic controlledaxes. The X2 and Z2 axes can be used in ...

  • Page 190

    B–63003EN–1/021. AXIS CONTROL168Parameter 8251:M code used to start operation of the first programParameter 8252:M code used to start operation of the second programParameter 8253:M code used to start operation of the third programO1234 ; M** ;ÁÁM30 ;To start an operation, the miscellaneo...

  • Page 191

    B–63003EN–1/021. AXIS CONTROL169One of the following three two–path control modes can be selected:1 B–axis control is executed for either tool post 1 or 2.2 B–axis control is executed separately for tool posts 1 and 2.3 Identical B–axis control is executed for tool posts 1 and 2.The m...

  • Page 192

    B–63003EN–1/021. AXIS CONTROL170G80 to G86 (canned drilling cycle)Of the canned drilling cycles supported by the CNC for machiningcenters, those cycles equivalent to G80 to G86 can be executed.Data can be specified in the same way as for the CNC for machiningcenters, except for the following ...

  • Page 193

    B–63003EN–1/021. AXIS CONTROL171NOTE1 Range of commands of M, S, and T codes2 An M, S, or T code must not be specified in a blockcontaining another move command. The M, S, and T codesmust not be specified in an identical block.3 Usually, normal NC operation and B–axis operation areindepend...

  • Page 194

    B–63003EN–1/021. AXIS CONTROL172Example) :G01 X10. F1000 ;G101 (G102, G103) ;B10. ;G01 B–10. F500 ;G100 ;X–10. ; :Irrespective of the modal information for normal operation (G01specified in block), block specifies G00 if the MDG bit (bit 1 ofparameter 8241) is set to 0, or G01 if ...

  • Page 195

    B–63003EN–1/021. AXIS CONTROL173The amount of travel along the B–axis can be specified in either absoluteor incremental mode. In absolute mode, the end point of travel along theB–axis is programmed. In incremental mode, the amount of travel alongthe B–axis is programmed directly.The A...

  • Page 196

    B–63003EN–1/021. AXIS CONTROL174Example) :G101 ;G00 B10. ;One block. . . . . . . . . . . . . . . . . G04 P1500 ;One block. . . . . . . . . . . . . . . . G81 B20. R50. F600 ;Three blocks. . . . . . . . G28 ;One block. . . . . . . . . . . . . . . . . . . . . . M15 ;One block. . . . . . . . ...

  • Page 197

    B–63003EN–1/021. AXIS CONTROL175Absolute or incremental mode0100200300400500600(1)(2)(200)(350)(450)(200)(350)(550)(200)(100)(3)()⋅ Dwell⋅ DwellIncremental mode G101 (G102, G103) ;(1) G01 B200. F100 ;(2) G82 B100. R150. P5000 F200 ;(3) B200. R150. P5000 ;(4) G00 B–100. ;G100 ; :M*...

  • Page 198

    B–63003EN–1/021. AXIS CONTROL17601020304050(1)(2)(3)(4)(5)(6)(10)(350)(30)(5)(25)(20)(0)ProgramG101 (G102, G103) ;(1) G01 B10. F100 ;(2) T51 ;(3) G00 B20. ;(4) T52 ;(5) B0. ;(6) T50 ;G100 ; :M**; :Example)When parameter 8257 is set to 50 Auxiliary function used to cancel the offset: ...

  • Page 199

    B–63003EN–1/021. AXIS CONTROL177#7#6#5#4#3#2#1#0MST8240ABSSOVTEMREF[Data type] BitREF Reference position return operation by G28:0 : Always uses deceleration dogs in the same way as a manual referenceposition return operation.1 : Uses deceleration dogs when a reference position has not yet be...

  • Page 200

    B–63003EN–1/021. AXIS CONTROL178#7#6#5#4#3#2#1#08242COF[Data type] BitCOF For tool post 1 and tool post 2 (under two–path control):0 : A separate B–axis offset value is set.1 : A common B–axis offset value is set.8250Axis number used for B–axis control[Data type] Byte[Valid data range...

  • Page 201

    B–63003EN–1/021. AXIS CONTROL1798251M code (G101) for specifying the start of first program operation8252M code (G102) for specifying the start of second program operation8253M code (G103) for specifying the start of third program operation[Data type] 2–word[Valid data range] 6 to 99999999T...

  • Page 202

    B–63003EN–1/021. AXIS CONTROL180NumberÁÁÁÁÁÁMessageÁÁÁÁÁÁÁÁÁÁÁÁÁContentsÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ5030ÁÁÁÁÁÁÁILLEGAL COMMAND (G100)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁThe end command (G110) was specified before the registration startcommand (G101, G102,...

  • Page 203

    B–63003EN–1/021. AXIS CONTROL181Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Lathe) (B–63004EN)ÁÁÁÁÁÁÁÁÁÁÁÁIII.11.2.7ÁÁÁÁÁÁÁDisplaying the B–axis Opera-tion StateÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁIII.11.4.15ÁÁÁÁÁÁÁSetting and Displayin...

  • Page 204

    B–63003EN–1/021. AXIS CONTROL182When the angular axis makes an angle other than 90° with theperpendicular axis, the angular axis control function controls the distancetraveled along each axis according to the inclination angle. For theordinary angular axis control function, the X–axis is a...

  • Page 205

    B–63003EN–1/021. AXIS CONTROL183The angular and perpendicular axes to which angular axis control is to beapplied must be specified beforehand, using parameters (No. 8211 and8212).Parameter AAC (No. 8200#0) enables or disables the angular axis controlfunction. If the function is enabled, the d...

  • Page 206

    B–63003EN–1/021. AXIS CONTROL184[Data type] BitAAC 0 : Does not perform angular axis control.1 : Performs angular axis control.AZR 0 : The machine tool is moved along the Cartesian axis during manualreference position return along the slanted axis under angular axiscontrol.1 : The machine too...

  • Page 207

    B–63003EN–1/021. AXIS CONTROL185NOTE1 If an inclination angle close to 0° or ±90° is set, an error canoccur. A range from ±20° to ±60° should be used.2 Before a perpendicular axis reference point return check(G27) can be made, angular axis reference point returnoperation must be comple...

  • Page 208

    B–63003EN–1/021. AXIS CONTROL186When contour grinding is performed, the chopping function can be usedto grind the side face of a workpiece. By means of this function, whilethe grinding axis (the axis with the grinding wheel) is being movedvertically, a contour program can be executed to inst...

  • Page 209

    B–63003EN–1/021. AXIS CONTROL187Before chopping can be started, the chopping axis, reference position,upper dead point, lower dead point, and chopping feedrate must be setusing the parameter screen (or the chopping screen).Chopping is started once chopping start signal CHPST has been set to 1...

  • Page 210

    B–63003EN–1/021. AXIS CONTROL188Set the following chopping data:D Chopping axis:Parameter No. 8370D Reference point (point R):Parameter No. 8371D Upper dead point:Parameter No. 8372D Lower dead point:parameter No. 8373D Chopping feedrate:Parameter No. 8374D Maximum chopping feedrate: Paramete...

  • Page 211

    B–63003EN–1/021. AXIS CONTROL189(2) When the lower dead point is changed during movement from theupper dead point to the lower dead pointPrevious upper dead pointÁNew lower dead pointÁPrevious lower dead pointÁÁÁÁÁÁÁÁÁThe tool first moves to the previous lower dead point, then to t...

  • Page 212

    B–63003EN–1/021. AXIS CONTROL190When high–speed chopping is performed with the grinding axis, a servodelay and acceleration/deceleration delay occur. These delays prevent thetool from actually reaching the specified position. The control unitmeasures the difference between the specified p...

  • Page 213

    B–63003EN–1/021. AXIS CONTROL191Exponential acceleration/deceleration is used for chopping axis.If the mode is changed during chopping, chopping does not stop. Inmanual mode, the chopping axis cannot be moved manually. It can,however, be moved manually by means of the handle interrupt.When ...

  • Page 214

    B–63003EN–1/021. AXIS CONTROL192This function does not support the look–ahead control function.When a program contains G codes for starting chopping (G81.1) andstopping chopping (G80), an attempt to restart that program results in aP/S 5050 alarm being output.When a program that does not in...

  • Page 215

    B–63003EN–1/021. AXIS CONTROL193[Classification] Input signal[Function] Starts and stops chopping.[Operation] Setting this signal to 1 starts chopping.Again setting this signal to 0 during chopping causes chopping to bestopped.NOTE1 If an attempt to start chopping using chopping start signalC...

  • Page 216

    B–63003EN–1/021. AXIS CONTROL194[Classification] Output signal[Function] Posts notification of chopping in progress.[Operation] This signal is set to 1 in the following case:· Upon chopping start signal CHPST being set to 1 to start choppingThis signal is set to 0 in the following cases:· U...

  • Page 217

    B–63003EN–1/021. AXIS CONTROL1958370Chopping axis[Data type] Byte[Valid data range] 1 to the number of controlled axesThis parameter specifies which servo axis the chopping axis correspondsto.8371Chopping reference point (R point)8372Chopping upper dead point8373Chopping lower dead point[Data...

  • Page 218

    B–63003EN–1/021. AXIS CONTROL1968376Chopping compensation scaling factor[Data type] Byte[Unit of data] %[Valid data range] 0 to 100This parameter specifies a scaling factor used to multiply thecompensation value for a servo delay or acceleration/deceleration delayin an chopping operation. Wh...

  • Page 219

    B–63003EN–1/021. AXIS CONTROL197Gears can be cut by turning the workpiece (C–axis) in sync with therotation of the spindle (hob axis) connected to a hob.Also, a helical gear can be cut by turning the workpiece (C–axis) in syncwith the motion of the Z–axis (axial feed axis).SpindleC–ax...

  • Page 220

    B–63003EN–1/021. AXIS CONTROL198The C–axis (workpiece) is usually the fourth axis. However, any axis canbe set as the C–axis by setting the corresponding parameter appropriately(parameter No. 7710).The synchronization status is maintained provided:D The interlock signal for the C–axis ...

  • Page 221

    B–63003EN–1/021. AXIS CONTROL1991 When bit 2 (HDR) of parameter No. 7700 = 1(a)C : +Z : +P : +Compensationdirection: +ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ+C+Z– Z(b)+C+Z–...

  • Page 222

    B–63003EN–1/021. AXIS CONTROL200The servo delay is proportional to the speed of the hob axis. Therefore,in a cycle where rough machining and finish machining are performed atdifferent hob axis speeds, compensation for the servo delay is required.The servo delay is calculated as follows:E = {...

  • Page 223

    B–63003EN–1/021. AXIS CONTROL201D Method in which the delay before change is recorded (G82, G83, G84)G82 : Cancels C–axis servo delay compensation.G83 : Applies compensation for the difference between the C–axisservo delay, observed when G83 is specified, and the delayrecorded by G84.G84 ...

  • Page 224

    B–63003EN–1/021. AXIS CONTROL202When the rotation of the position coder is stopped, setting theone–rotation signal set signal MSPC to 1 causes the position of theone–rotation signal to shift in the CNC as if the one–rotation signal hadbeen output with the position coder at the current p...

  • Page 225

    B–63003EN–1/021. AXIS CONTROL203[Classification] Output signal[Function] Indicates when retraction is complete.[Operation] The signal becomes 1 when:D Retraction ends.The signal becomes 0 when:D Any movement along the axis occurs once retraction along that axishas been completed.[Classificati...

  • Page 226

    B–63003EN–1/021. AXIS CONTROL204[Classification] Output signal[Function] Indicates that the hob axis is in sync with the C–axis.[Operation] The signal is 1 when:D The hob axis is in sync with the C–axis (during G81 mode).The signal is 0 when:D The hob axis is not in sync with the C–axis...

  • Page 227

    B–63003EN–1/021. AXIS CONTROL205#77700#6DPS#5RTO#4#3MLT#2HDR#1CMS#0HBR[Data type] BitHBR Specifies whether to cancel synchronization between the C–axis and hobaxis (G81) when a reset occurs.0 : Canceled.1 : Not canceled.CMS Specifies whether to cancel the manually set one–rotation signal ...

  • Page 228

    B–63003EN–1/021. AXIS CONTROL206JHD Specifies whether to enable C–axis jog and handle feed duringsynchronization between the C–axis and hob axis (G81 mode).0 : Disabled.1 : Enabled.DLY Specifies whether to enable C–axis servo delay compensation based onG84.0 : Disabled.1 : Enabled.HBD S...

  • Page 229

    B–63003EN–1/021. AXIS CONTROL2077712Acceleration/deceleration time constant applied to the C–axis when it is in syncwith the hob axis[Data type] Word[Unit of data] ms[Valid data range] 0 to 4000This parameter specifies an acceleration/deceleration (exponentialacceleration/deceleration) time...

  • Page 230

    B–63003EN–1/021. AXIS CONTROL208#77730#6#5#4#3#2#1#0RTRx[Data type] Bit axisRTRx Specifies whether to apply the retract function for each axis.0 : Not applied.1 : Applied.7740Retract speed for each axis[Data type] Two–word axisIncrement systemÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁUnit of dataÁÁÁ...

  • Page 231

    B–63003EN–1/021. AXIS CONTROL209NumberÁÁÁÁÁÁÁMessageÁÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ181ÁÁÁÁÁÁÁÁÁFORMAT ERROR IN G81BLOCKÁÁÁÁÁÁÁÁÁÁÁÁÁThe G81 block is not of the correct for-mat.1T (number of teeth) has not beenspecified.2Data spe...

  • Page 232

    B–63003EN–1/021. AXIS CONTROL210To machine (grind/cut) a gear, the rotation of the workpiece axisconnected to a servo motor is synchronized with the rotation of the toolaxis (grinding wheel/hob) connected to the spindle motor. Tosynchronize the tool axis with the workpiece axis, an electric ...

  • Page 233

    B–63003EN–1/021. AXIS CONTROL2111 Start of synchronizationWhen synchronization mode is set with G81, the synchronizationswitch of the EGB function is closed, and synchronization between thetool axis and workpiece axis starts. At this time, synchronizationmode signal SYNMOD is turned on. Dur...

  • Page 234

    B–63003EN–1/021. AXIS CONTROL212Synchronization start com-mand (G81)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSynchronization modeEGB mode confirmationsignal SYNMOD<F065#6>Tool axis rotation com-mand (S–M03)Tool axis stop command(M05)Tool axis rotation speedWorkpiece axis rotationcommandSynchroni...

  • Page 235

    B–63003EN–1/021. AXIS CONTROL213whereCompensation angle: Signed absolute value (deg)Z : Amount of travel on the Z–axis after the specification of G81(mm or inch)P : Signed gear helix angle (deg)T : Number of teethQ: Module (mm) or diametral pitch (inch–1)The values of P, T, and Q are to b...

  • Page 236

    B–63003EN–1/021. AXIS CONTROL214ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ(e)–C+Z– Z(f)–C+Z– Z(g)–C+Z– Z(h)–C+Z– ZC : –Z : +P : +Compensationdirection: +C : –Z : +P : –Compensationdirection: –C : –Z : –P : +Compensati...

  • Page 237

    B–63003EN–1/021. AXIS CONTROL215For retract movement, the feed hold capability is disabled.This function does not include a retract function used when an alarm isissued.In synchronization mode, a cutting feedrate can be specified for theworkpiece axis (4th axis). Rapid traverse cannot be spe...

  • Page 238

    B–63003EN–1/021. AXIS CONTROL216· Performs retraction on the axis specified with bit 0 (RTRx) of parameterNo. 7730. The retract speed and amount of retraction are specified withparameter Nos. 7740 and 7741.The retract signal is effective both in automatic operation mode andmanual operation m...

  • Page 239

    B–63003EN–1/021. AXIS CONTROL217When setting the parameters for the simple electric gear box, note thefollowing:(1) Set SYNMOD (bit 0 of parameter No. 2011) to 1 for the workpiece(4th) axis and EGB axis.(2) If FFALWY (bit 1 of parameter No. 2011) is set to 1, the values set inparameters No. 2...

  • Page 240

    B–63003EN–1/021. AXIS CONTROL218NOTESet this parameter when applying feed–forward control torapid traverse also.(3) Other parametersParameter No. 2003 bit 3 = 1 (P–I control)Parameter No. 2005 bit 1 = 1 (feed–forward control enabled)Parameter No. 2068 = 10000 (feed–forward factor)(4) ...

  • Page 241

    B–63003EN–1/021. AXIS CONTROL219#7#6#5#4#3#2#1#07730RTRx[Data type] Bit axisRTRx Specifies whether the retraction function is effective for each axis.0 : Retraction is disabled.1 : Retraction is enabled.7740Feedrate during retraction for each axis[Data type] 2–word axis[Unit of data and val...

  • Page 242

    B–63003EN–1/021. AXIS CONTROL2207772Number of position detector pulses per rotation about tool axis[Data type] 2–word[Data unit] Detection unit[Valid data range] 1 to 99999999This parameter specifies the number of pulses per rotation about the toolaxis (on the spindle side), for the positio...

  • Page 243

    B–63003EN–1/021. AXIS CONTROL221Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁII.20.8ÁÁÁÁÁÁÁÁÁÁSimple electric gear box (G80, G81)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ...

  • Page 244

    2. PREPARATIONS FOR OPERATIONB–63003EN–1/022222 PREPARATIONS FOR OPERATIONÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

  • Page 245

    B–63003EN–1/022. PREPARATIONS FOR OPERATION223If you press Emergency Stop button on the machine operator’s panel, themachine movement stops in a moment.ÁÁÁÁÁÁÁÁÁÁÁÁEMERGENCY STOPRedFig. 2.1 (a)EMERGENCY STOPThis button is locked when it is pressed. Although it varies with thema...

  • Page 246

    B–63003EN–1/022. PREPARATIONS FOR OPERATION224+X=X+Y=Y+Z=Z+4=4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁEMGÁÁÁÁÁÁSKÁÁÁEmergency stop limit switchRelay powersupplyEmergency stop temporary releaseEmergency stopSpark killerFig. 2.1 (b)Connection of emergency stop limit switchThe distance from...

  • Page 247

    B–63003EN–1/022. PREPARATIONS FOR OPERATION225#7X008#6#5#4*ESP#3#2#1#0#7G008#6#5#4*ESP#3#2#1#0FANUC AC SERVO MOTOR α series DESCRIPTIONSÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁB–65142EÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSignal addressReference item

  • Page 248

    B–63003EN–1/022. PREPARATIONS FOR OPERATION226When the CNC is turned on and becomes ready for operation, the CNCready signal is set to 1.[Classification] Output signal[Function] The CNC ready signal reports that the CNC is ready.[Output condition] When the CNC is turned on and becomes ready f...

  • Page 249

    B–63003EN–1/022. PREPARATIONS FOR OPERATION227[Classification] Output signal[Function] Signal SA turns to “1” when the servo system is ready to operate. For anaxis that is to be braked, release the brake when this signal is sent andapply the brake when this signal is not sent. Time char...

  • Page 250

    B–63003EN–1/022. PREPARATIONS FOR OPERATION228When the tool tries to move beyond the stroke end set by the machine toollimit switch, the tool decelerates and stops because of working the limitswitch and an OVER TRAVEL is displayed.[Classification] Input signal[Function] Indicates that the con...

  • Page 251

    B–63003EN–1/022. PREPARATIONS FOR OPERATION229The following shows the deceleration distance at overtravel.(i) Rapid traverseTRt2t1VRÁÁÁÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁtVServo system delayCommand pulsedeceleration*+La limit swi...

  • Page 252

    B–63003EN–1/022. PREPARATIONS FOR OPERATION230Press the reset button to reset the alarm after moving the tool to the safetydirection by manual operation.#7*+L8G114#6*+L7#5*+L6#4*+L5#3*+L4#2*+L3#1*+L2#0*+L1*–L8G116*–L7*–L6*–L5*–L4*–L3*–L2*–L1#73004#6#5OTH#4#3#2#1#0[Data type] ...

  • Page 253

    B–63003EN–1/022. PREPARATIONS FOR OPERATION231When the tool tries to exceed a stored stroke check, an alarm is displayedand the tool is decelerated and stopped.When the tool enters a forbidden area and an alarm is generated, the toolcan be moved in the reverse direction from which the tool ca...

  • Page 254

    B–63003EN–1/022. PREPARATIONS FOR OPERATION232ÁÁÁÁ#7RLSOTG007#6EXLM#5#4#3#2#1#0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ+LM8G110+LM7+LM6+LM5+LM4+LM3+LM2+LM1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ–LM8G112–LM7–LM6–LM5–LM4–LM3–LM2–LM1#7...

  • Page 255

    B–63003EN–1/022. PREPARATIONS FOR OPERATION233WARNING1 For axes with diameter specification, a diameter value mustbe set.2 When the parameters are set as follows, the strokebecomes infinite:parameter 1320 < parameter 1321For movement along the axis for which infinite stroke is set, onlyinc...

  • Page 256

    B–63003EN–1/022. PREPARATIONS FOR OPERATION234NOTE1 Parameter LZR (bit 6 of No. 1300) selects whether eachcheck becomes effective after the power is turned on andmanual reference position return or automatic referenceposition return by G28 has been performed or immediatelyafter the power is t...

  • Page 257

    B–63003EN–1/022. PREPARATIONS FOR OPERATION235Three areas which the tool cannot enter can be specified with stored stroke check 1, stored stroke check 2,and stored stroke check 3.ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ...

  • Page 258

    B–63003EN–1/022. PREPARATIONS FOR OPERATION236Parameters (Nos. 1322, 1323) or commands set these boundaries. Insideor outside the area of the check can be set as the forbidden area. ParameterOUT (No. 1300#0) selects either inside or outside as the forbidden area.In case of program command a...

  • Page 259

    B–63003EN–1/022. PREPARATIONS FOR OPERATION237ÁÁÁÁÁÁÁÁÁÁB(X2, Y2, Z2)ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÁÁÁÁÁÁA(X1, Y1, Z1)ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇX1>X2, Y1>Y2, Z1>Z2X1–X2> ζ (In least command increment)Y1–Y...

  • Page 260

    B–63003EN–1/022. PREPARATIONS FOR OPERATION238ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÁÁÁÁÁÁABabThe position of thetool after referenceposition returnForbidden area boundaryFig. 2.3.3 (h)Setting the forbidden area (M series)Area can be set in piles....

  • Page 261

    B–63003EN–1/022. PREPARATIONS FOR OPERATION239When G23 is switched to G22 in the forbidden area, the following results.(1)When the forbidden area is inside, an alarm is informed in the next move.(2)When the forbidden area is outside, an alarm is informed immediately.For the 2–path control, ...

  • Page 262

    B–63003EN–1/022. PREPARATIONS FOR OPERATION240BFA When a command that exceeds a stored stroke check 1, 3 is issued0: An alarm is generated after the stroke check 1, 3 is exceeded.1: An alarm is generated before the stroke check 1, 3 is exceeded.#71310#6#5#4#3#2#1OT3x#0OT2x[Data type] Bit axi...

  • Page 263

    B–63003EN–1/022. PREPARATIONS FOR OPERATION241NumberÁÁÁÁÁÁÁMessageÁÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ502ÁÁÁÁÁÁÁOVER TRAVEL : +nÁÁÁÁÁÁÁÁÁÁÁExceeded the n–th axis (axis 1–8) +side stored stroke check 2.(Parameter No.1322 )ÁÁÁÁÁÁ...

  • Page 264

    B–63003EN–1/022. PREPARATIONS FOR OPERATION242Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁÁIII.6.3ÁÁÁÁÁÁÁStroke checkÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Lathe) (B–63004EN)ÁÁ...

  • Page 265

    B–63003EN–1/022. PREPARATIONS FOR OPERATION243The chuck/tailstock barrier function prevents damage to the machine bychecking whether the tool tip interferes either the chuck or tailstock.Specify an area into which the tool may not enter (entry–inhibition area).This is done using the special...

  • Page 266

    B–63003EN–1/022. PREPARATIONS FOR OPERATION2441330Profile of a chuck[Data type] Byte[Valid data range] 0 or 10 : Chuck which holds a workpiece on the inner surface1 : Chuck which holds a workpiece on the outer surface1331Dimensions of the claw of a chuck (L)1332Dimensions of the claw of a chu...

  • Page 267

    B–63003EN–1/022. PREPARATIONS FOR OPERATION245ÁÁÁÁÁÁÁÁÁÁÁÁÁÁLÁÁÁÁÁÁÁÁÁÁL1ÁÁÁÁÁÁÁÁW1ÁÁÁÁÁXÁÁÁÁÁÁCXZAÁÁÁÁCZÁÁÁÁÁÁÁLAÁÁÁÁÁÁW1ÁÁÁÁXÁÁÁÁCXÁÁÁCZZÁÁÁÁÁÁÁÁÁÁWÁÁWÁÁÁÁL1Zero point ofthe workpiececoordinatesystemÁÁC...

  • Page 268

    B–63003EN–1/022. PREPARATIONS FOR OPERATION2461341Length of a tailstock (L)1342Diameter of a tail stock (D)Length of a tailstock (L1)13431344Diameter of a tail stock (D1)Length of a tailstock (L2)13451346Diameter of a tail stock (D2)Diameter of the hole of a tailstock (D3)1347[Data type] Two...

  • Page 269

    B–63003EN–1/022. PREPARATIONS FOR OPERATION247SymbolÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁTZÁÁÁÁÁÁÁZ–axis coordinate of a tailstockÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁLÁÁÁÁÁÁÁLength of a tailstockÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ...

  • Page 270

    B–63003EN–1/022. PREPARATIONS FOR OPERATION248WARNING1 If the setting for the forbidding area is invalid as follows, thearea may not be forbidden:1) In the setting of the chuck shape, the jaw length(parameter No. 1331) is less than the grasp length(parameter No. 1333) or the jaw width (parame...

  • Page 271

    B–63003EN–1/022. PREPARATIONS FOR OPERATION249When two tool posts machine the same workpiece simultaneously, thetool posts can approach each other very closely. If the two tool postsinterfere with each other due to a program error or any other setting error,a serious damage such as a tool or...

  • Page 272

    B–63003EN–1/022. PREPARATIONS FOR OPERATION250[Classification] Output signal[Function] Indicates that the tool post interference alarm is activated.[Output condition] This signal goes “1” when:(i) The control unit judges that the two tool posts will interfere with eachother during the exe...

  • Page 273

    B–63003EN–1/022. PREPARATIONS FOR OPERATION251#7TIALMF064#6TICHK#5#4#3#2#1#0#78140#6#5ZCL#4IFE#3IFM#2ITO#1TY1#0TY0[Data type] BitTY0, TY1 This parameter specifies the relationship between the coordinate systemsof the two tool posts.ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁXXXXZZZZ(...

  • Page 274

    B–63003EN–1/022. PREPARATIONS FOR OPERATION252IFE Specifies whether interference between tool posts is checked.0: Checked1: Not checkedZCL Specifies whether interference along the Z axis is checked while checkinginterference between tool posts.0: Checked1: Not checked (Only interference along...

  • Page 275

    B–63003EN–1/022. PREPARATIONS FOR OPERATION253NumberÁÁÁÁÁÁÁMessageÁÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ169ÁÁÁÁÁÁÁILLEGAL TOOL GEOME-TRY DATAÁÁÁÁÁÁÁÁÁÁÁIncorrect tool figure data in interfer-ence check.ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ508...

  • Page 276

    B–63003EN–1/022. PREPARATIONS FOR OPERATION254In the automatic operation before the move command by a given block,the position of the end point is determined by the current position of themachine and by a specified amount of travel. And it is determinedwhether or not the tool enters the inhi...

  • Page 277

    B–63003EN–1/022. PREPARATIONS FOR OPERATION255Example 2)Start pointEnd pointThe tool is stopped at point a accordingto stored stroke check 2 or 3.Immediately upon movement commencingfrom the start point, the tool is stopped toenable a stroke limit check to be performedbefore movement.ÁÁÁÁ...

  • Page 278

    B–63003EN–1/022. PREPARATIONS FOR OPERATION256In cylindrical interpolation mode, no check is made.In polar coordinate interpolation mode, no check is made.When the angulalr axis control option is selected, no check is made.In simple synchronous control, only the master axis is checked; no sla...

  • Page 279

    B–63003EN–1/022. PREPARATIONS FOR OPERATION257NumberÁÁÁÁÁÁMessageÁÁÁÁÁÁÁÁÁContentsÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ510ÁÁÁÁÁÁÁÁÁOVER TRAVEL : +nÁÁÁÁÁÁÁÁÁÁÁÁThe stroke limit check made prior to perform-ing movement reveals that the end point of ablock is...

  • Page 280

    B–63003EN–1/022. PREPARATIONS FOR OPERATION258When an alarm is triggered in the CNC, the alarm is indicated on thescreen, and the alarm signal is set to 1.If the voltage level of the memory backup battery falls to below a specifiedlevel while the CNC is turned off, the battery alarm signal is...

  • Page 281

    B–63003EN–1/022. PREPARATIONS FOR OPERATION259#7NPA3111#6#5#4#3#2#1#0[Data type] BitNPA Action taken when an alarm is generated or when an operator message isentered0 : The display shifts to the alarm or message screen.1 : The display does not shift to the alarm or message screen.Parameter

  • Page 282

    B–63003EN–1/022. PREPARATIONS FOR OPERATION260This signal disables machine movement along axes. When this signal isinput during movement along axes, the tool movement is decelerated,then stopped.[Classification] Input signal[Function] This signal disables machine movement along axes in autom...

  • Page 283

    B–63003EN–1/022. PREPARATIONS FOR OPERATION261[Classification] Input signal[Function] This signal is used to inhibit the machine from moving, and is effectiveregardless of the selected mode.[Operation] When the *IT signal is “0”, the axis movement is decelerated and stopped.In automatic o...

  • Page 284

    B–63003EN–1/022. PREPARATIONS FOR OPERATION262[Classification] Input signal[Function] These signals disable feed along axes on an axis–by–axis basis.A separate interlock signal is provided for each controlled axis. Thenumber at the end of each signal name denotes the number of thecorresp...

  • Page 285

    B–63003EN–1/022. PREPARATIONS FOR OPERATION263#7G007#6#5#4#3#2#1STLK#0G008*IT*IT8G130*IT7*IT6*IT5*IT4*IT3*IT2*IT1ÁÁÁÁÁÁÁÁÁÁG132+MIT4+MIT3+MIT2+MIT1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁG134–MIT4–MIT3–MIT2–MIT1ÁÁÁÁÁÁÁÁÁÁ#7X004#6#5#4#3–MIT2#2+MIT2#1–MIT1#0+MIT1...

  • Page 286

    B–63003EN–1/022. PREPARATIONS FOR OPERATION264The mode select signal is a code signal consisting of the three bits MD1,MD2, and MD4. The seven modes -- memory edit (EDIT), memoryoperation (MEM), manual data input (MDI), manual handle/incrementalfeed (HANDLE/INC), manual continuous feed (JOG)...

  • Page 287

    B–63003EN–1/022. PREPARATIONS FOR OPERATION265For this mode switching, only MD2 should change from 0 to 1. If atransient signal status change occurs in a signal other than MD2 duringmode switching, however, another mode (manual continuous feed mode,for example) is set between automatic opera...

  • Page 288

    B–63003EN–1/022. PREPARATIONS FOR OPERATION266[Classification] Output signal[Function] The currently selected operation mode is output.[Operation] The following lists the relationship between the mode selection signalsand check signals:ModeÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁInput signalÁÁÁÁÁ...

  • Page 289

    B–63003EN–1/022. PREPARATIONS FOR OPERATION267NOTEPrecautions on modes and mode switching1 In the MDI mode, the STL signal turns to “0” and the CNCstops at the end of execution of the commands input fromthe CRT/MDI panel, but the SPL signal does not turn to “1”.Therefore, another comm...

  • Page 290

    B–63003EN–1/022. PREPARATIONS FOR OPERATION268NOTE4 Manual operation in TEACH IN JOG modea) When bit 1 (THD) of parameter No. 7100 is set to 0Only jog feed is possible.b) When bit 1 (THD) of parameter No. 7100 is set to 1Both jog feed and manual handle feed are possible,provided the manual ha...

  • Page 291

    B–63003EN–1/022. PREPARATIONS FOR OPERATION269NOTE6 When the HANDLE/INC or TEACH IN HANDLE mode isselected while the CNC is operating in the MEM or MDImode, the automatic or MDI operation stops, the STL signalturns to “0”, the SPL signal simultaneously turns to “1”, andthe CNC enters ...

  • Page 292

    B–63003EN–1/022. PREPARATIONS FOR OPERATION270NOTE7 When the JOG or TEACH IN JOG mode is selected duringRMT, MEM or MDI mode operation, operation stops, theSTL signal turns to “0”, the SPL signal simultaneously turnsto “1”, and the CNC enters the JOG or TEACH IN JOGmode. Manual feed ...

  • Page 293

    B–63003EN–1/022. PREPARATIONS FOR OPERATION271NOTE8 The mode switching operation is summarized in the timechart below (Fig. 2.6 (f)).ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁH / SÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSTLSTLSTL*SPSTSTSTÁSTÁSTSTÁÁSTSPLSTLÁSTLÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSPLÁ...

  • Page 294

    B–63003EN–1/022. PREPARATIONS FOR OPERATION272Path selection specifies whether operations performed using the MDIpanel are for path 1 or path 2. The operations, as used here, include displaying and setting data items(such as tool compensation values), inputting command programs in theMDI mod...

  • Page 295

    B–63003EN–1/022. PREPARATIONS FOR OPERATION273#78100#6#5#4#3#2#1IAL#0RST[Data type] BitRST Reset key on the MDI panel0 : Effective for both paths1 : Effective for the path selected by the path select signalIAL When an alarm is raised in one tool post in the automatic operation mode,0 : The ot...

  • Page 296

    B–63003EN–1/022. PREPARATIONS FOR OPERATION274The table below lists the status output signals for notifying the state of theCNC. See the sections listed in the table for details of each signal.Signal nameÁÁÁÁÁÁÁÁÁÁSymbolÁÁÁÁÁÁÁÁÁÁReference sectionÁÁÁÁÁÁÁÁÁÁÁÁA...

  • Page 297

    B–63003EN–1/022. PREPARATIONS FOR OPERATION275NOTE1 The rapid traverse in automatic operation includes all rapidtraverses in canned cycle positioning, automatic referencepoint return, etc., as well as the move command G00. Therapid traverse in manual operation also includes the rapidtraverse...

  • Page 298

    B–63003EN–1/022. PREPARATIONS FOR OPERATION276The German VDE safety standard requires that the motor be deactivatedwhen the safety guard is opened. By using the VRDY OFF alarm ignoresignal, however, the CNC can be restarted without resetting, even if thesafety guard has been opened.[Classifi...

  • Page 299

    B–63003EN–1/022. PREPARATIONS FOR OPERATION277#7G066#6#5#4#3#2#1#0IGNVRYIGVRY8G192IGVRY7IGVRY6IGVRY5IGVRY4IGVRY3IGVRY2IGVRY1#71804#6SAK#5#4#3#2#1#0[Data type] BitSAK When the VRDY OFF alarm ignore signal IGNVRY is 1, or when theVRDY OFF alarm ignore signals IGVRY1 to IGVRY8 are 1:0 : Servo re...

  • Page 300

    B–63003EN–1/022. PREPARATIONS FOR OPERATION278Machine collision, defective, and damaged cutters cause a large loadtorque on the servo and spindle motors, compared with normal rapidtraverse or cutting feed. This function detects a load torque on the motorsand sends it as an estimated load tor...

  • Page 301

    B–63003EN–1/022. PREPARATIONS FOR OPERATION279The following flowcharts explain how to specify parameters for theabnormal load detection function.(1) Servo axisAbnormal load detectionfunction is available.NoAbnormal load detectionfunction to be used?YesÁÁÁÁNo. 2016#0 = 0No. 2016#0 = 1, ...

  • Page 302

    B–63003EN–1/022. PREPARATIONS FOR OPERATION280[Classification] Output signal[Function] Informs the PMC that an abnormal load was detected on a servo axis.[Output condition] This signal becomes “1” if:S An abnormal load is detected for a servo axis, Cs axis, spindlepositioning axis, or spi...

  • Page 303

    B–63003EN–1/022. PREPARATIONS FOR OPERATION281#7F0090#6#5#4#3#2ABTSP2#1ABTSP1#0ABTQSV(1) Parameter common to servo axes and spindles1880Timer for abnormal load detection alarm[Data type] Word[Unit of data] msec[Valid data range] 0 to 32767(If 0 is set, 200 ms is assumed.)This parameter specif...

  • Page 304

    B–63003EN–1/022. PREPARATIONS FOR OPERATION2822051Velocity control observer[Data type] Word axis[Valid data range] 0 to 32767[Setting value] 3329When using the velocity loop observer (by setting bit 2 of parameter No.2003 to 1), set 510 in this parameter.2103Retraction distance upon the detec...

  • Page 305

    B–63003EN–1/022. PREPARATIONS FOR OPERATION283(3) Spindle parameters#74015#6#5#4#3#2#1SPLDMT#0[Data type] Bit axisSPLDMT Spindle load torque monitor function0 : The spindle load torque monitor function is disabled.1 : The spindle load torque monitor function is enabled.4247Magnetic flux compe...

  • Page 306

    B–63003EN–1/022. PREPARATIONS FOR OPERATION284(1) Servo axisNumberÁÁÁÁÁÁÁMessageÁÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ409ÁÁÁÁÁÁÁÁÁÁÁServo alarm: Abnormal loaddetected on axis nÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁAn abnormal load was detected o...

  • Page 307

    B–63003EN–1/022. PREPARATIONS FOR OPERATION285[Completion code]0: The load torque data was read normally.4: Incorrect data was specified as a data attribute, that is a value otherthan –1 or 1 to n (number of axes) was specified. Alternatively, avalue greater than the number of controllable...

  • Page 308

    B–63003EN–1/022. PREPARATIONS FOR OPERATION286(2) Spindle[Input data structure](M = 1 to n: Specifies separatelyfor each axis whetherdata for it is to beread; n is an axisnumber.Top address +0246810(Function code)211(Data number)1(Data attribute)M(M = 1 to n or –1)(Data area)(Completion cod...

  • Page 309

    B–63003EN–1/022. PREPARATIONS FOR OPERATION287[Output data structure]Top address + 0(Function code)211(Completion code)?(Refer to the above descriptionabout the completion code.)(Data length)L(L = 2*n, where n is the num-ber of specified axes)(Data number)1(Data attribute)M(M: Data at inp...

  • Page 310

    B–63003EN–1/022. PREPARATIONS FOR OPERATION288The servo axis and spindle motor speeds are monitored. If the speed ofan axis exceeds a preset maximum (specified by parameter setting), thecorresponding signal is output to a Y address (specified by parametersetting) of the PMC.(1) Setting a Y a...

  • Page 311

    B–63003EN–1/022. PREPARATIONS FOR OPERATION289[Classification] Input signal[Function] Enables the motor speed detection function.[Operation] When this signal is 1, the motor speed detection function is enabled.The servo/spindle motor speed detection function allows the CNC tooutput a detected...

  • Page 312

    B–63003EN–1/022. PREPARATIONS FOR OPERATION290(n is the value set in parameter No. 1891.)[Classification] Output signal[Function] Report the motor speed status of each of the axes controlled by spindlemotors.[Operation] Each signal is set to 1 when:· The spindle motor speed exceeds the maxim...

  • Page 313

    B–63003EN–1/022. PREPARATIONS FOR OPERATION291#7G016#6#5#4#3#2#1#0MSDFONDSV8Y (n+00DSV7DSV6DSV5DSV4DSV3DSV2DSV1#7#6#5#4#3#2#1#0Y (n+1)DSP3DSV2DSV1Reserved1890Servo motor speed for detectionNOTEWhen this parameter has been set, the power must beturned off before operation is continued.[Data ty...

  • Page 314

    B–63003EN–1/022. PREPARATIONS FOR OPERATION292specified in this parameter and (Y address +1) to indicate whether speedsexceed the values set in the parameters.WARNING1 Be sure to specify a Y address that is not used with a PMCsequence program (ladder).2 When controlling two path lathe, ensure...

  • Page 315

    B–63003EN–1/022. PREPARATIONS FOR OPERATION293NOTE1 Spindle motor speed detection is enabled only for serialspindles.2 The relationship between servo motor speed detectionsignals DSV1 to DSV8 and the servo motors depends onthe servo axis number (servo connector number) set inparameter No. 102...

  • Page 316

    3. MANUAL OPERATIONB–63003EN–1/022943 MANUAL OPERATIONÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

  • Page 317

    B–63003EN–1/023. MANUAL OPERATION295In the jog mode, turning a feed axis and direction selection signal to “1”on the machine operator’s panel continuously moves the tool along theselected axis in the selected direction.Manual operation is allowed for one axis at a time. 3 axes can be se...

  • Page 318

    B–63003EN–1/023. MANUAL OPERATION296The following signals determine the way in which jog feed or incrementalfeed is executed.SelectionÁÁÁÁÁÁÁÁÁÁÁJog feedÁÁÁÁÁÁÁÁÁÁÁIncremental feedÁÁÁÁÁÁÁÁÁÁÁÁÁÁMode selectionÁÁÁÁÁÁÁÁÁÁMD1, MD2, MD4, MJÁÁÁÁÁÁ...

  • Page 319

    B–63003EN–1/023. MANUAL OPERATION297[Operation] When the signal is high, the control unit operates as described below.D When jog feed or incremental feed is allowed, the control unit movesthe specified axis in the specified direction.D In jog feed, the control unit continues to feed the axis ...

  • Page 320

    B–63003EN–1/023. MANUAL OPERATION298Incremental feed mode (TEACH IN HANDLE mode)Reset+J11st axis moveÁÁÁÁÁÁÁÁÁÁ+J1 is inef-fective dur-ing this period.Axis is fed againafter signals haveturned to “0” once.Move is stopped byresetting[Classification] Input signal[Function] Selects...

  • Page 321

    B–63003EN–1/023. MANUAL OPERATION299[Classification] Input signal[Function] Selects a rapid traverse rate for jog feed or incremental feed.[Operation] When the signal turns to “1”, the control unit operates as described below:D The control unit executes the jog feed or incremental feed at...

  • Page 322

    B–63003EN–1/023. MANUAL OPERATION300#71002#6#5#4#3#2#1#0JAX[Data type] BitJAX Number of axes controlled simultaneously in jog feed, manual rapidtraverse and manual reference position return0 : 1 axis1 : 3 axes#71401#6#5#4#3#2#1#0RPD[Data type] BitRPD Manual rapid traverse during the period fr...

  • Page 323

    B–63003EN–1/023. MANUAL OPERATION3011424Manual rapid traverse rate for each axis[Data type] Two–word axisIncrement systemÁÁÁÁÁÁÁÁÁÁUnit of dataÁÁÁÁÁÁÁValid data rangeÁÁÁÁÁÁÁÁÁÁÁÁÁÁIncrement systemÁÁUnitofdataÁÁIS-A, IS-BÁÁÁÁÁÁÁÁIS-CÁÁÁÁÁÁÁÁ...

  • Page 324

    B–63003EN–1/023. MANUAL OPERATION302WARNINGFor incremental feeding along an axis under diameterprogramming, the tool moves in units of the diameter.NOTE1 Time constant and method of automatic acceleration/deceleration for manual rapid traverse are the same as G00in programmed command.2 If a m...

  • Page 325

    B–63003EN–1/023. MANUAL OPERATION303In the manual handle feed mode, the tool can be minutely moved byrotating the manual pulse generator. Select the axis along which the toolis to be moved with the handle feed axis selection signal.The minimum distance the tool is moved when the manual pulse...

  • Page 326

    B–63003EN–1/023. MANUAL OPERATION304[Classification] Input signal[Function] Selects the axis of manual handle feed. A set of four code signals, A, B,C, and D is provided for each manual pulse generator. (Up to threegenerators can be used.) (For two–path, these signals are provided foreac...

  • Page 327

    B–63003EN–1/023. MANUAL OPERATION305<Two–path control>Manual handle feed axis selectionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁFeed axisÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁHSnD#1 HSnC#1 HSnB#1 HSnA#1ÁÁÁÁÁÁÁÁÁÁÁÁÁFeed axisÁÁÁÁ0000000100100...

  • Page 328

    B–63003EN–1/023. MANUAL OPERATION306WARNING1 Because the least input increment is used as the units formanual handle and incremental feed, the same valuerepresents a different distance depending on whether themetric or inch input system is used.2 For an axis under diameter programming, the to...

  • Page 329

    B–63003EN–1/023. MANUAL OPERATION307The following table lists the relationships between each manual handlefeed travel distance select signal and the travel distance specified by thesignal.Manual handle feed traveldistance select signalÁÁÁÁÁÁÁÁÁÁÁÁTravel distanceÁÁÁÁÁÁÁÁÁ...

  • Page 330

    B–63003EN–1/023. MANUAL OPERATION308THD Manual pulse generator in TEACH IN JOG mode0: Invalid1: ValidHPF When a manual handle feed exceeding the rapid traverse rate is issued,0: The rate is clamped at the rapid traverse rate, and the handle pulsescorresponding to the excess are ignored. (The ...

  • Page 331

    B–63003EN–1/023. MANUAL OPERATION3097113Manual handle feed magnification m[Data type] Word[Unit of data] One time[Valid data range] 1 to 127This parameter sets the magnification when manual handle feedmovement selection signal MP2 is on.7114Manual handle feed magnification n[Data type] Word[U...

  • Page 332

    B–63003EN–1/023. MANUAL OPERATION310NOTEParameter Nos. 7131 to 7136 are valid only in the Series20i.WARNINGRotating the handle quickly with a large magnification suchas x100 moves the tool too fast or the tool may not stopimmediately after the handle is no longer rotated or thedistance the to...

  • Page 333

    B–63003EN–1/023. MANUAL OPERATION311Rotating the manual pulse generator during automatic operation canincrease the distance traveled by the amount corresponding to the handlefeed. The axis to which the handle interrupt is applied is selected usingthe manual handle interrupt axis select signa...

  • Page 334

    B–63003EN–1/023. MANUAL OPERATION312In the Series 20i, up to three (T series) or four (F series) manual handlepulse generators can be used. So, the following manual handle interruptselect signals are also valid for the Series 20i.HS3IA to HS3ID <G042#0 to #3> (T series)HS4IA to HS4ID ...

  • Page 335

    B–63003EN–1/023. MANUAL OPERATION313WARNINGThe travel distance by handle interruption is determinedaccording to the amount by which the manual pulsegenerator is turned and the handle feed magnification (x1,x10, xM, xN).Since this movement is not accelerated or decelerated, it isvery dangerous...

  • Page 336

    B–63003EN–1/023. MANUAL OPERATION314The tool axis direction handle feed function allows the tool to be movedthrough a specified distance by handle feed in the axis direction of thetool, tilted by rotating the rotation axes.Tool axis direction handle feed function B provides two functions: to...

  • Page 337

    B–63003EN–1/023. MANUAL OPERATION315(1) A–C axis type (2) B–C axis type(Tool axis)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁZCXAY(Tool axis)BCZXY(3) A–B axis (A–axis master) type (4) A–B axis (B–axis master) typeÁÁÁÁÁÁÁÁÁ(Tool axis...

  • Page 338

    B–63003EN–1/023. MANUAL OPERATION316For tool axis direction handle feed B, the coordinates (angulardisplacements) of the rotation axes that determine the direction of the toolaxis can be set. These coordinates are set using bits 3 and 4 (3D1X and3D2X) of parameter No. 7104, and parameter Nos...

  • Page 339

    B–63003EN–1/023. MANUAL OPERATION317CXC Tool axis direction handle feed or tool axis perpendicular direction handlefeed is performed with:0 : 5–axis machine.1 : 4–axis machine.3D1 When the tool axis direction handle feed or tool axis perpendiculardirection handle feed function is used, th...

  • Page 340

    B–63003EN–1/023. MANUAL OPERATION3187121Axis selection in tool axis direction handle feed mode[Data type] Byte[Valid data range] 1 to number of controlled axesThis parameter sets an axis number for the manual handle feed axisselection signal for the first manual pulse generator to enable tool...

  • Page 341

    B–63003EN–1/023. MANUAL OPERATION319Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁIII.3.6ÁÁÁÁÁÁÁÁÁÁTool axis direction handle feed /Tool axis direction handle feed BÁÁÁÁÁ...

  • Page 342

    B–63003EN–1/023. MANUAL OPERATION320(1) A–C axis type (2) B–C axis type(Tool axis)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁZCXAY(Tool axis)BCZXYÁÁÁÁÁOutput pulse (Hp) distribution by the manual pulse generator to theX–axis, Y–axis, and Z...

  • Page 343

    B–63003EN–1/023. MANUAL OPERATION321[Classification] Input signal[Function] This signal selects tool axis perpendicular direction handle feed mode.When the following conditions are all satisfied, tool axis direction handlefeed mode is set:1.This signal is 1.2.The value of the manual handle f...

  • Page 344

    B–63003EN–1/023. MANUAL OPERATION3223D1 When the tool axis direction handle feed or tool axis perpendiculardirection handle feed function is used, the coordinates of the first rotationaxis are:0: The machine coordinates when the tool axis direction handle feedmode or tool axis perpendicular d...

  • Page 345

    B–63003EN–1/023. MANUAL OPERATION3237141Direction of the X–axis in handle feed mode, in a direction perpendicular to the tool axis7142Direction of the Y–axis in handle feed mode, in a direction perpendicular to the tool axis[Data type] Byte[Valid data range] 1 to 8Specify the status of th...

  • Page 346

    B–63003EN–1/023. MANUAL OPERATION324NOTE1 The basic axes X, Y, and Z are determined by parameter No.1022 (plane selection). The rotation axes A, B, and C aredetermined by parameter No. 1020 (axis name).2 If one of the two axes specified by a type set depending onthe axis configuration does n...

  • Page 347

    B–63003EN–1/023. MANUAL OPERATION325In manual handle feed or jog feed, the following types of feed operationsare enabled in addition to the conventional feed operation along aspecified single axis (X–axis, Y–axis, Z–axis, and so forth) based onsimultaneous 1–axis control:D Feed along...

  • Page 348

    B–63003EN–1/023. MANUAL OPERATION326(a) Input data (PMC–SB/SC –> CNC)Lines and circles are defined by setting the data listed below.(5)R9741(1)R9611(6)R97510123Neither linear nor circular feed is carried out.Linear feed is carried out.Clockwise circular feed is carried out. CWCounterc...

  • Page 349

    B–63003EN–1/023. MANUAL OPERATION327(1) Setting for linear feedLet us assume that P is the length of a line segment starting at the originand perpendicular to a given line, and θ is an angle formed by theperpendicular line and the positive X–axis. The given line is definedas:X@ cosθ + ...

  • Page 350

    B–63003EN–1/023. MANUAL OPERATION3281) Select linear feed. (R961)Set R961 to 1.2), 3)Specify the approach direction. (R962 to R969)Specify the X and Y components (Ix, Iy) of a unit vector (+cosθ, +sinθ ) or (–cosθ , –sinθ ), which is parallel to perpendicular op,with four bytes, usi...

  • Page 351

    B–63003EN–1/023. MANUAL OPERATION3297) Notify of changes in the setting (R979).Reset R979 to 0.CAUTION1 Line and circle definitions (data items 1 to 6) can be set orchanged during manual operation mode (manual handle orjog feed mode). This data notifies the CNC when thedefinitions are change...

  • Page 352

    B–63003EN–1/023. MANUAL OPERATION3301) Specify circular feed and the direction of circle rotation. (R961) Set R961 to 2 or 3.If R961 is 2, the tool moves along the circle clockwise, when theguidance handle is rotated in the forward direction. If R961 is 3,the tool moves along the circle cou...

  • Page 353

    B–63003EN–1/023. MANUAL OPERATION331Where (inside or outside of the circle) the prohibited area is set isdetermined according to the setting of R974 (which is to bemachined, the inside or outside of the circle). If the inside of thecircle is to be machined, the prohibited area is outside the...

  • Page 354

    B–63003EN–1/023. MANUAL OPERATION3327) Notify of changes in the setting (R979).Reset R979 to 0.8) The values of R980 to R983 (distance to a given line or circle) areoutput as 0.In manual handle feed, the tool can be moved along a specified axis(X–axis, Y–axis, Z–axis, ..., or the 8th ax...

  • Page 355

    B–63003EN–1/023. MANUAL OPERATION333(3) Circular feed (simultaneous 2–axis control)By turning a manual handle, the tool can be moved from the currentposition along the concentric circle that has the same center as aspecified circle on a simultaneous 2–axis control basis. This manualhandl...

  • Page 356

    B–63003EN–1/023. MANUAL OPERATION334(2) Linear feed (simultaneous 2–axis control)By defining a straight line beforehand, the tool can be moved asfollows:D While a feed axis and its direction are selected using the feed axisdirection select switch, the tool moves along a straight line parall...

  • Page 357

    B–63003EN–1/023. MANUAL OPERATION335Manual feedrate override signals (*JV0 to *JV15) can be used to applyan override (0.01% to 655.34%) to the feedrate.Never use the mirror image function when performing manual operation.(Perform manual operation when the mirror image switch (MI1 ∼ MI3)is ...

  • Page 358

    B–63003EN–1/023. MANUAL OPERATION336[Classification] Input signal[Function] Selects a desired feed axis and direction in jog feed or incremental feed.The sign (+ or –) in the signal name indicates the feed direction. Thenumber following J indicates the number of the controlaxis.1First axis...

  • Page 359

    B–63003EN–1/023. MANUAL OPERATION337[Classification] Input signal[Function] Selects the axis of manual handle feed. A set of four code signals, A, B,C, and D is provided for each manual pulse generator. (Up to threegenerators can be used.) (For two–path, these signals are provided foreac...

  • Page 360

    B–63003EN–1/023. MANUAL OPERATION338Code signals A, B, C, and D correspond to the feed axes as listed in thefollowing table:Manual handle feed axis selectionÁÁÁÁÁÁÁÁÁÁÁÁÁÁFeed axisÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁHSnDHSnCHSnBHSnAÁÁÁÁÁÁÁÁÁÁÁÁÁFeed axisÁÁÁÁ000000...

  • Page 361

    B–63003EN–1/023. MANUAL OPERATION3391410Dry run rate/Jog feedrate (linear feed, circular feed)[Data type] WordIncrement systemÁÁÁÁÁÁÁÁÁÁUnit of dataÁÁÁÁÁÁÁValid data rangeÁÁÁÁÁÁÁÁÁÁÁÁÁÁIncrement systemÁÁUnitofdataÁÁIS-A, IS-BÁÁÁÁÁÁÁÁIS-CÁÁÁÁÁÁ...

  • Page 362

    B–63003EN–1/023. MANUAL OPERATION340MPX Specifies how the manual handle feed travel distance select signals are tobe used as follows:0 : The signals (MP1 and MP2; bits 4 and 5 of G019) for the first manualpulse generator are used for the first to fourth (F series) or third (Tseries) pulse gen...

  • Page 363

    B–63003EN–1/023. MANUAL OPERATION3417131Manual handle feed magnification M2/second manual pulse generator7132Manual handle feed magnification N2/second manual pulse generator7133Manual handle feed magnification M3/third manual pulse generator7134Manual handle feed magnification N3/third manua...

  • Page 364

    B–63003EN–1/023. MANUAL OPERATION342 For execution of rigid tapping, set rigid mode, then switch to handle modeand move the tapping axis with a manual handle.Manual rigid tapping is enabled by setting bit 0 (HRG) of parameter No.5203 to 1.1Stop the spindle and servo axes, then set MDI mode b...

  • Page 365

    B–63003EN–1/023. MANUAL OPERATION343By setting bit 0 (FXY) of parameter No. 5101 to 1, an arbitrary tappingaxis can be selected. In this case, specify a G code for plane selection andtapping axis address when rigid mode is set in MDI mode.In an MDI program for setting rigid mode, G84 can be ...

  • Page 366

    B–63003EN–1/023. MANUAL OPERATION344Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁÁIII.3.8ÁÁÁÁÁÁÁMANUAL RIGID TAPPINGÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL (This manual)ÁÁÁ...

  • Page 367

    B–63003EN–1/023. MANUAL OPERATION345The manual numeric command function allows data programmedthrough the MDI to be executed in jog mode. Whenever the system isready for jog feed, a manual numeric command can be executed. Thefollowing eight functions are supported:(1) Positioning (G00)(2) L...

  • Page 368

    B–63003EN–1/023. MANUAL OPERATION346NOTEWhen the manual rapid traverse selection signal RT is 0, thejog feedrate for each axis is clamped such that aparameter–set feedrate determined by bit 1 (LRP) ofparameter No. 1401 as shown below, is not exceeded.LRP = 0 : Manual rapid traverse rate for...

  • Page 369

    B–63003EN–1/023. MANUAL OPERATION347The tool returns directly to the 2nd, 3rd, or 4th reference position withoutpassing through any intermediate points, regardless of the specifiedamount of travel. To select a reference position, specify P2, P3, or P4 inaddress P. If address P is omitted, a...

  • Page 370

    B–63003EN–1/023. MANUAL OPERATION348After address B, specify a numeric value of no more than the number ofdigits specified by parameter No. 3033.NOTE1 B codes can be named U, V, W, A, or C by setting parameterNo. 3460. If the new name is the same as an axis nameaddress, B is used. When B is...

  • Page 371

    B–63003EN–1/023. MANUAL OPERATION349#77001#6#5#4#3#2JSL#1#0[Data type] BitJSL Specifies whether to output automatic operation signal STL duringautomatic operation based on a manual numeric command.0 : Not output.1 : Output.#77002#6#5#4#3JBF#2JTF#1JSF#0JMF[Data type] BitJMF Specifies whether t...

  • Page 372

    B–63003EN–1/023. MANUAL OPERATION350Generally, tools are fed at a program–specified feedrate or at a feedratethat matches a dry run feedrate in cutting feed blocks (such as linearinterpolation (G01) and circular interpolation (G02 and G03)) duringautomatic operation. However, this function...

  • Page 373

    B–63003EN–1/023. MANUAL OPERATION351[Classification] Input signal[Function] This signal selects handle–synchronous feed. To put another way, itcauses the cutting feedrate used during automatic operation to besynchronized with the rotation of the manual handle (manual pulsegenerator).[Opera...

  • Page 374

    B–63003EN–1/023. MANUAL OPERATION3521 Selecting a feed axis for manual handle feedThe following table lists the relationships of code signals (A, B, C, andD) with feed axes.Manual handle feed axis select signalÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁFeed axisÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁHSnDÁÁÁÁ...

  • Page 375

    B–63003EN–1/023. MANUAL OPERATION353[Classification] Input signal[Function] Each of these signals selects the tool’s travel distance per pulse from amanual pulse generator for handle–synchronous feed or manual handlefeed. The tool is advanced through the travel distance selected using am...

  • Page 376

    B–63003EN–1/023. MANUAL OPERATION354[Classification] Output signal[Function] This signal indicates that the feedrate command (F command) is 0.[Output condition] Outputting the feed zero signal (FEED0) requires that parameter FC0 (bit7 of parameter No. 1404) be set to 1. If FC0 = 0, FEED0 is ...

  • Page 377

    B–63003EN–1/023. MANUAL OPERATION355#77100#6#5MPX#4#3#2#1#0[Data type] BitMPX Specifies how the manual handle feed travel distance select signals are tobe used, as follows:0 : The signals (MP1 and MP2; bits 4 and 5 of G019) for the first manualpulse generator are used for the first to fourth ...

  • Page 378

    B–63003EN–1/023. MANUAL OPERATION356The following table lists the relationships between each manual handlefeed travel distance select signal valid for an individual manual pulsegenerator and the parameter No. for specifying its magnification.State of bit 5 ofparameterÁÁÁÁÁÁÁÁÁMan al ...

  • Page 379

    B–63003EN–1/024. REFERENCE POSITION ESTABLISHMENT3574 REFERENCE POSITION ESTABLISHMENTÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

  • Page 380

    4. REFERENCE POSITION ESTABLISHMENTB–63003EN–1/02358The tool is moved in the direction specified in parameter ZMI (bit 5 of No.1006) for each axis by turning the feed axis and direction select signal to“1” in the manual reference position return mode, and is returned to thereference posit...

  • Page 381

    B–63003EN–1/024. REFERENCE POSITION ESTABLISHMENT359(1) Select the JOG mode or TEACH IN JOG mode, and set the manualreference position return selection signal ZRN to “1”.(2) Feed a target axis toward the reference position by making anappropriate feed axis and direction selection signal (...

  • Page 382

    4. REFERENCE POSITION ESTABLISHMENTB–63003EN–1/02360When installing the deceleration limit switch for manual referenceposition return, ensure that following conditions are satisfied:*DEC1Grid FeedrateRapid traverse rate (VR)ÁÁÁÁÁDeceleration limitoperation positionÁÁFL rate (VL). . ....

  • Page 383

    B–63003EN–1/024. REFERENCE POSITION ESTABLISHMENT361By reversing the formula above, the following formula gives the feedrateF needed to set the servo position error to 128 when the servo loop gainG is 30 s–1 and the detection unit U is 1 mm:F=128 601000 30=230 [mm/min]Therefore, when the s...

  • Page 384

    4. REFERENCE POSITION ESTABLISHMENTB–63003EN–1/02362[Classification] Output signal[Function] This signal reports that manual reference position return has been selectedonce.[Output condition] This signal turns to “1” when:⋅ Manual reference position return has been selected.The signal t...

  • Page 385

    B–63003EN–1/024. REFERENCE POSITION ESTABLISHMENT363NOTEWhen reference position return is selected, an axis whosereference position return end signal is already “1” or an axiswhose reference position return end signal was set “1” uponcompletion of reference position return is locked, ...

  • Page 386

    4. REFERENCE POSITION ESTABLISHMENTB–63003EN–1/02364[Output condition] These signals turn to “1” when:D Manual reference position returns is completed, and the currentposition is in the in–position area.D Automatic reference position return (G28) is completed, and thecurrent position is...

  • Page 387

    B–63003EN–1/024. REFERENCE POSITION ESTABLISHMENT365#71002#6#5#4#3#2#1#0JAX[Data type] BitJAX Number of axes controlled simultaneously in JOG feed, manual rapidtraverse and manual reference position return0 : 1 axis1 : 3 axes#71005#6#5#4#3#2#1#0ZRNx[Data type] Bit axisZRNx When a command spec...

  • Page 388

    4. REFERENCE POSITION ESTABLISHMENTB–63003EN–1/023661240Coordinate value of the reference position on each axis in the machinecoordinate systemNOTEAfter setting this parameter, turn the power off then on againso that the setting will take effect.[Data type] Two–word axis[Unit of data]Increm...

  • Page 389

    B–63003EN–1/024. REFERENCE POSITION ESTABLISHMENT367NOTEThis parameter is valid when ZPI in parameter 1201#1 is setto 1.#71300#6LZR#5#4#3#2#1#0[Data type] BitLZR Checking of stored stroke limit 1 during the time from power–on to themanual reference position return0 : The stroke limit 1 is c...

  • Page 390

    4. REFERENCE POSITION ESTABLISHMENTB–63003EN–1/02368< Conditions >D When there is a remaining distance to travel.D When an auxiliary function (miscellaneous function, spindle–speedfunction, tool function) is being executed.D When a dwell or cycle such as a canned cycle is being execut...

  • Page 391

    B–63003EN–1/024. REFERENCE POSITION ESTABLISHMENT3691850Grid shift for each axis[Data type] Two–word axis[Unit of data] Detection unit[Valid data range] –99999999 to 99999999A grid shift is set for each axis.To shift the reference position, the grid can be shifted by the amount set inthis...

  • Page 392

    4. REFERENCE POSITION ESTABLISHMENTB–63003EN–1/02370Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁÁIII.3.1ÁÁÁÁÁÁÁMANUAL REFERENCE POSITION RETURNÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For...

  • Page 393

    B–63003EN–1/024. REFERENCE POSITION ESTABLISHMENT371This function moves the tool near around the reference position set foreach axis in the manual continuous feed mode. Then it sets the referenceposition in the reference position return mode without the decelerationsignal for reference positi...

  • Page 394

    4. REFERENCE POSITION ESTABLISHMENTB–63003EN–1/02372+J1 or –J1GridZP1ZRF1Feedrate.ÁÁManual referenceposition returnmodeÁÁFL rateÁÁÁÁÁ.....The following figure shows the positional relation between the referenceposition and the point to which the tool is positioned by manualcontinuo...

  • Page 395

    B–63003EN–1/024. REFERENCE POSITION ESTABLISHMENT373#71002#6#5#4#3#2#1DLZ#0JAX[Data type] BitJAX Number of axes controlled simultaneously in manual continuous feed,manual rapid traverse and manual reference position return0 : 1 axis1 : 3 axesDLZ Function setting the reference position without...

  • Page 396

    4. REFERENCE POSITION ESTABLISHMENTB–63003EN–1/02374ZMIx The direction of reference position return and the direction of initialbacklash at power–on0 : Positive direction1 : Negative direction#71201#6#5#4#3#2ZCL#1ZPI#0ZPR[Data type] BitZPR Automatic setting of a coordinate system when the m...

  • Page 397

    B–63003EN–1/024. REFERENCE POSITION ESTABLISHMENT375Increment systemÁÁÁÁÁÁÁÁÁIS–AÁÁÁÁÁÁÁÁIS–BÁÁÁÁÁÁÁÁIS–CÁÁÁÁÁÁÁÁUnitÁÁÁÁÁÁÁÁÁÁLinear axis(input in mm)ÁÁÁÁÁÁÁÁ0.01ÁÁÁÁÁÁÁ0.001ÁÁÁÁÁÁÁ0.0001ÁÁÁÁÁÁÁmmÁÁÁÁÁÁÁÁLi...

  • Page 398

    4. REFERENCE POSITION ESTABLISHMENTB–63003EN–1/02376#71800#6#5#4#3#2OZR#1#0[Data type] BitOZR When manual reference position return is attempted in the halt stateduring automatic operation (feed hold stop state) under any of theconditions listed below:0: Manual reference position return is no...

  • Page 399

    B–63003EN–1/024. REFERENCE POSITION ESTABLISHMENT377WARNINGWhen bit 0 of parameter No. 2000 is set to 1, a value tentimes greater than the value set in this parameter is used tomake the check.Example:When the value 10 is set in this parameter, and bit0 of parameter No. 2000 is set to 1, refer...

  • Page 400

    4. REFERENCE POSITION ESTABLISHMENTB–63003EN–1/02378When reference position return is performed using a grid method, thereference position can be shifted by a parameter–set distance withouthaving to move the deceleration dog.This function is enabled by setting bit 2 of parameter No. 1002 (S...

  • Page 401

    B–63003EN–1/024. REFERENCE POSITION ESTABLISHMENT379(3) Perform reference position return again. Then, the tool stops when itreaches the reference position.ÁÁÁÁÁÁÁÁÁ|Direction of reference position returnDeceleration dogÁÁ|↑Reference position(stop position)Grid point||↑| LSFT...

  • Page 402

    4. REFERENCE POSITION ESTABLISHMENTB–63003EN–1/023800302Distance from the position where the deceleration dog is turned off to the first grid point[Data type] Two–word axis[Unit of data] 0.001 mm (metric output), 0.0001 inch (inch output)[Valid data range] –99999999 to 99999999NOTE1 The r...

  • Page 403

    B–63003EN–1/024. REFERENCE POSITION ESTABLISHMENT381The G28 command positions the tool to the reference position, via thespecified intermediate point, along the specified axis, then sets thecompletion signal for reference position return (see Section 4.1) to 1.The reference position must be s...

  • Page 404

    4. REFERENCE POSITION ESTABLISHMENTB–63003EN–1/02382NumberÁÁÁÁÁÁÁMessageÁÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ405ÁÁÁÁÁÁÁÁÁÁÁÁÁÁSERVO ALARM: (WRONG ZRN)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁPosition control system fault. Due toan CNC or ...

  • Page 405

    B–63003EN–1/024. REFERENCE POSITION ESTABLISHMENT383Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁÁII.6ÁÁÁÁÁÁÁREFERENCE POSITIONÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Lathe) (B–6300...

  • Page 406

    4. REFERENCE POSITION ESTABLISHMENTB–63003EN–1/02384The G30 command positions the tool to the 2nd, 3rd, or 4th referenceposition, via the specified intermediate point, along the specified axis.Then, it sets the completion signal for 2nd, 3rd, or 4th reference positionreturn to 1.The 2nd, 3rd,...

  • Page 407

    B–63003EN–1/024. REFERENCE POSITION ESTABLISHMENT3851 : Return end signal for the first axis2 : Return end signal for the second axis3 : Return end signal for the third axis : :2 : Second reference position return3 : Third reference position return4 : Fourth reference position returnZP 2 1[Ou...

  • Page 408

    4. REFERENCE POSITION ESTABLISHMENTB–63003EN–1/02386NumberÁÁÁÁÁÁÁMessageÁÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ046ÁÁÁÁÁÁÁÁÁÁÁÁILLEGAL REFERENCE RE-TURN COMMANDÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOther than P2, P3 and P4 are commandedfor 2nd, ...

  • Page 409

    B–63003EN–1/024. REFERENCE POSITION ESTABLISHMENT387It is possible to return the tool to the floating reference position bycommanding the G30.1. The floating reference position is located on the machine and can be areference position of some sort of machine operation. It is not always afixe...

  • Page 410

    4. REFERENCE POSITION ESTABLISHMENTB–63003EN–1/02388[Classification] Output signal[Function] Notify the system that the tool is at the floating reference position on acontrolled axis.A floating reference position return end signal is provided for each axis.The number appended to each signal n...

  • Page 411

    B–63003EN–1/024. REFERENCE POSITION ESTABLISHMENT389#71201#6#5#4#3FPC#2#1#0[Data type] BitFPC When the floating reference position is specified using soft keys on thecurrent position display screen0 : The value of the displayed relative position is not preset. (In otherwords, the value does ...

  • Page 412

    4. REFERENCE POSITION ESTABLISHMENTB–63003EN–1/02390This function automates the procedure of butting the tool against amechanical stopper on an axis to set a reference position. The purpose ofthis function is to eliminate the variations in reference position setting thatarise depending on th...

  • Page 413

    B–63003EN–1/024. REFERENCE POSITION ESTABLISHMENT391When no reference position has been set (APZx, bit 4 of parameter No.1815, is 0), operations (A) to (E), below, are performed automatically toset a reference position.MechanicalstopperÁÁÁÁCurrent positionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ...

  • Page 414

    4. REFERENCE POSITION ESTABLISHMENTB–63003EN–1/02392MechanicalstopperÁÁThe direction, feedrate, and torqueare all specified with parameters.Á ÁÁÁÁ ÁÁÁÁÁÁ Á(E)After the tool strikes the mechanical stopper end on the axis, thetool is withdrawn in the direction opposite to the butt...

  • Page 415

    B–63003EN–1/024. REFERENCE POSITION ESTABLISHMENT393When the reference position has already been set (when APZx, bit 4 ofparameter No. 1815, is 1), performing butt–type reference position settingcauses the tool to be positioned to the reference position at the rapidtraverse rate without the...

  • Page 416

    4. REFERENCE POSITION ESTABLISHMENTB–63003EN–1/02394[Classification] Output signal[Function] These signals are used to post notification of the torque limit having beenreached for each corresponding axis during cycle operation for butt–typereference position setting.[Operation] Each signal ...

  • Page 417

    B–63003EN–1/024. REFERENCE POSITION ESTABLISHMENT395[Valid data range] –99999999 to 99999999When the butt–type reference position setting function is used, thisparameter sets a distance an axis, along which withdrawal is performedafter the mechanical stopper is hit (distance from the mech...

  • Page 418

    4. REFERENCE POSITION ESTABLISHMENTB–63003EN–1/02396When the butt–type reference position setting function is used, thisparameter sets the feedrate used to hit the stopper on an axis for a secondtime.7185Withdrawal feedrate (common to the first and second butting operations) in butt–type ...

  • Page 419

    B–63003EN–1/024. REFERENCE POSITION ESTABLISHMENT397The linear scale with absolute addressing reference marks has referencemarks (one–rotation signals) at intervals that change at a constant rate.By determining the reference mark interval, the corresponding absoluteposition can be deduced. ...

  • Page 420

    4. REFERENCE POSITION ESTABLISHMENTB–63003EN–1/02398JOGZRN+J1Reference markZRF1FeedrateFL feedrateFL feedrateFL feedrateFig. 4.8 (b) Time chart for reference position establishment#71815#6#5#4#3#2DCLx#1OPTx#0[Data type] Bit axisOPTx As a position detector:0 : A separate pulse coder is not us...

  • Page 421

    B–63003EN–1/024. REFERENCE POSITION ESTABLISHMENT3991882Intervals of mark 2 of the linear scale with absolute addressing reference marks.[Data type] 2–word axis[Unit of data] Detection units[Valid data range] 0 to 99999999Sets the intervals of mark 2 of the linear scale with absolute addres...

  • Page 422

    4. REFERENCE POSITION ESTABLISHMENTB–63003EN–1/02400[Example parameter setting]When the following scale is used with an IS–B, millimeter machineScale originÁÁMark1=Mark2Mark1Mark2ÁÁÁ20.000ÁÁÁÁ19.980ÁÁÁÁÁÁÁÁ0.020ÁÁÁ9.940ÁÁÁ10.060ÁÁÁÁ9.960ÁÁÁÁ10.040ÁÁ9.980ÁÁ...

  • Page 423

    B–63003EN–1/024. REFERENCE POSITION ESTABLISHMENT401CAUTION1 In the following cases, the machine moves to the reference position without establishing thereference position as described above:S Axial movement is performed in REF mode when the reference position has already beenestablished.S Au...

  • Page 424

    4. REFERENCE POSITION ESTABLISHMENTB–63003EN–1/02402NOTE1 If automatic reference position return (G28) is specifiedwhen the reference position has not been established, thereference position is first established as described above,after which the machine is positioned to the referenceposition...

  • Page 425

    B–63003EN–1/025. AUTOMATIC OPERATION4035 AUTOMATIC OPERATIONÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

  • Page 426

    5. AUTOMATIC OPERATIONB–63003EN–1/02404When automatic operation start signal ST is set to 1 then 0 in whichmemory (MEM) mode, DNC operation mode (RMT), or manual datainput (MDI) mode, the CNC enters the automatic operation start state thenstarts operating.Signal ST, however, is ignored in the...

  • Page 427

    B–63003EN–1/025. AUTOMATIC OPERATION405When the feed hold signal *SP is set to 0 during automatic operation, theCNC enters the feed hold state and stops operation. At the same time,cycle start lamp signal STL is set to 0 and feed hold lamp signal SPL isset to 1. Re–setting signal *SP to 1...

  • Page 428

    5. AUTOMATIC OPERATIONB–63003EN–1/02406[Classification] Input signal[Function] Starts automatic operation.[Operation] When signal ST is set to 1 then 0 in memory (MEM) mode, DNCoperation mode (RMT) or manual data input (MDI) mode, the CNC entersthe cycle start state and starts operation.⋅...

  • Page 429

    B–63003EN–1/025. AUTOMATIC OPERATION407[Classification] Output signal[Function] Notifies the PMC that feed hold state is entered.[Output condition] This signal is set to 1 or 0, according to the state of the CNC, as listed inTable 5.1.Table 5.1Status of operationSignal nameState of the operat...

  • Page 430

    5. AUTOMATIC OPERATIONB–63003EN–1/02408During automatic operation, the machine may sometimes show nomovement while no alarm is detected. In that case, the CNC may beperforming processing or waiting for the occurrence of an event. The stateof the CNC can be obtained using the CNC self–diag...

  • Page 431

    B–63003EN–1/025. AUTOMATIC OPERATION409The CNC is reset and enters the reset state in the following cases:1. When the emergency stop signal (*ESP) is set to 02. When the external reset signal (ERS) is set to 13. When the reset and rewind signal (RRW) is set to 14. When MDI RESET key is presse...

  • Page 432

    5. AUTOMATIC OPERATIONB–63003EN–1/02410The following parameters are also used to select how to handleprocessing for CNC data when the CNC is reset.S Bit 7 (MCL) of parameter No. 3203Whether programs created in MDI mode are erased or storedS Bit 6 (CCV) of parameter No. 6001Whether custom macr...

  • Page 433

    B–63003EN–1/025. AUTOMATIC OPERATION411[Classification] Output signal[Function] Notifies the PMC that the CNC is being reset. This signal is used for resetprocessing on the PMC.[Output condition] This signal is set to 1 in the following cases:1. When the emergency stop signal (*ESP) is set ...

  • Page 434

    5. AUTOMATIC OPERATIONB–63003EN–1/024123017Output time of reset signal RST[Data type] Byte[Unit of data] 16 ms[Valid data range] 0 to 255To extend the output time of reset signal RST, the time to be added isspecified in this parameter.RST signal output time = time required for reset + paramet...

  • Page 435

    B–63003EN–1/025. AUTOMATIC OPERATION413Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁÁAPPEN-DIX EÁÁÁÁÁÁÁSTATUS WHEN TURNINGPOWER ON, WHEN CLEARAND WHEN RESETÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPERATOR...

  • Page 436

    5. AUTOMATIC OPERATIONB–63003EN–1/02414Before machining is started, the automatic running check can beexecuted. It checks whether the created program can operate the machineas desired. This check can be accomplished by running the machineactually or viewing the position display change witho...

  • Page 437

    B–63003EN–1/025. AUTOMATIC OPERATION415[Classification] Output signal[Function] Notifies the PMC of the state of the all–axis machine lock signal.[Output condition] This signal is set to 1 in the following case:– When all–axis machine lock signal MLK is set to 1This signal is set to 0 ...

  • Page 438

    5. AUTOMATIC OPERATIONB–63003EN–1/02416NOTE1 Automatic operation in the machine lock state (M, S, T,and B commands)Machine lock applies only to move commands alongcontrolled axes. Updating modal G codes or setting acoordinate system is performed normally. M, S, T, and B(2nd auxilialy functi...

  • Page 439

    B–63003EN–1/025. AUTOMATIC OPERATION417Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁÁIII.5.1ÁÁÁÁÁÁÁMACHINE LOCK AND AUXILIARY FUNCTION LOCKÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Lath...

  • Page 440

    5. AUTOMATIC OPERATIONB–63003EN–1/02418[Classification] Input signal[Function] Enables dry run.[Operation] When this signal is set to 1, the tool is moved at the feedrate specified fordry run.When this signal is set to 0, the tool is moved normally.CAUTIONWhen the dry run signal is changed fr...

  • Page 441

    B–63003EN–1/025. AUTOMATIC OPERATION419#71401#6RDR#5TDR#4#3#2#1#0[Data type] BitTDR Dry run during threading or tapping (tapping cycle G74 or G84; rigidtapping)0 : Enabled1 : DisabledRDR Dry run for rapid traverse command0 : Disabled1 : Enabled1410Dry run rate[Data type] WordIncrement system...

  • Page 442

    5. AUTOMATIC OPERATIONB–63003EN–1/02420NOTETo specify the maximum cutting feedrate for each axis, useparameter No. 1430 instead.Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁIII.5.4ÁÁ...

  • Page 443

    B–63003EN–1/025. AUTOMATIC OPERATION421[Classification] Input signal[Function] Enables single block operation.[Operation] When this signal is set to 1, single block operation is performed. Whenthis signal is set to 0, normal operation is performed.[Classification] Output signal[Function] Not...

  • Page 444

    5. AUTOMATIC OPERATIONB–63003EN–1/02422CAUTION1 Operation in thread cuttingWhen the SBK signal turns to “1” during thread cutting,operation stops after execution of the first non-threadcutting block after the thread cutting command.2 Operation in canned cycle When the SBK signal turns to...

  • Page 445

    B–63003EN–1/025. AUTOMATIC OPERATION423This function selects whether the movement of the tool with manualoperation (such as jog feed and manual handle feed) is counted forcalculating the current position in the workpiece coordinate system. Acheck signal is also output to indicate whether the...

  • Page 446

    5. AUTOMATIC OPERATIONB–63003EN–1/02424The manual move amount is not counted to the present position on theworkpiece coordinate system. The present position display on the CRTincludes the manual move amount. The display is reset to the initial value(before manual operation) when the control i...

  • Page 447

    B–63003EN–1/025. AUTOMATIC OPERATION425[Classification] Output signal[Function] Notifies the PMC of the state of the manual absolute signal.[Output condition] This signal is set to 1 in the following case:– When the manual absolute signal *ABSM is set to 0This signal is set to 0 in the fol...

  • Page 448

    5. AUTOMATIC OPERATIONB–63003EN–1/02426When a slash followed by a number (/n, where n = 1 to 9) is specified atthe head of a block, and optional block skip signals BDT1 to BDT9 areset to 1 during automatic operation, the information contained in the blockfor which /n, corresponding to signal ...

  • Page 449

    B–63003EN–1/025. AUTOMATIC OPERATION4272. When BDTn is set to 1 while the CNC is reading a block containing/n, the block is not ignored.BDTn ”1””0”Reading by CNC ‡ ...; /n N123 X100. Y200. ; N234 ....Not ignored3. When BDTn, currently set to 1, is set to 0 while the CNC is readin...

  • Page 450

    5. AUTOMATIC OPERATIONB–63003EN–1/02428[Classification] Output signal[Function] Notify the PMC of the states of the optional block skip signals BDT1 toBDT9. Nine signals are provided, corresponding to the nine optionalblock skip signals. Signal MBDTn corresponds to signal BDTn.[Output condi...

  • Page 451

    B–63003EN–1/025. AUTOMATIC OPERATION429Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁÁII.12.2ÁÁÁÁÁÁÁProgram section configurationÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Lathe) (B–630...

  • Page 452

    5. AUTOMATIC OPERATIONB–63003EN–1/02430During program execution, this function causes a single block stop rightafter a block with a specified sequence number is executed.To use this function, first specify the program number (1 to 9999) of aprogram that contains a sequence number where operat...

  • Page 453

    B–63003EN–1/025. AUTOMATIC OPERATION431A program may be restarted at a block by specifying the sequence numberof the block, after automatic operation is stopped because of a broken toolor for holidays. This function can also be used as a high–speed programcheck function.There are two types...

  • Page 454

    5. AUTOMATIC OPERATIONB–63003EN–1/02432#7#6#5#4#3#2#1#0G006SRNF002SRNMV7310Movement sequence to program restart positionSetting entry is accepted.[Data type] Byte axis[Valid data range] 1 to no. of controlled axesThis parameter sets the axis sequence when the machine moves to therestart poin...

  • Page 455

    B–63003EN–1/025. AUTOMATIC OPERATION433WARNINGAs a rule, the tool cannot be returned to a correct positionunder the following conditions.Special care must be taken in the following cases sincenone of them cause an alarm:⋅ Manual operation is performed when the manualabsolute mode is OFF.⋅...

  • Page 456

    5. AUTOMATIC OPERATIONB–63003EN–1/02434The tool can be retracted from a workpiece to replace the tool, if damagedduring machining, or to check the status of machining. Then, the tool canbe returned to restart machining efficiently.ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ...

  • Page 457

    B–63003EN–1/025. AUTOMATIC OPERATION435D In the manual mode, when it is necessary to replace the tool or measureworkpieces, the tool can be moved manually, such as by manualcontinuous feed, or manual handle feed. This operation is calledmanual retraction. The path along which the tool retra...

  • Page 458

    5. AUTOMATIC OPERATIONB–63003EN–1/02436[Classification] Input signal[Function] Tool retraction mode is selected.[Operation] When this signal is turned to 1, the control unit retracts the tool by apre–programmed distance.[Classification] Output signal[Function] This signal reports that tool ...

  • Page 459

    B–63003EN–1/025. AUTOMATIC OPERATION437#7G059#6#5#4#3#2#1TRRTN#0TRESC#7F092#6#5TRSPS#4#3TRACT#2#1#0WARNINGThe retraction axes and retraction distances specified withG10.6 need to be changed in appropriate blocks dependingon the figure to be machined. An incorrectly specifiedretraction distan...

  • Page 460

    5. AUTOMATIC OPERATIONB–63003EN–1/02438NC commands can be used to control a feedrate in continuous cutting feedblocks as described below.The tool is decelerated in a block specifying G09, and an in–positioncheck (*1) is performed. When the feed motor falls in–position, the toolis moved b...

  • Page 461

    B–63003EN–1/025. AUTOMATIC OPERATION439Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁÁII.5.4.1ÁÁÁÁÁÁÁExact Stop (G09, G61)Cutting Mode (G64)Tapping Mode (G63)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSeries 21i/210i...

  • Page 462

    5. AUTOMATIC OPERATIONB–63003EN–1/02440When a thin workpiece is to be machined as shown in fig. 5.10, a precisionmachining can be achieved by machining each side of the workpiece witha tool simultaneously;this function can prevent the workpiece fromdistortion that results when only one side i...

  • Page 463

    B–63003EN–1/025. AUTOMATIC OPERATION441CAUTION1 If feed hold operation is performed during balance cuttingusing both tool posts, balance cut processing is notperformed at restart time, it is performed when the nextmove command is specified for both tool posts.2 Balance cutting is not performe...

  • Page 464

    5. AUTOMATIC OPERATIONB–63003EN–1/02442By starting automatic operation during the DNC operation mode (RMT),it is possible to perform machining (DNC operation) while a program isbeing read in via the reader/puncher interface, or remote buffer.If the floppy cassette directory display option is ...

  • Page 465

    B–63003EN–1/025. AUTOMATIC OPERATION443#7#6#5#4#3#2#1#0G043F003DNCIMRMT#7#6#5#4#3#2#1#0#7#6#5#4#3#2#1#00100ND3Setting entry is accepted.[Data type] BitND3 In DNC operation, a program is:0 : Read block by block. (A “DC3” code is output for each block.)1 : Read continuously until the buffe...

  • Page 466

    5. AUTOMATIC OPERATIONB–63003EN–1/02444Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁÁII.4.6ÁÁÁÁÁÁÁSCHEDULING FUNCTIONÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Lathe) (B–63004EN)ÁÁÁ...

  • Page 467

    B–63003EN–1/025. AUTOMATIC OPERATION445If the tool movement along the axes is stopped by a feed hold duringautomatic operation, then restarted after manual intervention such as toolexchange, the tool moves back to the point of intervention beforeautomatic operation is resumed.This function is...

  • Page 468

    5. AUTOMATIC OPERATIONB–63003EN–1/02446When rigid tapping is stopped, either as a result of an emergency stop ora reset, the tap may cut into the workpiece. The tap can subsequently bedrawn out by using a PMC signal. This function automatically storesinformation relating to the tapping exec...

  • Page 469

    B–63003EN–1/025. AUTOMATIC OPERATION447(4) ResumeOnce rigid tapping retraction has been stopped, it can be resumed byperforming the same operation as that used for starting rigid tappingretraction. If rigid tapping retraction has been completed, however,the start operation does not restart r...

  • Page 470

    5. AUTOMATIC OPERATIONB–63003EN–1/02448Tapping retraction start signalRTNTSpindle enable signal ENBRigid tapping signal RGTAPSpindle excitationRetract movementWhen tapping retract is stopped, spindle enable signal ENB is set to “0”,in the same way as for ordinary rigid tapping. Therefore...

  • Page 471

    B–63003EN–1/025. AUTOMATIC OPERATION449#7#6#5#4#3#2#1#0G062RTNT#7#6#5#4#3#2#1#0F066RTPT#7#6#5#4#3#2#1#05200DOV[Data type] BitDOV For tool extraction during rigid tapping, override is:0 : Disabled.1 : Enabled.5381Override for rigid tapping retraction[Data type] Byte[Unit of data] %[Valid data ...

  • Page 472

    5. AUTOMATIC OPERATIONB–63003EN–1/02450CAUTION1 If rigid tapping is stopped as a result of an emergency stop,the position on the tapping axis (Z–axis) is maintained butthe spindle position is lost. In such a case, therefore, thepositional relationship between the spindle and tapping axisis...

  • Page 473

    B–63003EN–1/025. AUTOMATIC OPERATION451Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁÁII.13.2ÁÁÁÁÁÁÁRigid tappingÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Lathe) (B–63004EN)ÁÁÁÁÁ...

  • Page 474

    6. INTERPOLATION FUNCTIONB–63003EN–1/024526 INTERPOLATION FUNCTIONÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

  • Page 475

    B–63003EN–1/026. INTERPOLATION FUNCTION453The G00 command moves a tool to the position in the workpiece systemspecified with an absolute or an incremental command at a rapid traverserate.In the absolute command, coordinate value of the end point isprogrammed.In the incremental command the dis...

  • Page 476

    6. INTERPOLATION FUNCTIONB–63003EN–1/02454NOTEThe rapid traverse rate cannot be specified in the addressF.Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁÁII.4.1ÁÁÁÁÁÁÁPOSITIONING (G00)ÁÁÁÁÁÁÁÁÁÁÁÁÁ...

  • Page 477

    B–63003EN–1/026. INTERPOLATION FUNCTION455Tools can move along a lineA tools move along a line to the specified position at the feedratespecified in F.The feedrate specified in F is effective until a new value is specified. Itneed not be specified for each block.The feedrate commanded by the...

  • Page 478

    6. INTERPOLATION FUNCTIONB–63003EN–1/024561411Cutting feedrate when the power is turned onSetting entry is acceptable.[Data type] WordIncrement systemÁÁÁÁÁÁÁÁÁÁUnit of dataÁÁÁÁÁÁÁValid data rangeÁÁÁÁÁÁÁÁÁÁÁÁÁÁIncrement systemÁÁUnitofdataÁÁIS-A, IS-BÁÁÁÁ...

  • Page 479

    B–63003EN–1/026. INTERPOLATION FUNCTION457NOTE1 This parameter is effective only in linear and circularinterpolation. In polar coordinate, cylindrical, and involuteinterpolation, the maximum feedrate for all axes specified inparameter No. 1422 is effective.2 If the setting for each axis is 0,...

  • Page 480

    6. INTERPOLATION FUNCTIONB–63003EN–1/02458The command below can move a tool along a circular arc in the definedplane.“Clockwise”(G02) and “counterclockwise”(G03) on the XpYp plane(ZpXp plane or YpZp plane) are defined when the XpYp plane is viewedin the positive–to–negative direct...

  • Page 481

    B–63003EN–1/026. INTERPOLATION FUNCTION459The distance between an arc and the center of a circle that contains the arccan be specified using the radius, R, of the circle instead of I, J, and K.In this case, one arc is less than 180_, and the other is more than 180_ areconsidered.For T series,...

  • Page 482

    6. INTERPOLATION FUNCTIONB–63003EN–1/02460ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁr=50mmEnd pointStart pointr=50mmYXÁÁÁÁÁÁÁÁÁÁÁÁÁÁ(Example) (M series)For arc (1) (less than 180_)G91 G02 X60.0 Y20.0 R50.0ÁÁÁ F300.0 ;For arc (2) (greater than 180_)G91 G02 X60.0 Y20.0 R...

  • Page 483

    B–63003EN–1/026. INTERPOLATION FUNCTION461NOTE1 Specifying an arc center with addresses I, K, and JWhen the distance from the arc start point to the arc centeris specified with addresses I, K, and J, a P/S alarm (No.5059) is issued if:Example: When IS–B and metric input are selected, issui...

  • Page 484

    6. INTERPOLATION FUNCTIONB–63003EN–1/024621022Setting of each axis in the basic coordinate systemNOTEWhen this parameter is set, power must be turned off beforeoperation is continued.[Data type] Byte axisTo determine the following planes used for circular interpolation, cuttercompensation C (...

  • Page 485

    B–63003EN–1/026. INTERPOLATION FUNCTION4633410Tolerance of arc radius[Data type] Two–wordIncrement systemÁÁÁÁÁÁÁÁIS–AÁÁÁÁÁÁÁIS–BÁÁÁÁÁÁÁIS–CÁÁÁÁÁÁÁUnitÁÁÁÁÁÁÁÁMetric inputÁÁÁÁÁÁÁÁ0.01ÁÁÁÁÁÁÁ0.001ÁÁÁÁÁÁÁ0.0001ÁÁÁÁÁÁÁmmÁ...

  • Page 486

    6. INTERPOLATION FUNCTIONB–63003EN–1/02464NOTE1 For T series, the U, V and W axes (parallel with the basicaxis) can be used with G–code system B and C.2 If I, J, K, and R addresses are specified simultaneously, thearc specified by address R takes precedence and the otherare ignored.3 If an ...

  • Page 487

    B–63003EN–1/026. INTERPOLATION FUNCTION465Tool movement can be synchronized with spindle rotation when cuttingthreads.The spindle speed is continuously read through the position coderattached to the spindle. Then, it is converted to a cutting feedrate (feedper minute) to feed the tool.ÁÁÁ...

  • Page 488

    6. INTERPOLATION FUNCTIONB–63003EN–1/02466[Function] This signal indicates that thread cutting is in progress.[Output condition] This signal turns to “1” in the following cases:S Thread cutting mode in progressS Thread cutting cycle for turningThis signal turns to “0” in the following...

  • Page 489

    B–63003EN–1/026. INTERPOLATION FUNCTION467#73708#6#5#4#3#2#1SAT#0SARSAR[Data type] BitSAR: The spindle speed arrival signal is:0 : Not checked1 : CheckedSAT: Check of the spindle speed arrival signal at the start of executing thethread cutting block0 : The signal is checked only when SAR, #0 ...

  • Page 490

    6. INTERPOLATION FUNCTIONB–63003EN–1/024681627FL rate of exponential acceleration /deceleration in the thread cutting cycle for each axis[Data type] Word axisIncrement systemÁÁÁÁÁÁÁÁÁÁUnit of dataÁÁÁÁÁÁÁValid data rangeÁÁÁÁÁÁÁÁÁÁÁÁÁÁIncrement systemÁÁUnitofdat...

  • Page 491

    B–63003EN–1/026. INTERPOLATION FUNCTION4695141Finishing allowance in the multiple repetitive canned cycle G76[Data type] Two–wordIncrement systemÁÁÁÁÁÁÁÁIS–AÁÁÁÁÁÁÁIS–BÁÁÁÁÁÁÁIS–CÁÁÁÁÁÁÁUnitÁÁÁÁÁÁÁÁMetric inputÁÁÁÁÁÁÁÁ0.01ÁÁÁÁÁÁÁ0.00...

  • Page 492

    6. INTERPOLATION FUNCTIONB–63003EN–1/02470WARNINGDuring threading, stopping feed without stopping thespindle is dangerous because the cutting depth will abruptlyincrease. Feed hold is, therefore, disabled duringthreading. If attempted during threading, feed stops in thesame way as single bl...

  • Page 493

    B–63003EN–1/026. INTERPOLATION FUNCTION471Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁÁII.4.15ÁÁÁÁÁÁÁCONSTANT LEAD THREADCUTTINGÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Lathe) (B–63...

  • Page 494

    6. INTERPOLATION FUNCTIONB–63003EN–1/02472When the automatic operation stop signal *SP <G008#5> is set to 0during threading in a threading cycle, the tool immediately retracts whileperforming chamfering, then returns to the start point of the current cycle,first along the X–axis, then...

  • Page 495

    B–63003EN–1/026. INTERPOLATION FUNCTION473CAUTIONWhile the tool is retracting, automatic operation stop signal*SP <G008#5> is ignored.NOTEThe chamfering distance for retraction is determined by thesetting of parameter No. 5130.Series16i/160i/18i/180iÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(F...

  • Page 496

    6. INTERPOLATION FUNCTIONB–63003EN–1/02474For accurate positioning without play of the machine (backlash), finalpositioning from one direction is available.ÁÁÁÁStart positionTemporary stopÁÁÁÁÁÁÁÁEnd positionStart positionOverrun distanceAn overrun and a positioning direction are ...

  • Page 497

    B–63003EN–1/026. INTERPOLATION FUNCTION475Positioning direction and overrun distance in uni–directional positioning for each axis5440[Data type] Word axisIncrement systemÁÁÁÁÁÁÁÁIS–AÁÁÁÁÁÁÁIS–BÁÁÁÁÁÁÁIS–CÁÁÁÁÁÁÁUnitÁÁÁÁÁÁÁÁMetric inputÁÁÁÁÁÁ...

  • Page 498

    6. INTERPOLATION FUNCTIONB–63003EN–1/02476Helical interpolation which moved helically is enabled by specifying upto two other axes which move synchronously with the circularinterpolation by circular commands.The command method is to simply add one or two move command axeswhich is not circular...

  • Page 499

    B–63003EN–1/026. INTERPOLATION FUNCTION477<Parameters used for clamping>When HFC is 0No. 1430:Maximum cutting feedrate for each axisSince the cutting feedrate for the arc is clamped to the above parameter value, the feedrate along the linear axis is clampedto the smaller parameter value...

  • Page 500

    6. INTERPOLATION FUNCTIONB–63003EN–1/02478With the involute interpolation function, an involute curve can bemachined. Cutter compensation C is also possible. The use of involuteinterpolation eliminates the need to use short lines or arcs to approximatean involute curve. Pulse distribution ...

  • Page 501

    B–63003EN–1/026. INTERPOLATION FUNCTION479Polar coordinate interpolation is a function that exercises contour controlin converting a command programmed in a Cartesian coordinate systemto the movement of a linear axis (movement of a tool) and the movementof a rotary axis (rotation of a workpie...

  • Page 502

    6. INTERPOLATION FUNCTIONB–63003EN–1/024801422Maximum cutting feedrate for all axes[Data type] Two–wordIncrement systemÁÁÁÁÁÁÁÁÁÁUnit of dataÁÁÁÁÁÁÁValid data rangeÁÁÁÁÁÁÁÁÁÁÁÁÁÁIncrement systemÁÁUnitofdataÁÁIS-A, IS-BÁÁÁÁÁÁÁÁIS-CÁÁÁÁÁÁÁÁÁ...

  • Page 503

    B–63003EN–1/026. INTERPOLATION FUNCTION481No.ÁÁÁÁÁÁÁMessageÁÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ145ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁILLEGAL CONDITIONSIN POLAR COORDINATEINTERPOLATIONÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁThe conditions are incorrec...

  • Page 504

    6. INTERPOLATION FUNCTIONB–63003EN–1/02482The amount of travel of a rotary axis specified by an angle is onceinternally converted to a distance of a linear axis along the outer surfaceso that linear interpolation or circular interpolation can be performed withanother axis. After interpolatio...

  • Page 505

    B–63003EN–1/026. INTERPOLATION FUNCTION4831022Setting of each axis in the basic coordinate system[Data type] Byte axisTo determine the following planes used for circular interpolation, cuttercompensation C (for the M series), tool nose radius compensation (for theT series), etc., each control...

  • Page 506

    6. INTERPOLATION FUNCTIONB–63003EN–1/02484Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁÁII.4.7ÁÁÁÁÁÁÁCylindrical InterpolationÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Lathe) (B–63004...

  • Page 507

    B–63003EN–1/026. INTERPOLATION FUNCTION485Polygonal turning means machining a polygonal figure by rotating theworkpiece and tool at a certain ratio.ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁWorkpieceToolÁÁÁÁÁÁÁÁWorkpieceFig. 6.10 (a)Polygonal turningBy chan...

  • Page 508

    6. INTERPOLATION FUNCTIONB–63003EN–1/02486One of the axes (servo axes) controlled by the CNC is assigned as a toolrotation axis. Either serial spindle or analog spindle can be used as aworkpiece axis (spindle).Polygonal turning using a servo axis is detailed in the operator’s manual(for la...

  • Page 509

    B–63003EN–1/026. INTERPOLATION FUNCTION487(With the above setting, the reference counter capacity is 36000.)Parameter No. 1820 = 2 (CMR)Parameter No. 1821 = 36000 (reference counter capacity)Parameter No. 2084 = 36 (DMR numerator)Parameter No. 2085 = 1000 (DMR denominator)For the other servo ...

  • Page 510

    6. INTERPOLATION FUNCTIONB–63003EN–1/02488No. 1420 = 72000 (= 2000 36010)Also specify other feedrates in 10 degrees/min units.D Commands from the NC programWhen the machine is not performing polygonal turning, the machiningprogram can issue move commands to the polygon axis.Such commands ca...

  • Page 511

    B–63003EN–1/026. INTERPOLATION FUNCTION489#7PLZ7600#6#5#4#3#2#1#0[Data type] BitPLZ Synchronous axis using G28 command0: Returns to the reference position in the same sequence as the manualreference position return.1: Returns to the reference position by positioning at a rapid traverse.The ...

  • Page 512

    6. INTERPOLATION FUNCTIONB–63003EN–1/02490NumberÁÁÁÁÁÁÁMessageÁÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ217ÁÁÁÁÁÁÁDUPLICATE G251 (COM-MANDS)ÁÁÁÁÁÁÁÁÁÁÁG51.2 (or G251) is further comman-ded in the polygonal turning mode.Modify the program.ÁÁ...

  • Page 513

    B–63003EN–1/026. INTERPOLATION FUNCTION491In the polygonal turning with two spindles, the first spindle is used as aworkpiece rotation axis (master axis). The second spindle is used as a toolrotation axis (polygon synchronization axis). Spindle rotation control isapplied to both spindles wi...

  • Page 514

    6. INTERPOLATION FUNCTIONB–63003EN–1/02492The G51.2 command is modal. Once specified, the P, Q, and R values stayunchanged until another G51.2 is issued to change them or polygonsynchronized mode is released.The S command issued to the first spindle during polygon synchroniza-tion mode speci...

  • Page 515

    B–63003EN–1/026. INTERPOLATION FUNCTION493Each time the spindle speed command for the first spindle changes or Pand Q are re–specified in a G51.2, the clamp speed is checked todetermine whether to issue P/S alarm No. 5018.Note that a reset can clear the alarm with the speed clamped.(A rotat...

  • Page 516

    6. INTERPOLATION FUNCTIONB–63003EN–1/02494G51. 2 P1 Q2 ;S2000; ..Step 10. Change the spindle speed for finishing(master axis at 2000 rpm and polygon syn-chronization axis at 4000 rpm with a phasedifference of 0).[Repeat steps 4, 5, and 6.].Step 11. Polygonal turning (finishing 1)[Repeat st...

  • Page 517

    B–63003EN–1/026. INTERPOLATION FUNCTION495CAUTION1 DGN indicates the loop gain because this function requiresthat both spindles be controlled with the same loop gain.However, no alarm is issued even if the loop gain is differentbetween the spindles.(For the serial spindle control unit, the pa...

  • Page 518

    6. INTERPOLATION FUNCTIONB–63003EN–1/02496#4 to #7→ Causes for P/S alarm No. 218When P/S alarm No. 218 occurs, the polygon synchronization mode isreleased, but the indication of its causes remains until the alarm is clearedby a reset.#0 The specified speed is too low during spindle–spindl...

  • Page 519

    B–63003EN–1/026. INTERPOLATION FUNCTION497Indication of values specified during the spindle–spindle polygonsynchronization mode474Rotation ratio for the master axis during the spindle–spindle polygon synchronization mode (P command value)DGNThis indication is the current rotation ratio (P...

  • Page 520

    6. INTERPOLATION FUNCTIONB–63003EN–1/02498[Classification] Output signal[Function] Informs the PMC that the system is in the polygon synchronization mode.[Output condition] The polygon synchronization mode command (G51.2) sets this signal tological “1”. It stays at “1” as long as the...

  • Page 521

    B–63003EN–1/026. INTERPOLATION FUNCTION499[Classification] Output signal[Function] Informs the PMC that the spindle has reached its constant–speed forpolygon synchronization during polygonal turning with two spindles.[Output condition] During polygonal turning mode with two spindles, whethe...

  • Page 522

    6. INTERPOLATION FUNCTIONB–63003EN–1/02500When a G51.2 is issued to put the system in the polygon synchronizationmode, the polygon synchronization under way signal PSYN<F063#7>becomes on.Set up a PMC sequence for the polygon synchronization mode bymonitoring this signal with a PMC ladde...

  • Page 523

    B–63003EN–1/026. INTERPOLATION FUNCTION501Sequence common to methods (A) and (B)Regardless of whether the method you use is (A) or (B), set up the PMCsequence as follows:D Do not use the SFR/SRV signal to switch the rotation direction of thefirst spindle. Instead, fix the energizing method o...

  • Page 524

    6. INTERPOLATION FUNCTIONB–63003EN–1/02502#77602#6#5COF#4HST#3HSL#2HDR#1SNG#0MNG[Data type] BitMNG The rotational direction of the master axis (first spindle) in thespindle–spindle polygon turning mode is:0: Not reversed.1: Reversed.SNG The rotational direction of the polygon synchronizatio...

  • Page 525

    B–63003EN–1/026. INTERPOLATION FUNCTION503COF In spindle–spindle polygon turning mode, phase control is:0: Used.1: Not used.CAUTIONWhen the use of phase control is not selected, the steadystate is reached in a shorter time because phasesynchronization control is not applied. Once steady ...

  • Page 526

    6. INTERPOLATION FUNCTIONB–63003EN–1/025047621Maximum allowable speed for the tool rotation axis (polygon synchronization axis)[Data type] Word[Unit of data] rpm[Valid data range] For polygon turning with two spindles:Set a value between 0 and 32767, but which does not exceed themaximum allow...

  • Page 527

    B–63003EN–1/026. INTERPOLATION FUNCTION505NumberÁÁÁÁÁÁÁMessageÁÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ218ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁNOT FOUND P/Q COM-MAND IN G251ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁThe G51.2 block does not contain P or Q,...

  • Page 528

    6. INTERPOLATION FUNCTIONB–63003EN–1/02506⋅ To the contrary to P/S alarm No. 221, P/S alarm No. 194 occurs ifanother NC control spindle function is specified during the two–spindlepolygon synchronization mode.CAUTION1 The maximum spindle speed for each gear stage (No. 3741to 3744) must be...

  • Page 529

    B–63003EN–1/026. INTERPOLATION FUNCTION507CAUTION6 During polygon synchronization mode, speed change andphase adjustment are performed each time the spindlespeed is changed. Therefore, this mode cannot be usedtogether with a function that causes continuous spindlespeed change (such as G96 co...

  • Page 530

    6. INTERPOLATION FUNCTIONB–63003EN–1/02508When a tool with a rotation axis (C–axis) is moved in the XY plane duringcutting, the normal direction control function can control the tool so thatthe C–axis is always perpendicular to the tool path (Fig. 6.11).ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ...

  • Page 531

    B–63003EN–1/026. INTERPOLATION FUNCTION509[Data type] Bit axis[Valid data range] ROTx, ROSx Setting linear or rotation axisROSxÁÁÁÁÁÁÁÁÁÁROTxÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ0ÁÁÁÁÁÁÁÁÁÁÁ0ÁÁÁÁÁÁÁÁÁ...

  • Page 532

    6. INTERPOLATION FUNCTIONB–63003EN–1/025105482Limit value that ignores the rotation insertion of normal direction control axis[Data type] Two–wordIncrement systemÁÁÁÁÁÁÁÁIS–AÁÁÁÁÁÁÁIS–BÁÁÁÁÁÁÁIS–CÁÁÁÁÁÁÁUnitÁÁÁÁÁÁÁÁÁÁÁRotation axisÁÁÁÁÁÁÁ...

  • Page 533

    B–63003EN–1/026. INTERPOLATION FUNCTION5111422Maximum cutting feedrate for all axes[Data type] Two–wordIncrement systemÁÁÁÁÁÁÁÁÁÁUnit of dataÁÁÁÁÁÁÁValid data rangeÁÁÁÁÁÁÁÁÁÁÁÁÁÁIncrement systemÁÁUnitofdataÁÁIS-A, IS-BÁÁÁÁÁÁÁÁIS-CÁÁÁÁÁÁÁÁÁ...

  • Page 534

    6. INTERPOLATION FUNCTIONB–63003EN–1/02512Exponential interpolation exponentially changes the rotation of aworkpiece with respect to movement on the rotary axis. Furthermore,exponential interpolation performs linear interpolation with respect toanother axis. This enables tapered groove mach...

  • Page 535

    B–63003EN–1/026. INTERPOLATION FUNCTION5135643Amount of linear axis division (span value) in exponential interpolation[Data type] 2–word typeIncrement systemÁÁÁÁÁÁÁÁIS–AÁÁÁÁÁÁÁIS–BÁÁÁÁÁÁÁIS–CÁÁÁÁÁÁÁUnitÁÁÁÁÁÁÁÁMetric inputÁÁÁÁÁÁÁÁ0.01ÁÁÁ...

  • Page 536

    6. INTERPOLATION FUNCTIONB–63003EN–1/02514Either of two types of machining can be selected, depending on theprogram command.D For those portions where the accuracy of the figure is critical, such asat corners, machining is performed exactly as specified by the programcommand.D For those porti...

  • Page 537

    B–63003EN–1/026. INTERPOLATION FUNCTION515Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁII.4.12ÁÁÁÁÁÁÁÁÁÁSmooth interpolationÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ...

  • Page 538

    6. INTERPOLATION FUNCTIONB–63003EN–1/02516In helical interpolation, when pulses are distributed with one of thecircular interpolation axes set to a hypothetical axis, sine interpolation isenable. When one of the circular interpolation axes is set to a hypothetical axis,pulse distribution cau...

  • Page 539

    B–63003EN–1/026. INTERPOLATION FUNCTION517Helical interpolation B moves the tool helically. This interpolation canbe executed by specifying the circular interpolation command togetherwith up to four additional axes in simple high–precision contour controlmode.Basically, the command can be ...

  • Page 540

    6. INTERPOLATION FUNCTIONB–63003EN–1/02518Spiral interpolation is enabled by specifying the circular interpolationcommand together with a desired number of revolutions or a desiredincrement (decrement) for the radius per revolution.Conical interpolation is enabled by specifying the spiral int...

  • Page 541

    B–63003EN–1/026. INTERPOLATION FUNCTION5193471Allowable difference between the specified end point and that calculated from the increment (or decrement) and number of revolutions, for spiral or conical interpolation[Data type] Two–wordIncrement systemÁÁÁÁÁÁÁÁIS–AÁÁÁÁÁÁÁIS...

  • Page 542

    6. INTERPOLATION FUNCTIONB–63003EN–1/02520NumberÁÁÁÁÁÁÁMessageÁÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ5122ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁILLEGAL COMMAND INSPIRALÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁAn invalid command has been speci-fie...

  • Page 543

    B–63003EN–1/026. INTERPOLATION FUNCTION521Many computer–aided design (CAD) systems used to design metal diesfor automobiles and airplanes utilize non–uniform rational B–spline(NURBS) to express a sculptured surface or curve for the metal dies.This function enables NURBS curve expression...

  • Page 544

    6. INTERPOLATION FUNCTIONB–63003EN–1/02522NURBS interpolation must be specified in high–precision contourcontrol mode (between G05 P10000 and G05 P0). The CNC executesNURBS interpolation while smoothly accelerating or decelerating themovement so that the acceleration on each axis will not ...

  • Page 545

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL5237 FEEDRATE CONTROL/ACCELERATION ANDDECELERATION CONTROLÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

  • Page 546

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL524The feed functions control the feedrate of the tool. The following two feedfunctions are available:1. Rapid traverse...

  • Page 547

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL525NOTE1 The rapid traverse in automatic operation includes all rapidtraverses in canned cycle positioning, automatic referencepoint return, etc., as well as the move command G00. Themanual rapid traverse also includes th...

  • Page 548

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL5261424Manual rapid traverse rate for each axis[Data type] Two–word axisIncrement systemÁÁÁÁÁÁÁÁÁÁUnit of da...

  • Page 549

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL527A common upper limit can be set on the cutting feedrate along each axiswith parameter No. 1422. If an actual cutting feedrate (with an overrideapplied) exceeds a specified upper limit, it is clamped to the upper limit....

  • Page 550

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL5281430Maximum cutting feedrate for each axis[Data type] Two–word axisIncrement systemÁÁÁÁÁÁÁÁÁÁUnit of data...

  • Page 551

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL529Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁÁII.5.3ÁÁÁÁÁÁÁCutting FeedÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(Fo...

  • Page 552

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL530For M series G94;G code for feed per minute (Group 05)F_;Feed rate (mm/min or inch/min)For T series G98;G code for fe...

  • Page 553

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL531NOTE1 When FCD = 1:If the block containing a G command (G98, G99) does notinclude an F command, the last F command specified isassumed to be specified in the G command mode of theblock.Example 1:N1 G99 ;N2 Faaaa G98 ;- ...

  • Page 554

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL532After specifying G95 (G99 for T series) (in the feed per revolution mode),the amount of feed of the tool per spindle ...

  • Page 555

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL5331423Feedrate in jog feed for each axis[Data type] Word axisWhen JRV, bit 4 of parameter No. 1402, is set to 1 (feed per revolution) inT series, specify a feedrate in jog feed (feed per revolution) with anoverride of 100...

  • Page 556

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL534When a one–digit number from 1 to 9 is specified after F, the feedrate setfor that number in a parameter (Nos. 1451...

  • Page 557

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL5351450Change of feedrate for one graduation on the manual pulse generator during F1 digit feed[Data type] Byte[Valid data range] 1 to 127Set the constant that determines the change in feedrate as the manual pulsegenerator...

  • Page 558

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL5361460Upper limit of feedrate for the F1–digit feed command (F1 to F4)1461Upper limit of feedrate for the F1-digit ...

  • Page 559

    FRN= =1Time (min)SpeedDistanceFRN= =1Time (min)SpeedCircle radiusB–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL537Feedrate of the tool can be specified by the move distance of the block andinverse time (FRN). Speed: mm/min (metric input)inch/min (inch input)Distance:...

  • Page 560

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL538An override of four steps (F0, 25%, 50%, and 100%) can be applied to therapid traverse rate. F0 is set by a paramete...

  • Page 561

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL539[Classification] Input signal[Function] These signals override the rapid traverse rate[Operation] These code signals correspond to the rates as follows:Rapid traverse overrideÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOverride val...

  • Page 562

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL540⋅ Signals *HROV0 to *HROV6 are inverted signals.To set an override value of 1%, set signals *HROV0 to *HROV6 to1111...

  • Page 563

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL541Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁÁIII.5.3ÁÁÁÁÁÁÁRapid traverse overrideÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPERATOR...

  • Page 564

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL542[Classification] Input signal[Function] These signals override the cutting feedrate. Eight binary code signalscorresp...

  • Page 565

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL543Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁÁII.5.3ÁÁÁÁÁÁÁCutting feedÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(Fo...

  • Page 566

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL544#7*AFV7G013#6#5*AFV6#4*AFV5#3*AFV4#2*AFV3#1*AFV2#0*AFV0*AFV1The override cancel signal fixes the feedrate override to...

  • Page 567

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL545When G62 is specified, and the tool path with cutter compensationapplied forms an inner corner, the feedrate is automatically overriddenat both ends of the corner. There are four types of inner corners (Fig. 7.1.8).2,x...

  • Page 568

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL546An override value is set with parameter No. 1712. An override valueis valid even for dry run and F1–digit feed spe...

  • Page 569

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL547In circular cutting with an inward offset, the actual feedrate for a specifiedfeedrate (F) becomes as follows:F RcRpRc: Radius of the path of the cutter’s centerRp: Programmed radiusÁÁÁÁAs the actual feedrate be...

  • Page 570

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL5481713Distance Le from the starting point in inner corner automatic override[Data type] WordIncrement systemÁÁÁÁÁ...

  • Page 571

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL549These signals decelerate the feedrate of the control axes down to the speedwhich has been set by parameter No. 1426 and 1427.[Classification] Input signal[Function] These signals are used to apply deceleration; provided...

  • Page 572

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL550#71005#6#5EDMx#4EDPx#3#2#1#0[Data type] Bit axisEDPx External deceleration signal in the positive direction for each ...

  • Page 573

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL551During axis motion, the feed stop function checks a position deviationamount at all times. When the amount exceeds the “feed stop positiondeviation amount” set by the parameter (No. 1832), the function suspendspuls...

  • Page 574

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL552When an arc is cut at a high speed in circular interpolation, a radial errorexists between the actual tool path and t...

  • Page 575

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL553When a given arc radius R and the maximum permissible speed V for thatarc radius are set as parameters, the maximum permissible speed v for anarc with a programmed radius r can be obtained from expression 3. Then,if a ...

  • Page 576

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL554Expressions 1, 2, and 4 are approximate expressions. This means that, asthe arc radius becomes smaller, the approxim...

  • Page 577

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL555This function automatically controls the feedrate during cornermachining according to the angle of a corner made by machining blocksor according to the feedrate difference for each axis.This function is enabled when G64...

  • Page 578

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL556@ When linear acceleration/deceleration before interpolation forcutting feed is enabledIf the angle made by blocks A ...

  • Page 579

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL557ÁθÁÁÁθBlock A (G01)Block B (G01)Angle made by two linesBlock A (G02)Block B(G01)If a circular path is included, the anglebetween the tangent of the arc andanother line is considered.1741Feedrate for assuming the ...

  • Page 580

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL558CAUTION1 The angle of the machining tool path is compared with thatspecified in parameter No. 1740 only for the selec...

  • Page 581

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL559@ When linear acceleration/deceleration before interpolation forcutting feed is enabledIf the difference between the feedrates of blocks A and B for each axisexceeds the value specified in parameter No. 1780, the feedra...

  • Page 582

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL560N2 N1 G01 G91 X100. F1000 ; N2 Y100. ;ÁÁÁÁN1Tool path if cornerdeceleration is notapplied← Tool path w...

  • Page 583

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL561#71601#6ACD#5#4#3#2#1#0[Data type] BitACD Function for automatically reducing the feedrate at corners (automaticcorner deceleration function)0 : The function is not used.1 : The function is used.#71602#6#5#4CSD#3#2#1#0[...

  • Page 584

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL5621781Allowable speed difference for the speed difference–based automatic cornerdeceleration function (for accelerati...

  • Page 585

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL563Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁII.5.4.3ÁÁÁÁÁÁÁÁÁÁAutomatic corner decelerationÁÁÁÁ...

  • Page 586

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL5641431Maximum cutting feedrate for all axes in the advanced preview control mode[Data type] Two–wordIncrement system...

  • Page 587

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL565NOTE1 This parameter is effective only in linear and circularinterpolation. In polar coordinate, cylindrical, and involuteinterpolation, the maximum feedrate for all axes specified inparameter No. 1431 is effective.2 If...

  • Page 588

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL5661762Exponential acceleration/deceleration time constant for cutting feed in the advanced preview control mode[Data ty...

  • Page 589

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL5671770Parameter 1 for setting an acceleration for linear acceleration/deceleration before interpolation in the advanced preview control mode (maximum machining speed during linear acceleration/deceleration before interpo...

  • Page 590

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL568CAUTION1 When 0 is set in parameter No. 1770 or parameter No. 1771,linear acceleration/deceleration before interpolat...

  • Page 591

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL5691780Allowable speed difference for the speed difference based corner deceleration function (for linear acceleration/deceleration before interpolation)[Data type] WordIncrement systemÁÁÁÁÁÁÁÁÁÁUnit of dataÁÁ...

  • Page 592

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL570NOTE1 When 0 is set in this parameter, the control described aboveis not exercised.2 Use type–B linear acceleration...

  • Page 593

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL571NOTEIn the advanced preview control mode, the functions listedbelow cannot be specified. To specify these functions,cancel the advanced preview control mode, specify thedesired function, then set advanced preview contr...

  • Page 594

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL572Some machining errors are due to the CNC. Such errors includemachining errors caused by acceleration/deceleration af...

  • Page 595

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL573NameFunctionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁAbsolute/incremental com-mandÁÁÁÁÁÁÁÁÁÁÁÁCombined use possible in the blockÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSequence numberÁÁ...

  • Page 596

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL574G18: Plane selection (ZpXp plane)where, Yp is the Y–axis or its parallel axis;G19: Plane selection (YpZp plane)wher...

  • Page 597

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL575When feed per minute is specified, this function reads several tens ofblocks ahead to perform acceleration/deceleration before interpolation,that is, to apply acceleration/deceleration to the specified feedrate.When acc...

  • Page 598

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL576To ensure that the feedrate specified for a block is reached when the blockis executed, deceleration is started in th...

  • Page 599

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL577To use this function, set bit 7 (BDO) and bit 1 (NBL) of parameter No.8402 to 1, and also set the following parameters:Parameter No. 8400: Parameter 1 for setting the acceleration used for ac-celeration/deceleration bef...

  • Page 600

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL578D When maximum acceleration is not reachedÁÁÁ+AccelerationÁTimeÁÁFeedrateTime–The tool is accelerated to a sp...

  • Page 601

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL579When the distance required to decelerate the tool from a specified feedrateis less than the total travel of the tool in the blocks read in advance, thefeedrate is automatically clamped to a feedrate from which the tool ...

  • Page 602

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL580D At the end of accelerationÁÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ...

  • Page 603

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL581When the feed hold function is used during acceleration, control isperformed as described below.D While applying constant or increasing accelerationStarting at the point where the feed hold function is specified, theacc...

  • Page 604

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL582If an F command is changed by, for example, another F command, thecorner deceleration function, or the automatic feed...

  • Page 605

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL583When the single block function is specified while look–aheadbell–shaped acceleration/deceleration before interpolation is used,control is performed as described below.(1) A + B x Remaining travel for the tool in the...

  • Page 606

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL584(1) A x Remaining travel for the tool in the block being executed whenthe single block function is specifiedThe tool ...

  • Page 607

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL585The tool is decelerated (or accelerated) over multiple blocks until thefeedrate becomes 0.ÁÁÁFeedrateTimeÁÁÁÁSingle block function specifiedCAUTION1 Depending on the stop point and remaining blocks, two ormore ac...

  • Page 608

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL586CAUTION1 When the specification of the dry run function or feedrateoverride function is changed, the acceleration/dec...

  • Page 609

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL587This function reads several tens of blocks ahead to exercise automaticfeedrate control.A feedrate is determined on the basis of the conditions listed below. If aspecified feedrate exceeds a calculated feedrate, acceler...

  • Page 610

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL588In automatic feedrate control mode, the feedrate for the tool is controlledas described below.- The feedrate required...

  • Page 611

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL589Suppose that the specified feedrate for the tool is 1,000 mm/min, and thatthe direction of tool movement changes by 90 degrees (from along theX–axis to along the Y–axis). Suppose also that an allowable feedratediff...

  • Page 612

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL590As shown below, when a curve is formed by very short successive linesegments, there is no significant feedrate differ...

  • Page 613

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL591ÁÁFeedrate alongthe X–axisÁÁN1N2ÁÁYXÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁN3N4N6N7N8ÁÁÁÁÁÁFeedrate alongthe Y–axisÁÁÁÁÁÁÁÁFeedrate alongthe tangent tothe pathÁÁÁÁÁÁN1N5N9N1N5N9N9N5

  • Page 614

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL592When a block specifies circular feed per minute and bit 3 (CIR) ofparameter No. 8475 is set to 1, the feedrate of the...

  • Page 615

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL593This function can be used when bit 4 (ZAG) of parameter No. 8451 is setto 1.Cutting the workpiece with the end of the cutter (Fig. 7.1.14.2 (b)) incursa greater resistance than when cutting the workpiece with the side o...

  • Page 616

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL594ÁÁXY planeZ30 deg45deg60deg90degArea 1Area 2Area 3Area 4CAUTIONThe feedrate determination function that is based on...

  • Page 617

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL595Involute interpolation automatic speed control overrides a specifiedfeedrate automatically, in the following two ways, during involuteinterpolation to obtain a high–quality surface with improved machiningprecision.D O...

  • Page 618

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL596(2) Override near the basic circleNear the basic circuit, the change in curvature of an involute curve isrelatively l...

  • Page 619

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL597[Classification] Output signal[Function] Indicates that the system is set to high–precision contour control mode(HPCC mode).[Output condition] The signal is set to 1 if G05 P10000 (HPCC mode ON) is specified in aprogr...

  • Page 620

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL5988400Parameter 1 for determining a linear acceleration/deceleration before interpolation[Data type] Two–wordIncremen...

  • Page 621

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL599#7#6#5#4#3#2#1#08402BDODSTBLKNBL[Data type] BitBDO, NBL Set the type of acceleration/deceleration before interpolation.BDOÁÁÁÁÁÁÁNBLÁÁÁÁÁÁMeaningÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ0ÁÁÁÁÁÁ0Á...

  • Page 622

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL6008416The time required to the maximum acceleration in advanced preview bell–shaped acceleration/deceleration before ...

  • Page 623

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL6018410Allowable velocity difference in velocity determination considering the velocity difference at corners[Data type] Word axisIncrementsystemÁÁÁÁÁÁÁÁÁÁUnit of dataÁÁÁÁÁÁÁValid data rangeÁÁÁÁÁÁÁ...

  • Page 624

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL6028456Area–2 override[Data type] Word[Unit of data] %[Valid data range] 1 to 100 (Standard setting: 80)This parameter...

  • Page 625

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL6038465maximum allowable feedrate for automatic feedrate control[Data type] Two–word axisIncrementsystemÁÁÁÁÁÁÁÁÁÁUnit of dataÁÁÁÁÁÁÁValid data rangeÁÁÁÁÁÁÁÁÁÁÁÁÁÁIncrementsystemÁÁUnitofd...

  • Page 626

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL604#78475#6#5#4#3CIR#2BIP#1#0[Data type] BitCIR The function of automatic feedrate control considering acceleration andd...

  • Page 627

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL6051768Time constant for linear acceleration/deceleration during cutting feed in HPCC mode[Data type] Word axis[Unit of data] ms[Valid data range] 8 to 512NOTEThe function for linear acceleration/deceleration afterinterpol...

  • Page 628

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL6065616Override value at the start of override 2 near the basic circle5617Override value at the start of override 3 near...

  • Page 629

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL607LM2 In HPCC mode, a stroke check before movement for the second storedstroke limit is:0 : Not performed.1 : Performed.SG0 When G00 is specified in HPCC mode:0 : The setting of bit 1 (MSU) of parameter No. 8403 is follow...

  • Page 630

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL608#78485#6#5CDS#4INV#3PRW#2G02#1G81#0G51[Data type] BitG51 In high–precision contour control (HPCC) mode, the scaling...

  • Page 631

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL609NOTEIf there is a series of very short blocks, for each of which therate of acceleration/deceleration before interpolation is low,the actual feedrate may not reach the programmedfeedrate.NOTE1 If the upper limit for aut...

  • Page 632

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL610When executing a G00 command when bit 7 of parameter No. 8403 (SG0)is set to 1, note the following:WARNINGLinear inte...

  • Page 633

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL611When a rapid traverse command is specified during automatic operation,the function for positioning by optimul acceleration can be used to adjustthe rapid traverse rate, time constant, and loop gain, according to theamou...

  • Page 634

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL612When rapid traverse bell–shaped acceleration/deceleration is used, T1 inthe figure below and the rapid traverse rat...

  • Page 635

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL613#76131#6#5#4#3#2#1#0OAD[Data type] Bit axisOAD The function for positioning by optimul acceleration is:0 : Disabled.1 : Enabled.6141Distance D1 for level 1 (metric input, or rotation axis)6142Distance D2 for level 2 (me...

  • Page 636

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL614NOTE1 The settings must satisfy the relationship D1 < D2 < D3 < D4< D5 < D6.2 Up to seven levels can b...

  • Page 637

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL6156181Level 1 servo loop gain6182Level 2 servo loop gain6183Level 3 servo loop gain6184Level 4 servo loop gain6185Level 5 servo loop gain6186Level 6 servo loop gain6187Level 7 servo loop gain[Data type] Word axis[Unit of ...

  • Page 638

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL616In AI contour control mode, the following functions are effective:(1) Look–ahead linear acceleration/deceleration b...

  • Page 639

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL617NameDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁExponential interpolation(G02.3, G03.3)ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁDwell (G04)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁf...

  • Page 640

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL618Feed functionsf ::Can be programmed ::Cannot be programmedNameÁÁÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁ...

  • Page 641

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL619Othersf ::Can be programmed ::Cannot be programmedNameÁÁÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁCycle start/Feed holdÁÁÁÁÁÁÁÁÁÁÁfÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁDry runÁÁÁ...

  • Page 642

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL620Before G05.1 Q1, the following modal codes must be specified. If thiscondition is not satisfied, P/S alarm No. 5111 ...

  • Page 643

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL621For a cutting feed command in feed per minute mode, advanced previewcontrol of up to 15 blocks can be performed, and linearacceleration/deceleration can be performed for a programmed feedrate(before interpolation). Whe...

  • Page 644

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL622(Example of acceleration)To execute a block at a specified feedrate, the feedrate is increased.Specified feedrateFeed...

  • Page 645

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL623N2N1F1000F500F1000F500F1000F500N1N1N2N2N1 G01 G91 X100. F1000 ;N2 Y100. ;FeedrateFeedrateFeedrateTimeTimeTimeWhen deceleration is notperformed at the cornerWhen deceleration is per-formed at the cornerTool path when t...

  • Page 646

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL624When a curve is made up of a series of short straight lines as shown in thefigure below, the difference in feedrate o...

  • Page 647

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL625N1N2N3N1N2N3This function can suppress acceleration in an arc machining block to anallowable level by clamping the feedrate. Based on the arc radius R andthe maximum allowable feedrate V for that arc radius (which are ...

  • Page 648

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL626In rapid traverse, acceleration/deceleration is performed using linearacceleration/deceleration before interpolation,...

  • Page 649

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL627#7F062#6#5#4#3#2#1#0AICCMaximum machining feedrate during linear acceleration/deceleration before interpolation1770[Data type] 2–wordIncrement systemÁÁÁÁÁÁÁÁUnit of dataÁÁÁÁÁÁÁÁÁValid data rangeÁÁÁ...

  • Page 650

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL628Parameter 1771Parameter1770Feedrate(mm/min)Time (ms)1784Speed when an overtravel alarm is issued during linear accele...

  • Page 651

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL629F : Maximum machining feedrate during linear acceleration/decelerationbefore interpolation (parameter 1770)T : Time required to reach the maximum machining feedrate during linearacceleration/deceleration before interpol...

  • Page 652

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL630Parameter 1785Parameter1432Feedrate(mm/min)Time (ms)Allowable acceleration1731Arc radius for the upper limit imposed ...

  • Page 653

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL6311732Lower limit RVmin for feedrate clamping by arc radius[Data type] WordIncrement systemÁÁÁÁÁÁÁÁUnit of dataÁÁÁÁÁÁÁÁÁValid data rangeÁÁÁÁÁÁÁÁÁÁÁÁÁÁIncrement systemÁÁÁUnit of dataÁÁÁ...

  • Page 654

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL632#77052#6#5#4#3#2#1#0NMI[Data type] Bit axisFor the PMC–controlled axes and Cs axis, set 1.(Parameters related to li...

  • Page 655

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL633(Other parameters)ParameterÁÁÁÁÁÁÁÁÁÁÁÁParameter No.ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁStandardmodeÁÁÁÁÁÁÁÁÁAdvancedpreview controlÁÁÁÁÁÁÁÁÁAI contour controlÁÁÁÁÁÁÁÁÁÁ...

  • Page 656

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL634CAUTION1 When the total distance for the blocks under advancedpreview control is equal to or less than the decelerati...

  • Page 657

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL635The high–speed linear interpolation function processes a move commandrelated to a controlled axis not by ordinary linear interpolation but byhigh–speed linear interpolation. This function enables the high–speedex...

  • Page 658

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL636In high–speed linear interpolation mode, the NC interpolation period canbe changed. As the interpolation period de...

  • Page 659

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL637#77501#6IT2#5IT1#4IT0#3#2#1#0[Data type] BitIT2 IT1 IT0000: The interpolation period in high–speed linearinterpolation mode is 8 ms.010: The interpolation period in high–speed linearinterpolation mode is 4 ms.001: T...

  • Page 660

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL638To prevent a mechanical shock, acceleration/deceleration is automaticallyapplied when the tool starts and ends its mo...

  • Page 661

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL639Cutting feed: Exponential acceleration/deceleration (time constant peraxis is set by parameter 1622)Jog feed :Exponential acceleration/deceleration (time constant peraxis is set by parameter 1624)ÁÁCNC commandPulse d...

  • Page 662

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL640NOTEThis parameter is effective only when the function ofbell–shaped acceleration/deceleration after interpolation ...

  • Page 663

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL641Set the time constant used for exponential acceleration/deceleration orlinear acceleration/deceleration after interpolation or bell–shapedacceleration/deceleration after interpolation in cutting feed for each axis.Exc...

  • Page 664

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL6421626Time constant of exponential acceleration/deceleration in the thread cutting cycle for each axis[Data type] Word[...

  • Page 665

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL643N1 G00 X- - ; N2 G00 X- - ;ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁFh: Rapid traverse feedrateα: Setting of parameter No. 1722 (feedrate reduction ratio)Fd: Feedrate where deceleration is terminated:...

  • Page 666

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL644This function is enabled when the time constants for rapid traversebell–shaped acceleration/deceleration T1 and T2 ...

  • Page 667

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL645D When the function is provided, set this parameter to time constant T1used in bell–shaped acceleration/deceleration in rapid traverse, and setparameter No. 1621 to time constant T2.D When the function is not provided...

  • Page 668

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL646If linear acceleration/deceleration after interpolation for cutting feed isenabled (bit 0 of parameter No. 1610, CTL)...

  • Page 669

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL647Linear acceleration/deceleration after cutting feed interpolation is anoptional function. This function is enabled when the CTL bit (bit 0 ofparameter No. 1610) is specified. If bell–shapedacceleration/deceleration ...

  • Page 670

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL6481624Time constant of exponential acceleration/deceleration, bell–shaped acceleration/deceleration after interpolati...

  • Page 671

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL649If the optional function for linear acceleration/deceleration afterinterpolation for cutting feed is not provided, exponentialacceleration/deceleration is always selected, irrespective of the setting.NOTE1 If linear acc...

  • Page 672

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL650The bell–shaped acceleration/deceleration after cutting feed interpolationprovides smooth acceleration and decelera...

  • Page 673

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL651#71610#6#5#4JGLx#3#2#1#0CTLxCTBx[Data type] Bit axisCTLx Acceleration/deceleration in cutting feed including feed in dry run0 : Exponential acceleration/deceleration is applied.1 : Linear acceleration/deceleration after...

  • Page 674

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL6521622Time constant of exponential acceleration/deceleration, linear acceleration/deceleration after interpolation or ...

  • Page 675

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL653NOTE1 If bell–shaped acceleration/deceleration after interpolationduring cutting feed is enabled, bell–shaped acceleration/deceleration is executed during cutting feed and during adry run. Bell–shaped acceleratio...

  • Page 676

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL654The function of linear acceleration/deceleration before interpolation in-creases or decreases the feedrate specified ...

  • Page 677

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL655Deceleration is performed when the following condition issatisfied:Distance to stored stroke limit 1for each axisDistance needed to reduce the cur-rent feedrate (tangential feedrate)to that specified in parameter No.178...

  • Page 678

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL656ÁÁÁFeedrateParameter 1Parameter 2TimeParameter 1: Parameter No. 1630Parameter 2: Parameter No. 1631NOTE1 When 0 ...

  • Page 679

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL6571784Feedrate when overtravel alarm has generated during acceleration/deceleration before interpolation[Data type] WordIncrement systemÁÁÁÁÁÁÁÁÁÁUnit of dataÁÁÁÁÁÁÁValid data rangeÁÁÁÁÁÁÁÁÁÁÁ...

  • Page 680

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL658NOTE1 If a block without a move command is found duringacceleration/deceleration before interpolation, themovement is...

  • Page 681

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL659Whether the position of the servo motor is within a specified range ischecked.If the in–position check function is enabled, the CNC checks the positionduring deceleration. If the position is found to exceed the speci...

  • Page 682

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL660.#7INP8F104#6INP7#5INP6#4INP5#3INP4#2INP3#1INP2#0INP1#71601#6#5NCI#4#3#2#1#0[Data type] BitNCI Inposition check at de...

  • Page 683

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL661If separate in–position check for cutting feed and rapid traverse isexecuted, a small in–position check range can be specified between thosecutting feed blocks that require a high degree of precision. A largein–p...

  • Page 684

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL6621826In–position width for each axis[Data type] Word axis[Unit of data] Detection unit[Valid data range] 0 to 32767T...

  • Page 685

    B–63003EN–1/027. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL663Generally, the CNC does not zero the feedrate at the interface of twoblocks during cutting feed. Because of this, a corner of a tool path may be rounded.FeedrateTimeÁÁÁÁÁÁÁÁÁÁÁÁThis part causes the corner o...

  • Page 686

    B–63003EN–1/02ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL664NOTEIf the error detect signal is on, a cutting block is not executeduntil the acceleration/deceleration of the previ...

  • Page 687

    B–63003EN–1/028. AUXILIARY FUNCTION6658 AUXILIARY FUNCTIONÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

  • Page 688

    8. AUXILIARY FUNCTIONB–63003EN–1/02666When a numeral of up to 8 digits is specified following address M, codesignal and a strobe signal are sent to the machine. The machine uses thesesignals to turn on or off its functions.Usually, only one M code can be specified in one block. In some cases,...

  • Page 689

    B–63003EN–1/028. AUXILIARY FUNCTION6673. It is possible to change over the scale factor of B output 1000 or 10000when the decimal point input is omitted in the inch input system, usingthe parameter AUX (No.3405#0). When DPI=1.Command Output valueWhen AUX is 1: B110000When AUX is 0: B11000Th...

  • Page 690

    8. AUXILIARY FUNCTIONB–63003EN–1/02668(6) If the completion signal remains set to 1 for longer than period TFIN,specified in parameter No. 3011 (standard value: 16 msec), the CNCsets the strobe signal to 0 and reports that the completion signal hasbeen received.(7) When the strobe signal is ...

  • Page 691

    B–63003EN–1/028. AUXILIARY FUNCTION6692b. Execution of a miscellaneous function after move command completionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ(1)(2)(3)(*2)TMFTFINM commandMxxMove commandCode signals M00–M31Strobe signalMFPMC side actionEnd signalFINDistributionend signalsDENÁÁÁÁ(4)(5...

  • Page 692

    8. AUXILIARY FUNCTIONB–63003EN–1/02670[Classification] Output signal[Function] These signals report particular miscellaneous functions are specified. Themiscellaneous functions in a command program correspond to outputsignals as indicated below.Command programÁÁÁÁÁÁÁÁÁOutput signal...

  • Page 693

    B–63003EN–1/028. AUXILIARY FUNCTION671[Classification] Output signal[Function] These signals report that tool functions have been specified.[Output condition] For the output conditions and procedure, see the description of “Basicprocedure” above.[Classification] Output signal[Function] Th...

  • Page 694

    8. AUXILIARY FUNCTIONB–63003EN–1/02672[Classification] Output signal[Function] These signals report that all commands (such as move commands anddwell) are completed except those miscellaneous functions,spindle–speed functions, 2nd auxilialy functions tool functions, and soforth that are con...

  • Page 695

    B–63003EN–1/028. AUXILIARY FUNCTION673#7G004#6#5#4#3FIN#2#1#0F001DEN#7#6#5#4#3#2#1#0ÁÁÁÁÁÁÁÁÁÁÁÁBFF007BFTFSFMFDM00F009DM01DM02DM30M07F010M06M05M04M03M02M01M00M15F011M14M13M12M11M10M09M08M23F012M22M21M20M19M18M17M16M31F013M30M29M28M27M26M25M24S07F022S06S05S04S03S02S01S00S15F023S14S...

  • Page 696

    8. AUXILIARY FUNCTIONB–63003EN–1/02674M, S, T, B codeMF, SF, TF, BF,signalÁÁÁÁDelay timeFig. 8.1 (a) Delay time of the strobe signalNOTEThe time is counted in units of 8 ms. If the set value is nota multiple of eight, it is raised to the next multiple of eight.Example : When 30 is set, ...

  • Page 697

    B–63003EN–1/028. AUXILIARY FUNCTION6753030Allowable number of digits for the M code3031Allowable number of digits for the S code3032Allowable number of digits for the T code3033Allowable number of digits for the B code[Data type] Byte[Valid data range] 1 to 8Set the allowable numbers of digit...

  • Page 698

    8. AUXILIARY FUNCTIONB–63003EN–1/02676#73405#6#5#4#3#2#1#0AUX[Data type] BitAUX The least increment of the command of the second miscellaneous functionspecified with a decimal point0 : Assumed to be 0.0011 : Depending on the input increment. (For input in mm, 0.001 isassumed, or for input in...

  • Page 699

    B–63003EN–1/028. AUXILIARY FUNCTION677[Data type] Word[Valid data range] 0 to 65535When a specified M code is within the range specified with parameterNos. 3421 and 3422, 3433 and 3424, 3425 and 3426, 3427 and 3428, 3429and 3430, or 3431 and 3432, buffering for the next block is not performed...

  • Page 700

    8. AUXILIARY FUNCTIONB–63003EN–1/02678NOTE1 When a move command and miscellaneous function arespecified in the same block, the commands are executed inone of the following two ways:i) Simultaneous execution of the move command andmiscellaneous function commands.ii) Executing miscellaneous fu...

  • Page 701

    B–63003EN–1/028. AUXILIARY FUNCTION679Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)ÁÁÁÁÁÁÁÁÁÁÁÁII.11.1ÁÁÁÁÁÁMiscellaneous function (M code)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ16i/160i/18i/180iÁÁ(For Machining Center)(B–63014EN)ÁÁII.11.4...

  • Page 702

    8. AUXILIARY FUNCTIONB–63003EN–1/02680Inhibits execution of a specified M, S, T and B function. That is, code signals and strobe signals are not issued. This function is used to check a program.[Classification] Input signal[Function] This signal selects auxiliary function lock. That is, th...

  • Page 703

    B–63003EN–1/028. AUXILIARY FUNCTION681[Classification] Output signal[Function] This signal reports the state of the auxiliary function lock signal AFL.[Output condition] This signal turns to “1” when:· The auxiliary function lock signal AFL is “1”This signal turns to “0” when:· ...

  • Page 704

    8. AUXILIARY FUNCTIONB–63003EN–1/02682So far, one block has been able to contain only one M code. However, thisfunction allows up to three M codes to be contained in one block.Up to three M codes specified in a block are simultaneously output to themachine. This means that compared with the...

  • Page 705

    B–63003EN–1/028. AUXILIARY FUNCTION683TFINTMFÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁM command (MaaMbbMcc;)Code signalM00-M31Strobe signalMFCode signalM200-M215Strobe signalMF2Code signalM300-M315Strobe signalMF3PMC side operationEnd signalFIN[Classification] Output sign...

  • Page 706

    8. AUXILIARY FUNCTIONB–63003EN–1/02684#7M3B3404#6#5#4#3#2#1#0[Data type] BitM3B The number of M codes that can be specified in one block0 : One1 : Up to threeCAUTION1 M00, M01, M02, M30, M98, M99, or M198 must not bespecified together with another M code.2 Some M codes other than M00, M01, M0...

  • Page 707

    B–63003EN–1/028. AUXILIARY FUNCTION685Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁÁII.11.2ÁÁÁÁÁÁÁMultiple M commands in a singleblockÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Lathe) (B...

  • Page 708

    8. AUXILIARY FUNCTIONB–63003EN–1/02686To accelerate M/S/T/B function execution, the high–speed M/S/T/Binterface has simplified the transfer of the strobe and completion signalsof the M/S/T/B functions.Whether to use the usual system or high–speed system for strobe signaland completion sig...

  • Page 709

    B–63003EN–1/028. AUXILIARY FUNCTION687ÁÁÁÁÁÁÁÁÁÁÁÁÁMxxMyyNext blockCode signalStrobe signal MFPMC side operationMiscellaneous function completion signal MFINFig. 8.4 (a) Timing chart of the high–speed systemÁÁÁÁÁÁÁÁÁÁÁMxxMyyNext blockCode signalStrobe signal MFPMC s...

  • Page 710

    8. AUXILIARY FUNCTIONB–63003EN–1/02688[Classification] Input signal[Function] Reports that the execution of a miscellaneous function using the high–speed M/S/T/B interface is completed.[Operation] For the operation and aprocedure of the contol unit when this signal turnsto “1” and “0...

  • Page 711

    B–63003EN–1/028. AUXILIARY FUNCTION689[Classification] Input signal[Function] Indicate that when the high–speed interface is used for multiple M com-mands per block, the second to 3rd M functions have been completed.[Operation] See “Basic procedure” for how the control unit operates and...

  • Page 712

    8. AUXILIARY FUNCTIONB–63003EN–1/02690#7MHI3001#6#5#4#3#2#1#0MHI Exchange of strobe and completion signals for the M, S, T, and B codes0 : Normal1 : High–speedNOTE1 The strobe signals MF, SF, TF, and BF are “0” when thepower is turned on.2 When the control unit is reset, MF, SF, TF, and...

  • Page 713

    B–63003EN–1/028. AUXILIARY FUNCTION691Control based on M codes is used to cause one path to wait for the otherduring machining. By specifying an M code in a machining program foreach path, the two paths can wait for each other at a specified block. Whenan M code for waiting is specified in a...

  • Page 714

    8. AUXILIARY FUNCTIONB–63003EN–1/02692#7G063#6#5#4#3#2#1NOWT#0#7F063#6WATO#5#4#3#2#1#0#18110Waiting M code range (minimum value)[Data type] Two–word[Valid data range] 0 and 100 to 99999999This parameter specifies the minimum value of the waiting M code.The waiting M code range is specified ...

  • Page 715

    B–63003EN–1/028. AUXILIARY FUNCTION693This function checks whether combinations of M codes (up to three)specified in one block are correct.The function has two purposes. One of the purposes is to alarm if an Mcode which must not be combined with any other M codes is combinedwith another. Th...

  • Page 716

    8. AUXILIARY FUNCTIONB–63003EN–1/02694For M codes which must be used separately from other M codes, alwaysset their group number to “1”. Such M codes include M00, M01, M02,M30, M98, and M99. For M codes for which the CNC performs internalprocessing in addition to sending them to the mac...

  • Page 717

    B–63003EN–1/028. AUXILIARY FUNCTION695(iii) No. 3441 = 234, No. 3442 = 345, No. 3443 = 456, No. 3444 = 567In this case, item numbers 100 to 199 correspond to M234 to M333,200 to 299 correspond to M345 to M444, 300 to 399 correspond toM456 to M555, and 400 to 499 correspond to M567 to M666. T...

  • Page 718

    8. AUXILIARY FUNCTIONB–63003EN–1/02696Now pressing the [READ] key displays the soft keys shown in Fig. 8.6(d).>MDI* * * * * * * * * *00 : 00 : 00CANCELEXECFig. 8.6 (d)To execute the read operation, just press the [EXEC] key.Pressing the [PUNCH] key on the screen shown in Fig. 8.6 (c...

  • Page 719

    B–63003EN–1/029. SPINDLE SPEED FUNCTION6979 SPINDLE SPEED FUNCTIONÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

  • Page 720

    B–63003EN–1/029. SPINDLE SPEED FUNCTION698When up to five digits are specified after address S, code and strobesignals are sent out and used to control the spindle speed. The codesignals are retained until another S code is issued.One S code is used for each block. Parameter No. 3031 can be...

  • Page 721

    B–63003EN–1/029. SPINDLE SPEED FUNCTION699There are two types of spindle motor control interfaces, spindle serialoutput and spindle analog output.The spindle serial output interface can control two serial spindles. Thespindle analog output interface can control one analog spindle.The table b...

  • Page 722

    B–63003EN–1/029. SPINDLE SPEED FUNCTION700The table below lists the relationship between the spindles and functions.f=Available ×=UnavailableSpindleÁÁÁÁÁÁÁÁÁÁÁÁÁSerial spindleÁÁÁÁÁÁÁÁÁÁÁÁAnalog spindleÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSpindleFunctionÁÁÁÁFirst ser...

  • Page 723

    B–63003EN–1/029. SPINDLE SPEED FUNCTION701NOTE1 The multispindle function is necessary. The function cannotbe used for the first and second spindles simultaneously.2 The multispindle function can control the speed of threespindles and switch the feedback signal between twoposition coders. I...

  • Page 724

    B–63003EN–1/029. SPINDLE SPEED FUNCTION702· Spindle control unit signals for the serial spindle<G0070 to G0073> (input), <F0045 to F0048>(output) → for the first serial spindle<G0074 to G0077> (input), <F0049 to F0052> (output) → for the second serial spindleThese...

  • Page 725

    B–63003EN–1/029. SPINDLE SPEED FUNCTION703#7#6#5#4#3#2#1#03701SS2ISI[Data type] BitISI Specifieds whether the serial spindle interface is used.0 : Used1 : Not usedNOTE1 This parameter is enabled only when the serial spindleinterface option is provided. The parameter is used whenthe CNC is st...

  • Page 726

    B–63003EN–1/029. SPINDLE SPEED FUNCTION704NumberÁÁÁÁÁÁÁMessageÁÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ749ÁÁÁÁÁÁÁÁÁÁÁS–SPINDLE LSI ERRORÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁA communication error occurred for the serialspindle. The cause may be noises, di...

  • Page 727

    B–63003EN–1/029. SPINDLE SPEED FUNCTION705 #7#6#5#4#3#2#1#0400SAISS2SSRPOSSICSIC 0: No module is available for spindle serial output.1: A module for spindle serial output is available.POS 0: No module is available for spindle analog output.1: A module for spindle analog output is available.SS...

  • Page 728

    B–63003EN–1/029. SPINDLE SPEED FUNCTION706410First serial spindle: Load meter reading (%)411First serial spindle: Speed meter reading (rpm)412Second serial spindle: Load meter reading (%)413Second serial spindle: Speed meter reading (rpm)To display the load and speed meter readings, the f...

  • Page 729

    B–63003EN–1/029. SPINDLE SPEED FUNCTION707This section describes spindle speed control. It also explains the positioncoder and the spindle speed arrival signal (SAR).9.3SPINDLE SPEEDCONTROLGeneral

  • Page 730

    B–63003EN–1/029. SPINDLE SPEED FUNCTION708The following chart summarizes spindle speed control.ÁÁÁÁÁÁÁÁÁÁÁÁÁOutput to the PMC(used for ladders)Switching in the machine←From the PMCMachining program, etc.↓⋅ Processing for gear change(S command→ spindle motor speed con-vers...

  • Page 731

    B–63003EN–1/029. SPINDLE SPEED FUNCTION709The S command specifies the spindle speed entered from machiningprograms, etc. for the CNC.For constant surface speed control (during G96 mode), the CNC convertsthe specified surface speed to the spindle speed.In the M series with bit 4 (GTT) of param...

  • Page 732

    B–63003EN–1/029. SPINDLE SPEED FUNCTION710Although the S command contains the spindle speed, the object that isactually controlled is the spindle motor. Therefore, the CNC must havesome provision to detect the gear stage between the speed and spindlemotor.There are two types of gear selectio...

  • Page 733

    B–63003EN–1/029. SPINDLE SPEED FUNCTION711The speed commands output to the spindle motor are as follows:⋅ For the serial spindle, the speed commands are processed as values 0 to16383 between the CNC and spindle control unit.⋅ For the analog spindle, the speed commands are output to the an...

  • Page 734

    B–63003EN–1/029. SPINDLE SPEED FUNCTION712NOTEIf a specified voltage of 10 V is already higher than theacceptable input voltage for the spindle drive system,calculate the spindle speed that corresponds to 10 V usinga proportional calculation method and use it instead. Now,in response to the ...

  • Page 735

    B–63003EN–1/029. SPINDLE SPEED FUNCTION713GR30GR20GR10ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ10VVCVHVLABCÁSpindle speedcommand(S code input)A×Vmin4095C×Vmax4095B×Vmaxh4095A×Vmaxl4095VC: Voltage corresponding to the upper limit of output value to spindle motor.VH: Voltage corresponding to the uppe...

  • Page 736

    B–63003EN–1/029. SPINDLE SPEED FUNCTION714· Spindle speed A (Parameter No.3741) (rpm) with low-speed gearswhen the command voltage is 10V· Spindle speed B (Parameter No.3742) (rpm) with high-speed gearswhen the command voltage is 10V (medium-speed gear for 3-stage)· Spindle speed C (Parame...

  • Page 737

    B–63003EN–1/029. SPINDLE SPEED FUNCTION715D When Gear select signal changeGear select signalSFS code read0VTFINTMFTMFTo next blockÁÁFINÁÁÁÁÁÁÁÁÁÁÁÁÁVLSpindle speed commandÁÁÁÁÁÁÁÁVHGR3O/GR2O/GR1OÁÁÁÁÁÁÁFig. 9.3 (e)Time chart when gear select signal changesIn this...

  • Page 738

    B–63003EN–1/029. SPINDLE SPEED FUNCTION716In addition, for the speed command output to the spindle motor, analogvoltages 0 to 10 V for analog spindle control correspond to digital data0 to 16383 for serial spindle control. However, it might be easier if youconsider them code signals from 0 t...

  • Page 739

    B–63003EN–1/029. SPINDLE SPEED FUNCTION717Reference→ Block Diagram for Analog Voltage OutputÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁrpm/10VX–axis pres-ent valuePower magnetics cabin...

  • Page 740

    B–63003EN–1/029. SPINDLE SPEED FUNCTION718Keep in mind the following: Even with bit 7 (TCW) of parameter No.3706 = 1, the CNC cannot determine the output polarity if it has not issuedM03/M04, and therefore, actual output does not work even if the speedcommand output has been specified.Accord...

  • Page 741

    B–63003EN–1/029. SPINDLE SPEED FUNCTION719ENB2ENB Enable signalÁÁÁÁÁÁÁÁÁÁSpindle speedanalog voltageoutputSVCESESSVCENB1Control unitmax+10V2mAOutput impedance100ΩÁÁName Connector/PinSVCJA40/7ESJA40/5ENB1JA40/8ENB2JA40/9WARNINGSince the output voltage is a weak signal, do not rel...

  • Page 742

    B–63003EN–1/029. SPINDLE SPEED FUNCTION720[Classification] Input signal[Function] The command output to the spindle is held.[Operation] When the spindle stop signal turns to “0” , the output voltage becomes 0Vand the enable signal ENB turns to “0” (M05 is not output). When thissignal ...

  • Page 743

    B–63003EN–1/029. SPINDLE SPEED FUNCTION721low gear range, the gear select signal does not change and the commandoutput is calculated and output to obtain the set speed at high gear.When the spindle motor speed is set by parameter GST (No. 3705#1)=1,the command output is output regardless of g...

  • Page 744

    B–63003EN–1/029. SPINDLE SPEED FUNCTION722[Classification] Input signal[Function] The SAR signal initiates cutting feed. In other words, if the signal islogical 0, cutting feed will not start.[Operation] Generally, this signal is used to inform the CNC that the spindle hasreached the specifi...

  • Page 745

    B–63003EN–1/029. SPINDLE SPEED FUNCTION723[Classification] Output signal[Function] Informs absence or presence of spindle output command.[Output condition] The ENB signal becomes logical 0 when the command output to thespindle becomes logical 0. Otherwise, the signal is logical 1.During anal...

  • Page 746

    B–63003EN–1/029. SPINDLE SPEED FUNCTION724[Classification] Output signal[Function] This signal converts the spindle speed command value calculated by theCNC to code signals 0 to 4095.[Output condition] The relationship between the spindle speed command value (calculatedby the CNC) and the val...

  • Page 747

    B–63003EN–1/029. SPINDLE SPEED FUNCTION725#7#6#5#4#3#2#1#0CONG027*SSTP3*SSTP2*SSTP1SWS3SWS2SWS1G028GR2GR1G029*SSTPSORSARSOV7G030SOV6SOV5SOV4SOV3SOV2SOV1SOV0R08IG032R07IR06IR05IR04IR03IR02IR01ISINDG033SSINSGNR12IR11IR10IR09I#7#6#5#4#3#2#1#0F001ENBF007SFS07F022S06S05S04S03S02S01S00S15F023S14S13...

  • Page 748

    B–63003EN–1/029. SPINDLE SPEED FUNCTION726GST: The SOR signal is used for:0 : Spindle orientation1 : Gear shiftSGB: Gear switching method0 : Method A (Parameters No. 3741 to 3743 for the maximum spindlespeed at each gear are used for gear selection.)1 : Method B (Parameters No. 3751 and 3752 ...

  • Page 749

    B–63003EN–1/029. SPINDLE SPEED FUNCTION727NOTE1 Type M:The gear selection signal is not entered. In response to anS command, the CNC selects a gear according to the speedrange of each gear specified beforehand in parameters.Then the CNC reports the selection of a gear by outputtingthe gear s...

  • Page 750

    B–63003EN–1/029. SPINDLE SPEED FUNCTION728[Adjustment method] (1) Assign standard value 1000 to the parameter.(2) Specify the spindle speed so that the analog output of the spindle speedis the maximum voltage (10 V).(3) Measure the output voltage.(4) Assign the value obtained by the following...

  • Page 751

    B–63003EN–1/029. SPINDLE SPEED FUNCTION729[Valid data range] 0 to 20000Set the spindle speed during spindle orientation or the spindle motorspeed during gear shift.When GST, #1 of parameter 3705, is set to 0, set the spindle speed duringspindle orientation in rpm.When GST, #1 of parameter 370...

  • Page 752

    B–63003EN–1/029. SPINDLE SPEED FUNCTION7303740Time elapsed prior to checking the spindle speed arrival signal[Data type] Byte[Unit of data] msec[Valid data range] 0 to 225Set the time elapsed from the execution of the S function up to thechecking of the spindle speed arrival signal.3741Maximu...

  • Page 753

    B–63003EN–1/029. SPINDLE SPEED FUNCTION7313751Spindle motor speed when switching from gear 1 to gear 23752Spindle motor speed when switching from gear 1 to gear 3[Data type] Word[Valid data range] 0 to 4095For gear switching method B, set the spindle motor speed when the gearsare switched.Set...

  • Page 754

    B–63003EN–1/029. SPINDLE SPEED FUNCTION7323761Spindle speed when switching from gear 1 to gear 2 during tapping3762Spindle speed when switching from gear 2 to gear 3 during tapping[Data type] Word[Unit of data] rpm[Valid data range] 0 to 32767When method B is selected (SGT,#3 of parameter 370...

  • Page 755

    B–63003EN–1/029. SPINDLE SPEED FUNCTION7333772Maximum spindle speed[Data type] Word[Unit of data] rpm[Valid data range] 0 to 32767This parameter sets the maximum spindle speed. When a command specifying a speed exceeding the maximum speed ofthe spindle is specified , or the speed of the spind...

  • Page 756

    B–63003EN–1/029. SPINDLE SPEED FUNCTION734CAUTIONThis section mentioned a spindle speed control that shouldbe prepared on the CNC side. But it is also necessary todesign the signals to the spindle control unit.Consult the manual of the spindle control unit used and takenecessary actions on t...

  • Page 757

    B–63003EN–1/029. SPINDLE SPEED FUNCTION735In a two–path lathe application, the additional path section (path No. 2)can have the same spindle interface as a one–path lathe (see Section 9.2.).Each spindle is controlled by a command issued by tool post 1 or 2.Which spindle is controlled by w...

  • Page 758

    B–63003EN–1/029. SPINDLE SPEED FUNCTION736When an analog spindle is used, supplying the position coder feedbacksignal to the position coder interface of tool post 2 via an externaldistribution circuit makes it possible to use either tool post for threadcutting and feed per rotation.Tool post ...

  • Page 759

    B–63003EN–1/029. SPINDLE SPEED FUNCTION737The spindle interface for either tool post is used.The spindle command select signals SLSPA <G063#2> and SLSPB<G063#3> (input) specify the tool post whose spindle command is to befollowed by each spindle.When the serial spindles are used o...

  • Page 760

    B–63003EN–1/029. SPINDLE SPEED FUNCTION738If either tool post uses an analog spindle as the first spindle, the spindlefeedback signals SLPCA<G064#2> and SLPCB<G064#3> (input)cannot cause the NC to select a position coder feedback signal.If both tool posts use an analog spindle, sw...

  • Page 761

    B–63003EN–1/029. SPINDLE SPEED FUNCTION739If the first spindle is a serial spindle, the second and third spindles can alsobe used in a two–path lathe application. (See Section 9.2.)In the following chart, all spindles are connected under two–spindlecontrol.Under one–spindle control, an...

  • Page 762

    B–63003EN–1/029. SPINDLE SPEED FUNCTION740Optional functions for spindles are valid for both tool posts. However,you may want to use the optional functions for only one of the tool postsbecause of relationships with the interface and PMC ladder.Parameters are available to disable the followi...

  • Page 763

    B–63003EN–1/029. SPINDLE SPEED FUNCTION741(2) In the 2-spindle control modeSignal inputÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁCommand to thespindle connected toÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁCommand to thespindle connected toÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSLPCAÁÁÁÁÁÁSLPCBÁÁÁÁ...

  • Page 764

    B–63003EN–1/029. SPINDLE SPEED FUNCTION742NOTEThe SLPCA and SLPCB signals are effective only in the2-spindle control mode using two serial spindles. In the2-spindle control mode using analog spindles, the feedbacksignal of spindle 1 is input to tool post 1, and the feedbacksignal of spindle ...

  • Page 765

    B–63003EN–1/029. SPINDLE SPEED FUNCTION743#7#6#5#4#3#2#1#0ECS3702ESSEASESIEMS[Data type] BitEMS Multi–spindle control function0 : Used1 : Not usedNOTEIf the multi–spindle control function is not required for onetool post in two–path control, specify this parameter for thetool post to wh...

  • Page 766

    B–63003EN–1/029. SPINDLE SPEED FUNCTION744#7#6#5#4#3#2#1#037032SP[Data type] Bit2SP Specifies whether one or two spindles are controlled (T series 2–pathcontrol).0 : One spindle (two tool posts)1 : Two spindle (two tool posts)#7#6#5#4#3#2#1#03706PCS[Data type] BitPCS When multi–spindle co...

  • Page 767

    B–63003EN–1/029. SPINDLE SPEED FUNCTION745Table 9.4 lists the position coder feedback signals used for each tool postin the above configuration. These position coder feedback signals areselected according to the following:⋅ Bit 3 (PCS) of parameter No. 3706⋅ Spindle feedback select signa...

  • Page 768

    B–63003EN–1/029. SPINDLE SPEED FUNCTION746NOTE1 The spindle commands include S code commands,maximum speed command (G50S__), M03, M04, M05, andconstant surface speed control commands (G96 and G97)2 Signals to operate the spindle control unit are not affectedby the spindle command select signa...

  • Page 769

    B–63003EN–1/029. SPINDLE SPEED FUNCTION747With the spindle serial output or analog output function, specifying thesurface speed (m/min or feet/min) directly in an S command makes itpossible to change the spindle output continuously so as to maintain aconstant surface speed at a programmed poi...

  • Page 770

    B–63003EN–1/029. SPINDLE SPEED FUNCTION748Assume that gear switching is two stage switching. If the spindle speedwith the output 10 V is 1000 rpm for the low speed gear (G1) and 2000rpm for the high speed gear (G2), set these speeds to the parameter No.3741, 3742, respectively. In this case...

  • Page 771

    B–63003EN–1/029. SPINDLE SPEED FUNCTION749The output to the spindle in spindle serial output is a digital data.Therefore assume the following relation for calculation:Spindle analog output (voltage) 10V = Spindle serial output(digital data) 4095.The above calculation becomes as follows:The va...

  • Page 772

    B–63003EN–1/029. SPINDLE SPEED FUNCTION750ÁÁÁÁÁÁÁZXN3N4In this program, block N2 issues a constant surface speed controlcommand (G96), a surface speed command (S12 m/min), and afeed–per–revolution command (G95). Block N3 causes the CNC tochange the spindle speed specification from...

  • Page 773

    B–63003EN–1/029. SPINDLE SPEED FUNCTION751#71405#6#5#4#3#2FPR#1#0[Data type] BitFPR Specifies whether to use a function that converts the specified spindlerotation speed to the actual spindle rotation speed in feed–per–revolutionmode, that is, the feed–per–revolution function with no ...

  • Page 774

    B–63003EN–1/029. SPINDLE SPEED FUNCTION7523771Minimum spindle speed in constant surface speed control mode (G96)[Data type] Word[Unit of data] rpm[Valid data range] 0 to 32767Set the minimum spindle speed in the constant surface speed controlmode (G96). The spindle speed in constant surface ...

  • Page 775

    B–63003EN–1/029. SPINDLE SPEED FUNCTION753CAUTION1 If the spindle speed corresponding to the calculated surfacespeed exceeds the speed specified in the spindle speedclamp command (G50S_ for T series and G92S_ for Mseries) during the G96 mode, the actual spindle speed isclamped at the value sp...

  • Page 776

    B–63003EN–1/029. SPINDLE SPEED FUNCTION754With this function, an overheat alarm (No. 704) is raised and the spindlespeed fluctuation detection alarm signal SPAL is issued when the spindlespeed deviates from the specified speed due to machine conditions.This function is useful, for example, fo...

  • Page 777

    B–63003EN–1/029. SPINDLE SPEED FUNCTION7551. When an alarm is issued after a specified spindle speed is reachedSpindle speedCheckCheckNo checkSrSrÁÁSqÁÁSqSdÁÁÁÁSdÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSpecification of another speedStart of checkAlarmTimeSpecified spee...

  • Page 778

    B–63003EN–1/029. SPINDLE SPEED FUNCTION756[Classification] Output signal[Function] This signal indicates that the actual spindle speed is not within a toleranceto the specified speed.[Output condition] The signal becomes logical “1” when:⋅ The actual spindle speed goes out of tolerance ...

  • Page 779

    B–63003EN–1/029. SPINDLE SPEED FUNCTION7574911Ratio (q) of the fluctuation of spindle speed which is assumed to be the specifiedspindle speed[Data type] WordUnit of dataÁÁÁÁÁÁÁ 1%ÁÁÁÁÁÁÁ 0. 1% (T series)ÁÁÁÁÁÁÁÁÁÁÁData rangeÁÁÁÁÁÁÁÁÁÁÁÁ 1 – 100ÁÁ...

  • Page 780

    B–63003EN–1/029. SPINDLE SPEED FUNCTION758NumberÁÁÁÁÁÁÁMessageÁÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ704ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOVER HEAT : SPINDLEÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSpindle overheat in the spindle f...

  • Page 781

    B–63003EN–1/029. SPINDLE SPEED FUNCTION759The PMC can read actual spindle speed.[Classification] Output signal[Function] These 16-bit binary code signals output from the CNC to the PMC theactual spindle speed obtained by feedback pulses from the position codermounted on the spindle.[Operatio...

  • Page 782

    B–63003EN–1/029. SPINDLE SPEED FUNCTION760This function positions the spindle using the spindle motor and positioncoder.The function has a coarser least command increment compared with theCs contour control function and has no interpolation capability with otheraxes. However, it can be insta...

  • Page 783

    B–63003EN–1/029. SPINDLE SPEED FUNCTION761Any axis in the control axis group can be used as the C axis (parameterno. 1020). Specify *1 as its servo axis number (parameter no. 1023).Only one set of this setting can be used for each control path. The spindlesubjected to spindle positioning is ...

  • Page 784

    B–63003EN–1/029. SPINDLE SPEED FUNCTION762The command system comes in two types: The first positions a semi-fixedangle; the second positions an optional angle.A 2-digit numerical value following the M address is used for thecommand. There are six positioning angle values (Mα to M(a + 5)),whe...

  • Page 785

    B–63003EN–1/029. SPINDLE SPEED FUNCTION763ÁÁÁÁÁÁÁÁÁÁÁÁÁÁG code system AÁÁÁÁÁÁÁÁÁÁÁÁÁÁG code system B, CÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁCommand methodÁÁÁÁAddress usedÁÁÁÁÁÁÁÁÁÁÁCommand ofA! B on theabove Fig.ÁÁÁÁÁÁÁÁÁÁÁAddress usedand G–cod...

  • Page 786

    B–63003EN–1/029. SPINDLE SPEED FUNCTION764[Classification] Output signal[Function] This signal specifies that the spindle be clamped mechanically in a spindlepositioning sequence.When this signal turns to 1, clamp the spindle on the machine (apply thebrakes or insert the pin).[Output conditio...

  • Page 787

    B–63003EN–1/029. SPINDLE SPEED FUNCTION765[Classification] Output signal[Function] This signal indicates that the spindle orientation for the spindlepositioning has been completed.[Output condition] When spindle orientation is complete, this signal turns to 1. When spindlepositioning is perf...

  • Page 788

    B–63003EN–1/029. SPINDLE SPEED FUNCTION766- Spindle OrientationPOSITION LOOPINITIALIZESpindle enable onM codeM FSPSTPSUCLP*SUCPFSpindle movementZPxSCLP*SCPFFINÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSpindle enable off⇒ POSITION L...

  • Page 789

    B–63003EN–1/029. SPINDLE SPEED FUNCTION767- Spindle Positioning by M codeSpindle enable onM codeM FSPSTPSUCLP*SUCPFSpindle movementSCLP*SCPFFINÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSpindle enable off

  • Page 790

    B–63003EN–1/029. SPINDLE SPEED FUNCTION768- Spindle Positioning by Address C,HSpindle enable ONSPSTPSUCLP*SUPCFSpindle movementSCLP*SCPFÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSpindle enableOFF- Spindle Positioning ResetÁÁÁÁÁM codeM FÁÁÁÁÁÁSPSTPÁÁSUCLPÁÁÁÁÁÁÁÁÁÁÁFI...

  • Page 791

    B–63003EN–1/029. SPINDLE SPEED FUNCTION769#7#6#5#4#3#2#1#01006ZMIx[Data type] Bit axisZMIx The direction of reference position return and the direction of initialbacklash at power–on0 : Positive direction1 : Negative directionNOTEWhen the serial spindle is being used, this parameter isinval...

  • Page 792

    B–63003EN–1/029. SPINDLE SPEED FUNCTION7700 : Not set automatically1 : Set automatically1250Coordinate value of the reference position used when automatic coordinate systemsetting is performed[Data type] Two–word axisSet the coordinate value of the reference position on each axis to be use...

  • Page 793

    B–63003EN–1/029. SPINDLE SPEED FUNCTION7711620Time constant of rapid traverse linear acceleration/deceleration for each axis[Data type] Word axis[Unit of data] ms[Valid data range] 0 to 4000Set time constant of rapid traverse linear acceleration/deceleration foreach axis.#7#6#5#4#3#2#1#01816D...

  • Page 794

    B–63003EN–1/029. SPINDLE SPEED FUNCTION7721829Positioning deviation limit for each axis in the stopped state[Data type] Word axis[Unit of data] Detection unit[Valid data range] 0 to 32767Set the positioning deviation limit in the stopped state for each axis.1850Grid shift for each axis[Data t...

  • Page 795

    B–63003EN–1/029. SPINDLE SPEED FUNCTION773NOTEThe direction for spindle orientation (or reference positionreturn) in spindle positioning using a serial spindle isdetermined by this parameter.4044Velocity loop proportion gain in servo mode (High gear)4045Velocity loop proportion gain in servo ...

  • Page 796

    B–63003EN–1/029. SPINDLE SPEED FUNCTION774NOTESet the gear ration between spindle and AC spindle motorwhen the spindle positioning is performed with serialspindle. For which gear is used, it depends on theclutch/gear signal (serial spindle) CTH1A, CTH1B.4065Position gain in servo mode (HIGH)...

  • Page 797

    B–63003EN–1/029. SPINDLE SPEED FUNCTION775ESI Selection of a spindle positioning specification0 : The conventional specificaion is used.1 : The extended specificaion is used.NOTEThe extended specification includes the following twoextensions:D With the conventional specification, the number o...

  • Page 798

    B–63003EN–1/029. SPINDLE SPEED FUNCTION7764960M code specifying the spindle orientation[Data type] Word[Unit of data] Integer[Valid data range] 6 to 97Set an M code to change the spindle rotating mode to the spindlepositioning mode. Setting the M code performs the spindle orientation.Spindle...

  • Page 799

    B–63003EN–1/029. SPINDLE SPEED FUNCTION777NOTEθ represents the basic angular diplacement set inpamrameter No. 4963.4963M code for specifying a spindle positioning angle[Data type] Word[Unit of data] deg[Valid data range] 1 to 60This parameter sets a basic angular displacement used for half...

  • Page 800

    B–63003EN–1/029. SPINDLE SPEED FUNCTION7784971Servo loop gain multiplier of the spindle for gear 14972Servo loop gain multiplier of the spindle for gear 24973Servo loop gain multiplier of the spindle for gear 34974Servo loop gain multiplier of the spindle for gear 4[Data type] WordSet the ser...

  • Page 801

    B–63003EN–1/029. SPINDLE SPEED FUNCTION779NumberÁÁÁÁÁÁÁMessageÁÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ053ÁÁÁÁÁÁÁÁÁÁTOO MANY ADDRESSCOMMANDSÁÁÁÁÁÁÁÁÁÁÁÁÁÁIn the chamfering and corner R com-mands, two or more of I, K and R arespecified. ...

  • Page 802

    B–63003EN–1/029. SPINDLE SPEED FUNCTION780CAUTION1 Feed hold is invalid during spindle positioning.2 Spindle positioning stops when emergency stop is applied;restart with orientation operation.3 Dry run, machine lock, and auxiliary function lock are notavailable during spindle positioning.4 T...

  • Page 803

    B–63003EN–1/029. SPINDLE SPEED FUNCTION781The Cs contour control function positions the serial spindle using thespindle motor in conjunction with a dedicated detector mounted on thespindle.This function can perform more accurate positioning than the spindlepositioning function, and has an int...

  • Page 804

    B–63003EN–1/029. SPINDLE SPEED FUNCTION782The address for the move command in Cs contour control is the axis namespecified in parameter no.1020. This address is arbitrary.When the second auxiliary function option is provided, address B cannotbe used for the name of the contour axis. For the...

  • Page 805

    B–63003EN–1/029. SPINDLE SPEED FUNCTION783After the serial spindle is switched from spindle speed control to Cscontour control mode, the current position is undefined. Return thespindle to the reference position.The reference position return of the Cs contour control axis is as follows:- In ...

  • Page 806

    B–63003EN–1/029. SPINDLE SPEED FUNCTION784- Interruption of reference position return(i)Manual operationReturn to the reference position can be interrupted by reset-ting, emergency stop, or turning off the feed axis and directionselect signal. When the interrupted return operation is re-sume...

  • Page 807

    B–63003EN–1/029. SPINDLE SPEED FUNCTION785[Classification] Output signal[Function] This signal indicates the axis is under Cs contour control.[Output condition] Spindle speed control mode→ 0Cs contour control mode→ 1ÁÁSpindle speed controlCs contour controlSpindle speed controlCONGear c...

  • Page 808

    B–63003EN–1/029. SPINDLE SPEED FUNCTION786Refer to the manual of serial spindle.These signals determine what parameter (loop gain, etc.) to be used foreach gear position.CTH1A and CTH2A are the gear select signals for the serial spindle, butGR1 and GR2 must also be set. Do not change these s...

  • Page 809

    B–63003EN–1/029. SPINDLE SPEED FUNCTION787Feed axis and direction select signal +Jn, *Jn <G100, G102> (Input)Manual handle feed axis select signal HSnA, HSnB, HSnC, HSnD<G018, G019> (Input) (Refer to respective items in this manual)The Cs contour control axis can be manually opera...

  • Page 810

    B–63003EN–1/029. SPINDLE SPEED FUNCTION7881020Name of the axis used for programming for each axis[Data type] Byte axisSet the name of the program axis for each control axis, with one of thevalues listed in the following table:AxisnameÁÁÁÁÁÁÁSetvalueÁÁÁÁÁÁAxisnameÁÁÁÁÁÁÁSet...

  • Page 811

    B–63003EN–1/029. SPINDLE SPEED FUNCTION7891023Number of the servo axis for each axis[Data type] Byte axisSet the servo axis for each control axis.Generally, the same number shall be assigned to the control axis and thecorresponding servo axis.Set –1 as the number of servo axis to the Cs con...

  • Page 812

    B–63003EN–1/029. SPINDLE SPEED FUNCTION7901820Command multiply for each axis (CMR)[Data type] Byte axisD When command multiply is 1/2 to 1/27Set value=1(Command multiply)+100 [Valid data range: 102 to 127]D When command multiply is 0.5 to 48Set value = 2 command multiply [Valid data range...

  • Page 813

    B–63003EN–1/029. SPINDLE SPEED FUNCTION7913900The number of servo axis that interpolates with Cs contour control axis[Data type] Byte[Valid data range] 0 to 8Set the number of servo axis that interpolates with Cs contour control axis(1st group)NOTESet 0 when there is no servo axis that interp...

  • Page 814

    B–63003EN–1/029. SPINDLE SPEED FUNCTION7923911Loop gain of the servo axis that interpolates with Cs contour control axis duringinterpolation (High gear)3912Loop gain of the servo axis that interpolates with Cs contour control axis duringinterpolation (Medium high gear)3913Loop gain of the ser...

  • Page 815

    B–63003EN–1/029. SPINDLE SPEED FUNCTION7933930Number of servo axis that interpolates with Cs contour control[Data type] Byte[Valid data range] 0 to 8Set the number of servo axis that interpolates with Cs contour control axis(4th group)NOTEWhen there is no servo axis or less than four servo ax...

  • Page 816

    B–63003EN–1/029. SPINDLE SPEED FUNCTION7943941Loop gain of the servo axis that interpolates with Cs contour control axis duringinterpolation (High gear)3942Loop gain of the servo axis that interpolates with Cs contour control axis duringinterpolation (Medium high gear)3943Loop gain of the ser...

  • Page 817

    B–63003EN–1/029. SPINDLE SPEED FUNCTION795NOTEFor which position gain is used in actual spindle operation,it depends on clutch/gear signal (serial spindle) CTH1A,CTH2A.4135Grid shift value at Cs contour control[Data type] Two–word[Unit of data] 1 pulse unit (360000 p/rev)[Valid data range] ...

  • Page 818

    B–63003EN–1/029. SPINDLE SPEED FUNCTION796WARNINGIn the spindle contour control mode, do not switch thespindle gears. When the gears need to be changed put thesystem in the spindle speed control mode first.NOTEIn the T series machines, the spindle contour controlfunction and the spindle posi...

  • Page 819

    B–63003EN–1/029. SPINDLE SPEED FUNCTION797In addition to the conventional (first) spindle, two other (second and third)spindles can be controlled. These additional spindles allow two-stagegear changes. An S code is used for a command to any of these spindles;which spindle is selected is deter...

  • Page 820

    B–63003EN–1/029. SPINDLE SPEED FUNCTION798An S command is sent as a speed command to each spindle selected, usinga spindle selection signal (SWS1 to SWS3 <G027#0-#2>). Each spindlerotates at the specified speed. If a spindle is not sent a spindle selectionsignal, it continues to rotate ...

  • Page 821

    B–63003EN–1/029. SPINDLE SPEED FUNCTION799The concept of Type B multi-spindle control outlined below.ÁÁÁÁÁÁÁÁÁÁÁÁFirst spindleÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁS commandÁÁÁÁÁÁÁÁÁÁÁÁHold 1ÁÁÁÁÁÁÁÁÁHold 2ÁÁÁÁÁÁHold 3...

  • Page 822

    B–63003EN–1/029. SPINDLE SPEED FUNCTION800The control function for keeping the surface speed constant can be usedwith any of the three spindles if the spindle speed is within the rangeallowable for this function. (When the position coder is required, it canbe installed on the 1st or 2nd spin...

  • Page 823

    B–63003EN–1/029. SPINDLE SPEED FUNCTION801[Classification] Input signal[Function] Controls whether S command specified to the NC is output to the spindleor not in multi-spindle.SWS1 1 : Outputs a speed command to the first spindle.0 : Outputs no speed command to the first spindle.SWS2 1 : Out...

  • Page 824

    B–63003EN–1/029. SPINDLE SPEED FUNCTION802[Classification] Input signal[Function] Position coder selection signal used for control.PC2SLC 1 : Uses feedback pulses obtained by the second position coder forcontrol.0 : Uses feedback pulses obtained by the first position coder for control.When th...

  • Page 825

    B–63003EN–1/029. SPINDLE SPEED FUNCTION803#7#6#5#4#3#2#1#0G027*SSTP3*SSTP2*SSTP1SWS3SWS2SWS1PC2SLCG028GR2GR1G029*SSTPGR31GR21R08IG032R07IR06IR05IR04IR03IR02IR01ISINDG033SSINSGNR12IR11IR10IR09IR08I2G034R07I2R06I2R05I2R04I2R03I2R02I2R01I2SIND2G035SSIN2SGN2R12I2R11I2R10I2R09I2R08I3G036R07I3R06I3...

  • Page 826

    B–63003EN–1/029. SPINDLE SPEED FUNCTION804#7#6#5#4#3#2#1#03706GTTPCS[Data type] BitPCS When multi–spindle control is applied to two tool posts in two–pathcontrol, this parameter specifies whether a position coder feedback signalfrom the other tool post is selectable, regardless of the sta...

  • Page 827

    B–63003EN–1/029. SPINDLE SPEED FUNCTION805#7#6#5#4#3#2#1#03707P22P21P22, P21 Gear ratio of spindle to second position coderNumber of spindle revolutionsNumber of position coder revolutionsMagnificationP22P21 1 0 0 2 0 1Magnification= 4 1 0 8 1 1#7#6#5#4#3#2#1#03709MSIMSI In multi–sp...

  • Page 828

    B–63003EN–1/029. SPINDLE SPEED FUNCTION806NOTE1 When the constant surface speed control option is selected,the spindle speed is clamped at the maximum speed,regardless of whether the G96 mode or G97 mode isspecified.2 When the multi–spindle control option is selected, set themaximum speed f...

  • Page 829

    B–63003EN–1/029. SPINDLE SPEED FUNCTION8073811Maximum spindle speed for gear 1 of the second spindle3812Maximum spindle speed for gear 2 of the second spindle[Data type] Word[Unit of data] rpm[Valid data range] 0 to 32767Set the maximum spindle speed for each gear of the second spindle.NOTETh...

  • Page 830

    B–63003EN–1/029. SPINDLE SPEED FUNCTION8083822Maximum speed of the third spindle[Data type] Word[Unit of data] rpm[Valid data range] 0 to 32767This parameter sets the maximum speed for the third spindle.When a command specifying a speed exceeding the maximum spindlespeed is specified, or the ...

  • Page 831

    B–63003EN–1/029. SPINDLE SPEED FUNCTION809WARNINGDo not switch between the first and second position coderswhile a function that uses position coder feedbackinformation is being executed. That is, PMC signal PC2SLC<G028#7> cannot be used while, for instance, a commandfor feed per rotati...

  • Page 832

    B–63003EN–1/029. SPINDLE SPEED FUNCTION810In a tapping cycle (M series: G84/G74, T series: G84/G88), synchronouscontrol is applied to the tapping operation of a tapping axis and theoperation of the spindle.This capability eliminates the need to use a tool such as a float tapper, thusenabling ...

  • Page 833

    B–63003EN–1/029. SPINDLE SPEED FUNCTION811The descriptions given in this section (such as spindle gear switching andM–type/T–type) are based on the explanation given in Section 9.3. Referto Section 9.3 as necessary.The differences in the specifications for rigid tapping for the M series ...

  • Page 834

    B–63003EN–1/029. SPINDLE SPEED FUNCTION812As shown in the figure below a gear can be inserted between the spindleand spindle motor, and between the spindle and position coder.ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSpindle controlÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSpindle amplifierÁÁÁÁ...

  • Page 835

    B–63003EN–1/029. SPINDLE SPEED FUNCTION813The M series allows up to three stages, regardless of which gear selectionmethod has been selected. (Parameter Nos. 5224 and 5234 cannot beused.)The T series supports up to four stages. (Set parameter Nos. 5221 to 5224and 5231 to 5234.) When the mul...

  • Page 836

    B–63003EN–1/029. SPINDLE SPEED FUNCTION814If the gear ratio is either 1:1, 1:2, 1:4, and 1:8, it is set using parametersPG1 and PG2 (No. 3706 #0, #1). This applies if the position coder ismounted in a spindle or built into a spindle motor when only one stagegear is provided. .For 2nd spindle...

  • Page 837

    B–63003EN–1/029. SPINDLE SPEED FUNCTION815Changing gears during rigid tapping requires a different process from thatfor gear changes during normal machining. As described above, changinggears conforms to the gear change specifications mentioned in section 9.3when the M type gear selection met...

  • Page 838

    B–63003EN–1/029. SPINDLE SPEED FUNCTION816NOTEThis table show an example of three gears. For the basicspindle motor speed, refer to the spindle motor descriptionmanual. “+ a” means that the spindle motor speed mayslightly exceed the basic spindle motor speed.If the M type gear selection...

  • Page 839

    B–63003EN–1/029. SPINDLE SPEED FUNCTION817In rigid tapping mode, the tapping axis is fed at a rate specified by F; thespindle speed is S 360(deg/min). Override is invalid for both of them.An override of up to 200% can be applied to withdrawal operations bysetting bit 4 (DOV) of parameter No....

  • Page 840

    B–63003EN–1/029. SPINDLE SPEED FUNCTION818For rigid tapping adjustment, the diagnosis screen displays informationrelated to rigid tapping.For part of the display data, the user can choose between two sets of dataitems relating to the synchronization of the spindle and tapping axis bysetting b...

  • Page 841

    B–63003EN–1/029. SPINDLE SPEED FUNCTION819Diagnosis No. 0452 is cleared to “0” when rigid tapping mode is set orcanceled, and diagnosis No. 0453 is cleared to “0” in the positioning ofthe rigid tapping cycle.The following figure shows the tapping axis as the Z axis.ÁZ–axiserrorÁÁ...

  • Page 842

    B–63003EN–1/029. SPINDLE SPEED FUNCTION8200450SPINDLE MOTION ERRORSpindle position deviation during rigid tapping[Unit] Pulse0451SPINDLE MOTION PULSENumber of pulses distributed to the spindle during rigid tapping[Unit] Pulse0452RIGID ERRORMomentary error difference between the spindle and ta...

  • Page 843

    B–63003EN–1/029. SPINDLE SPEED FUNCTION8210455SYNC. PULSE(SUM)Momentary spindle–converted move during command differencebetween the spindle and the tapping axis during rigid tapping[Unit] PulseNOTEThis data item is displayed only when bit 0 (DGN) ofparameter No. 5204 is set to 0.0456SYNC. E...

  • Page 844

    B–63003EN–1/029. SPINDLE SPEED FUNCTION822The rigid tapping command format for the T series is described below.For an explanation of the command format used with the M series, referto Section II.13.2.2 of the “Operator’s Manual for Machining Center(B–63014EN) ”.G84G88Front tapping cyc...

  • Page 845

    B–63003EN–1/029. SPINDLE SPEED FUNCTION823D Specifying M29 and G84 (G88) in the same block (Note, however, thatM29 and Mjj for C–axis clamping cannot be specified in the sameblock.)GjjX (Z) __Z (X) __R__P__F__K__M29****;X (Z) __C__;X (Z) __C__; · ·G80;D Convert...

  • Page 846

    B–63003EN–1/029. SPINDLE SPEED FUNCTION824G84⋅G85 ( Tapping cycle) Rapid traverse Z (X) axis feed P DwellÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁG84 (G88) (G98 mode)G84 (G88) (G99 mode)SpindlestopSpindlestopMotion 1Motion 2Spindle CWSpindle C...

  • Page 847

    B–63003EN–1/029. SPINDLE SPEED FUNCTION825Rigid tapping is classified into two types: rigid tapping in feed perrotation mode (G99) and rigid tapping in feed per minute mode (G98).Example)The example below specifies rigid tapping in feed per rotation mode forcutting a thread with a lead of 1 m...

  • Page 848

    B–63003EN–1/029. SPINDLE SPEED FUNCTION826[Classification] Input signal[Function] When M29 (miscellaneous function for preparation for rigid tapping) isspecified, the PMC enters rigid tapping mode, then turns on this signalto notify the CNC.1 : The PMC enters in rigid tapping mode.0 : The PMC...

  • Page 849

    B–63003EN–1/029. SPINDLE SPEED FUNCTION827[Classification] Output signal[Function] This signal notifies the PMC that rigid tapping mode is set.RTAP 1 : Rigid tapping mode is currently set.0 : Rigid tapping mode is not currently set.By latching M29, the PMC knows that rigid tapping mode has be...

  • Page 850

    B–63003EN–1/029. SPINDLE SPEED FUNCTION828M series: SF output depends on the gear selection method, as describedbelow.[1] M–type gear selection methodSF output depends on bit 6 (SFA) of parameter No. 3705.[2] T–type gear selection methodSF output depends on the setting of bit 5 (NSF) of p...

  • Page 851

    B–63003EN–1/029. SPINDLE SPEED FUNCTION829ÁÁÁÁÁÁÁÁÁÁGR3OÁÁÁÁÁÁÁÁGR2OÁÁÁÁÁÁÁÁGR1OÁÁÁÁÁÁÁÁÁ1st (low) speed gearÁÁÁÁÁÁÁÁÁÁ×ÁÁÁÁÁÁÁÁ×ÁÁÁÁÁÁÁÁfÁÁÁÁÁÁÁÁÁ2nd (medium) speed gearÁÁÁÁÁÁÁÁÁÁ×ÁÁÁÁÁÁÁÁfÁÁÁÁÁÁ...

  • Page 852

    B–63003EN–1/029. SPINDLE SPEED FUNCTION830See the description of the signals related to gear switching, given above.[Classification] Input signal[Operation] SWS1 and SWS2 are used to transfer spindle commands when themulti–spindle control option is used. In rigid tapping, the signals can b...

  • Page 853

    B–63003EN–1/029. SPINDLE SPEED FUNCTION831When bit 7 (SRS) of parameter No. 5200 is set to 1, to select a spindle tobe used for rigid tapping, set the signals as indicated below.Spindle sed for rigid tappingÁÁÁÁÁÁÁÁÁÁÁÁSignal stateÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSpindle used for r...

  • Page 854

    B–63003EN–1/029. SPINDLE SPEED FUNCTION832However, the display of the actual speed is switched by this signal, evenduring rigid tapping.#7#6#5#4#3#2#1#0SWS2*SSTP2G027*SSTP1SWS1PC2SLCG028GR2GR1G029GR21ÁÁÁÁÁÁÁÁÁÁÁÁG061RGTSP2 RGTSP1RGTAP#7#6#5#4#3#2#1#0F001ENBF007SFÁÁÁÁÁÁÁÁF0...

  • Page 855

    B–63003EN–1/029. SPINDLE SPEED FUNCTION833When T–type gear selection is used, the PMC must determine whethergear switching is to be performed, and subsequently perform gearswitching as required. For this purpose, each time a spindle–speedfunction code is specified, the spindle–speed fu...

  • Page 856

    B–63003EN–1/029. SPINDLE SPEED FUNCTION834The spindle–speed function strobe signal SF <F007#2> andspindle–speed function code signals S00 to S31 <F022 to F025> areoutput to the PMC. (However, parameter setting is required to enableoutput of the S codes and SF signal. See the...

  • Page 857

    B–63003EN–1/029. SPINDLE SPEED FUNCTION835The timing chart for rigid tapping specification depends on the methodused to specify rigid tapping mode, the gear selection method (M–type orT–type), and whether to perform gear switching.From the table, find the appropriate timing chart (Fig. 9....

  • Page 858

    B–63003EN–1/029. SPINDLE SPEED FUNCTION836M type gear selection methodM29RTAPFirst block Second blockG84 (G74)ENBÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁTo be masked to the secondblockSpindleoutputSFGR1OGR2OGR3O*SSTPSORRGTAPFINRotationExcitationSFRPosition loopÁÁÁÁÁÁ...

  • Page 859

    B–63003EN–1/029. SPINDLE SPEED FUNCTION837M29RTAPFirst block Second blockG84 (G74)ENBSpindleoutputSFGR1OGR2OGR3O*SSTPSOR250msor moreRGTAPFINRotationGear changeExcitationSFRPosition loopÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ...

  • Page 860

    B–63003EN–1/029. SPINDLE SPEED FUNCTION838T type gear selection methodM29RTAPFirst bllock Second blockG84 (G74)ENBSpindleoutputSFS codeoutputGR1GR2*SSTPSOR250msor moreRGTAPFINRotationExcitationSFRPosition loopÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á...

  • Page 861

    B–63003EN–1/029. SPINDLE SPEED FUNCTION839M29RTAPFirst block Second blockG84 (G74)ENBSpindleoutputSFS code outputGR1GR2*SSTPSOR250msor moreRGTAPFINRotationGear changeExcitationSFRPosition loopÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ...

  • Page 862

    B–63003EN–1/029. SPINDLE SPEED FUNCTION840M type gear selectionM29RTAPFirst block Second blockG84 (G74)ENBTo be masked to the second blockSpindleoutputSFGR1OGR2OGR3O*SSTPSOR250msor moreRGTAPFINRotationExcitationSFRPositionloopÁÁÁÁÁÁÁÁÁÁÁÁ...

  • Page 863

    B–63003EN–1/029. SPINDLE SPEED FUNCTION841M29RTAPFirst block G84 (G74)ENBSpindleoutputSFGR1OGR2OGR3O*SSTPSOR250msor moreRGTAPFINRotationGear changeExcitationSFRPosition loopÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ...

  • Page 864

    B–63003EN–1/029. SPINDLE SPEED FUNCTION842T type gear selection methodÁÁÁÁM29RTAPFirst blockG84 (G74)ENBSpindleoutputSFS codeoutputGR1GR2*SSTPSOR250msor moreRGTAPFINRotationExcitationSFRPosition loopÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁTo ...

  • Page 865

    B–63003EN–1/029. SPINDLE SPEED FUNCTION843M29RTAPFirst blockG84 (G74)ENBSpindleoutpoutSFS code out-putGR1GR2*SSTPSOR250msor moreRGTAPFINRotationGear changeExcitationSFRPosition loopÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ...

  • Page 866

    B–63003EN–1/029. SPINDLE SPEED FUNCTION844M type gear selectionM29RTAPFirst blockG84 (G74)M29 is commandedinternally.ENBTo be masked to thesecond blockSpindleoutputSFGR1OGR2OGR3O*SSTPSOR250msor moreRGTAPFINExcitaitonSFRPosition loopÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁRotationÁÁÁÁÁSeco...

  • Page 867

    B–63003EN–1/029. SPINDLE SPEED FUNCTION845M29RTAPFirst blockG84 (G74)M29 is commandedinternally.ENBSpindleoutputSFGR1OGR2OGR3O*SSTPSOR250msor moreRGTAPFINRotationGear changeExcitationSFRPosition loopÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ...

  • Page 868

    B–63003EN–1/029. SPINDLE SPEED FUNCTION846T type gear selection methodM29RTAPFirst blockG84 (G74)M29 is commandedinternally.ENBSpindleoutoputSFS codeoutputGR1GR2*SSTPSOR250msor moreRGTAPFINRotationExcitationSFRPosition loopÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ...

  • Page 869

    B–63003EN–1/029. SPINDLE SPEED FUNCTION847M29RTAPFirst blcokG84 (G74)M29 is commandedinternallyENBSpindleoutputSFS codeoutputGR1GR2*SSTPSOR250msor moreRGTAPFINRotationGear changeExcitationSFRPosition loopÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ...

  • Page 870

    B–63003EN–1/029. SPINDLE SPEED FUNCTION848When rigid tapping is completed, the mode is canceled if a G code (suchas G80, canned cycle G code, or Group 01 G code) is issued.The spindle output is produced in the same way as executing S0. Cancelthe PMC rigid tapping mode at the falling edge of...

  • Page 871

    B–63003EN–1/029. SPINDLE SPEED FUNCTION849WARNING1 If rigid tapping mode is canceled by a Group 01 G code,such as G00 or G01, the block containing the G code isexecuted at the same time the ENB signal is turned to “0”.Therefore, if a block contains an M code for controlling thespindle, a...

  • Page 872

    B–63003EN–1/029. SPINDLE SPEED FUNCTION850#7#6#5#4#3#2#1#03705SFANSFEVSSGTESFESF[Data type] BitESF When the spindle control function (S analog outpu or S serial output) isused, and the consatant surface speed control function is used or bit 7(GTT) of parameter No. 3705 is set to 1:0 : S codes...

  • Page 873

    B–63003EN–1/029. SPINDLE SPEED FUNCTION851#7#6#5#4#3#2#1#03706GTTPG2PG2PG1PG1[Data type] BitPG2, PG1 Gear ratio of spindle to position coderMagnificationÁÁÁÁÁÁÁÁPG2ÁÁÁÁÁÁÁPG1ÁÁÁÁÁÁÁÁÁÁÁ 1ÁÁÁÁÁÁÁÁÁÁÁ0ÁÁÁÁÁÁÁÁÁ0ÁÁÁÁÁÁÁÁÁÁÁÁ 2ÁÁÁÁÁÁ...

  • Page 874

    B–63003EN–1/029. SPINDLE SPEED FUNCTION852Spindle speedcommand (S command)Max. output (4095, 10V)Spindle motormin. clamp speed (Parameter No. 3735)Max. speed at gear1 parameter No. 3741ÁÁÁÁÁÁÁSpindle motormax. clamp speed (Parameter No. 3736)Speed at gear 1–2 change point Parameter N...

  • Page 875

    B–63003EN–1/029. SPINDLE SPEED FUNCTION853#7#6#5#4#3#2#1#0SRS5200FHDFHDPCPDOVDOVSIGSIGCRGCRGVGRVGRG84G84[Data type] BitG84 Method for specifying rigid tapping0 : An M code specifying the rigid tapping mode is specified prior to theissue of the G84 (or G74) command. (See parameter No. 5210).1 ...

  • Page 876

    B–63003EN–1/029. SPINDLE SPEED FUNCTION854#7#6#5#4#3#2#1#05201TDRTDRNIZ[Data type] BitNIZ Smoothing in rigid tapping is:0 : Not performed.1 : Performed.TDR Cutting time constant in rigid tapping0 : Uses a same parameter during cutting and extraction (Parameter Nos.5261 through 5264)1 : Not us...

  • Page 877

    B–63003EN–1/029. SPINDLE SPEED FUNCTION855#7#6#5#4#3#2#1#05204DGNNOTEWhen this parameter is set, the power must be turned offbefore operation is continued.[Data type] BitDGN On the diagnosis screen:0 : A rigid tapping synchronization error is displayed. (Nos. 455 to 457)1 : An error differen...

  • Page 878

    B–63003EN–1/029. SPINDLE SPEED FUNCTION856NOTEIf the setting of this parameter is 0, the M code specifying therigid tapping mode is determined by the setting of parameter5210. Otherwise, it is determined by the setting ofparameter 5212. The setting of parameter 5212 mustalways be within the a...

  • Page 879

    B–63003EN–1/029. SPINDLE SPEED FUNCTION8575221Number of gear teeth on the spindle side in rigid tapping (First gear)5222Number of gear teeth on the spindle side in rigid tapping (Second gear)5223Number of gear teeth on the spindle side in rigid tapping (Third gear)5224Number of gear teeth o...

  • Page 880

    B–63003EN–1/029. SPINDLE SPEED FUNCTION8585241Maximum spindle speed in rigid tapping (First gear)5242Maximum spindle speed in rigid tapping (Second gear)5243Maximum spindle speed in rigid tapping (Third gear)5244Maximum spindle speed in rigid tapping (Fourth gear)[Data type] Two–word[Unit o...

  • Page 881

    B–63003EN–1/029. SPINDLE SPEED FUNCTION8595271Acceleration/deceleration time constant during extraction in rigid tapping(First gear)5272Acceleration/deceleration time constant during extraction in rigid tapping(Second gear)5273Acceleration/deceleration time constant during extraction in rigid...

  • Page 882

    B–63003EN–1/029. SPINDLE SPEED FUNCTION8605281Position control loop gain of spindle and tapping axis in rigid tapping (First gear)5282Position control loop gain of spindle and tapping axis in rigid tapping (Second gear)5283Position control loop gain of spindle and tapping axis in rigid tappin...

  • Page 883

    B–63003EN–1/029. SPINDLE SPEED FUNCTION861Example)SPINDLE MOTORSpindleÁÁÁÁPositioncoder 1: 1: 2When the spindle motor, spindle, and position coder areconnected as shown left, let the variables be as follows:E = 1.667 (V)(A motor speed of 6000 rpm corresponds to 10V.)L = 360°(One rotatio...

  • Page 884

    B–63003EN–1/029. SPINDLE SPEED FUNCTION862CAUTIONThe broad in–position width deteriorates the screwprecision.5310Limit value of tapping axis positioning deviation during movement in rigid tapping[Data type] Word[Unit of data] Detection unit[Valid data range] 1 to 32767This parameter sets th...

  • Page 885

    B–63003EN–1/029. SPINDLE SPEED FUNCTION863Example) 1: 1: 2When the spindle motor, spindle, and position coder areconnected as shown left, let the variables be as follows:S = 3600G = 3000L = 360_ (One spindle rotation per spindle motor rotaion)a = La / 4096= 720_/4096= 0.17578_La=720_(One pos...

  • Page 886

    B–63003EN–1/029. SPINDLE SPEED FUNCTION864[Valid data range] 0 to 99999999Parameter No. 5310 usually sets the limit of positional deviation duringmovement along the tapping axis for rigid tapping. To specify a settingexceeding the valid range specified in parameter No. 5310 according tothe re...

  • Page 887

    B–63003EN–1/029. SPINDLE SPEED FUNCTION865NumberÁÁÁÁÁÁÁMessageÁÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ200ÁÁÁÁÁÁÁÁÁÁILLEGAL S CODE COM-MANDÁÁÁÁÁÁÁÁÁÁÁÁÁÁIn the rigid tapping, an S value is out ofthe range or is not specified.The maximum...

  • Page 888

    B–63003EN–1/029. SPINDLE SPEED FUNCTION866NumberÁÁÁÁÁÁÁMessageÁÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ740ÁÁÁÁÁÁÁRIGID TAP ALARM; EX-CESS ERRORÁÁÁÁÁÁÁÁÁÁÁPosition deviation value of spindle atmove exceeded a set value duringrigid tapping.ÁÁ...

  • Page 889

    B–63003EN–1/029. SPINDLE SPEED FUNCTION867CAUTION1 When using an analog spindle, set the spindle speed offsetvalue parameter (No. 3731) accurately. For the standardsystem, a value within –8191 to 8191 must be specified inthis parameter. To perform rigid tapping, a value within–1023 to 1...

  • Page 890

    B–63003EN–1/029. SPINDLE SPEED FUNCTION868CAUTION1 When the spindle orientation function is to be used at thesame timeThe spindle orientation function positions the spindle byusing sensors and the PMC, without being directlycontrolled by the CNC.The CNC has no direct control over this process...

  • Page 891

    B–63003EN–1/029. SPINDLE SPEED FUNCTION869CAUTION(3)Although the system can change to rigid tapping modedirectly from Cs contouring contorl mode, positionsdesignated in Cs contouring control mode are notpreserved if riged tapping mode is canceled by G80.When the system is changed to rigid tap...

  • Page 892

    B–63003EN–1/029. SPINDLE SPEED FUNCTION8704044Proportional gain of the velocity loop in servo mode (gear 1, gear 2)4045Proportional gain of the velocity loop in servo mode (gear 3, gear 4)[Unit of data][Valid data range] 0 to 32767Set a proportional gain for the velocity loop in a servo mode ...

  • Page 893

    B–63003EN–1/029. SPINDLE SPEED FUNCTION871CTH1ÁÁÁÁÁÁCTH2ÁÁÁÁÁGear selectedÁÁÁÁÁÁÁÁÁÁParameter No. to be usedÁÁÁÁÁÁÁÁÁÁÁÁÁ0ÁÁÁÁÁÁÁ0ÁÁÁÁÁÁHIGHÁÁÁÁÁÁÁÁÁÁÁ4065ÁÁÁÁÁÁÁ4044ÁÁÁÁÁÁÁ4052ÁÁÁÁÁÁÁÁÁÁ0ÁÁÁÁÁÁ1ÁÁÁÁÁ...

  • Page 894

    B–63003EN–1/029. SPINDLE SPEED FUNCTION872This function enables the synchronous control of two spindles. It alsoenables the control of the rotation phase of a spindle, allowingnon–standard workpieces as well as rods to be held by either of the twospindles.In spindle synchronous control, th...

  • Page 895

    B–63003EN–1/029. SPINDLE SPEED FUNCTION873D Constant surface speed control can be executed in synchronizationcontrol even while a workpiece is being held with the two spindles. However, if the speed is to change in excess of the specified timeconstant, the speed changes within the extent spec...

  • Page 896

    B–63003EN–1/029. SPINDLE SPEED FUNCTION874D A spindle–phase synchronous control command is effective only insynchronous spindle control mode. The specified phase can berepeatedly changed under synchronous control.See the manual of serial spindles.#7#6#5#4#3#2#1#04800ND2ND1[Data type] Bit t...

  • Page 897

    B–63003EN–1/029. SPINDLE SPEED FUNCTION875NumberÁÁÁÁÁÁÁMessageÁÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ194ÁÁÁÁÁÁÁÁÁÁÁÁÁÁSPINDLE COMMAND INSYNCHRO–MODEÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁA contour control mode, spindle positioning(Cs–a...

  • Page 898

    B–63003EN–1/029. SPINDLE SPEED FUNCTION876This function stops the spindle at a specified position. The spindle canbe stopped in either of the following two ways.·The spindle is mechanically stopped by using stoppers.·The spindle is stopped by applying a function of the spindle controlunit....

  • Page 899

    B–63003EN–1/029. SPINDLE SPEED FUNCTION877=4096360 Ï (2i Pi)ni=0wherePi = 0 when SHAi = 0Pi = 1 when SHAi = 1#7#6#5#4#3#2#1#0SHA07G078SHA06SHA05SHA04SHA03SHA02SHA01SHA00G079SHA11SHA10SHA09SHA08SHB07G080SHB06SHB05SHB04SHB03SHB02SHB01SHB00G081SHB11SHB10SHB09SHB08SHC07G208SHC06SHC05SHC04SHC03S...

  • Page 900

    B–63003EN–1/029. SPINDLE SPEED FUNCTION878CAUTION1 To perform spindle orientation by using the spindle controlunit, the signals of the spindle control unit must be used.To perform serial spindle orientation by using a positioncoder (to perform serial spindle orientation with the stopposition...

  • Page 901

    B–63003EN–1/029. SPINDLE SPEED FUNCTION879Spindle output switching switches between the two windings, one for lowspeed and the other for high speed, incorporated into the special spindlemotors. This ensures that the spindle motor demonstrates stable outputcharacteristics over a wide range.Si...

  • Page 902

    B–63003EN–1/029. SPINDLE SPEED FUNCTION880D When gear selection output signals, GR2O and GR1O <F034 #0, #1>,are used (for machining centers in which constant surface speedcontrol is not provided and GTT, bit 4 of parameter No. 3706, is setto 0)Set two gears, which are almost the same.(E...

  • Page 903

    B–63003EN–1/029. SPINDLE SPEED FUNCTION881Serial spindle can be connected three in this three–spindle serial control.The third serial spindle operates as an ordinary third analog spindle. Forthe third as well as the first and second serial spindles, all the functionssupported by the serial...

  • Page 904

    B–63003EN–1/029. SPINDLE SPEED FUNCTION882D The serial spindles are connected as follows:ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ...

  • Page 905

    B–63003EN–1/029. SPINDLE SPEED FUNCTION883The table below lists the relationship between the spindles and functions.(This table relates to a table that appears in Section 9.2.)f = Available = UnavailableSpindleÁÁÁÁÁÁÁÁÁÁÁÁÁÁSerial spindleÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁAnalog ...

  • Page 906

    B–63003EN–1/029. SPINDLE SPEED FUNCTION884NOTE1 The multi–spindle function can control the speed of thethree spindles and switch the feedback signal between twoposition coders. It can operate without the second or thirdspindle.When the multi–spindle function is used with the M series,the...

  • Page 907

    B–63003EN–1/029. SPINDLE SPEED FUNCTION885See Section 2.11 for details.See Section 2.10 for details.#7#6#5#4#3#2#1#0MRDYCG0204ORCMCSFRCSRVCCTH1CCTH2CTLMHCTLMLCRCHCG0205RSLCINTGCSOCNCMCFNCSPSLC*ESPCARSTCRCHHGCG0206MFNHGCINCMDCOVRIDCDEFMDCNRROCROTACINDXCG0207MPOFCSLVCMORCMC#7#6#5#4#3#2#1#0ORARC...

  • Page 908

    B–63003EN–1/029. SPINDLE SPEED FUNCTION886#7#6#5#4#3#2#1#03701SS3SS2ISINOTEAfter setting this parameter, turn the power off then on againso that the setting will take effect.[Data type] Bit typeISI Specifies whether to use the first and second spindle interfaces.0 : Use these interfaces.1 : D...

  • Page 909

    B–63003EN–1/029. SPINDLE SPEED FUNCTION887Parameter settingÁÁÁÁÁÁÁÁÁÁÁSerial spindles to be sedÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSS3ÁÁÁÁÁÁÁSS2ÁÁÁÁÁÁSerial spindles to be usedÁÁÁÁÄÁÁÁÁÁÁÁÁÄÁÁÁÁÁÁÁFirst serial spindle onlyÁÁÁÁÁÁÁÁÁÁÁ...

  • Page 910

    B–63003EN–1/029. SPINDLE SPEED FUNCTION888NumberÁÁÁÁÁÁMessageÁÁÁÁÁÁÁÁÁÁÁÁÁContentsÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ749ÁÁÁÁÁÁÁÁÁÁÁS–SPINDLE LSI ERRORÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁA communication error occurred for the serial spindle. The cau...

  • Page 911

    B–63003EN–1/029. SPINDLE SPEED FUNCTION889#7#6#5#4#3#2#1#0430SS3SSRSICSIC 0 : The module required for the three–spindle serial output function is notinstalled.1 : The module required for the three–spindle serial output function isinstalled.SSR 0 : The options required for the three–spin...

  • Page 912

    B–63003EN–1/029. SPINDLE SPEED FUNCTION890#7#6#5#4#3#2#1#0439SPES3ESHESHE 1 : Abnormal operation in serial spindle communication module on themother board of the CNCS3E 1 : Abnormal operation of the third spindle during activationSPE 1 : Serial spindle parameter does not satisfy activation co...

  • Page 913

    B–63003EN–1/029. SPINDLE SPEED FUNCTION891In simple spindle synchronous control mode, the second spindle can becontrolled as a slave axis of the first spindle.Thus, control based on the Cs contour axis control function, rigid tappingfunction, and spindle positioning function (T series) can be...

  • Page 914

    B–63003EN–1/029. SPINDLE SPEED FUNCTION8921. Spindle mode (ordinary spindle control)The second spindle rotates upon the issue of the same command as thatused for the first spindle.The command does not specify the speed of the spindle, insteadspecifying the ratio of the spindle motor speed to ...

  • Page 915

    B–63003EN–1/029. SPINDLE SPEED FUNCTION893In simple spindle synchronous control mode, the parking function stopsthe motion of the first or second spindle, regardless of the mode (spindlemode, spindle positioning mode, Cs contour axis control mode, or rigidtapping mode) of the spindle.In the p...

  • Page 916

    B–63003EN–1/029. SPINDLE SPEED FUNCTION894NOTE1 When the parking function is activated for a spindle in amode featuring a position loop, such as Cs contour axiscontrol mode, spindle positioning mode, and rigid tappingmode, the spindle is stopped at the point where the parkingfunction is activ...

  • Page 917

    B–63003EN–1/029. SPINDLE SPEED FUNCTION895Simple spindle synchronous control does not guarantee synchronousspindle operation. However, in a control mode featuring a position loop,such as Cs contour axis control mode, rigid tapping mode, and spindlepositioning mode, the synchronization of bot...

  • Page 918

    B–63003EN–1/029. SPINDLE SPEED FUNCTION896When the spindle synchronous control option is selected, ensure thatsimple spindle synchronous control signal ESRSYC is applied whensynchronous control is not exercised.Also, ensure that spindle synchronous control signal SRSYC is notapplied during si...

  • Page 919

    B–63003EN–1/029. SPINDLE SPEED FUNCTION897NOTE1 The second spindle is initialized to Cs contour axis controlmode. At this time, the position of the second spindle willbe undefined, so that reference position return must beperformed for the first and second spindles. In this case, thereferen...

  • Page 920

    B–63003EN–1/029. SPINDLE SPEED FUNCTION898During simple spindle synchronous control, indications such as thepositional deviation of the first spindle are output in the usual way. Forthe second spindle, however, only the positional deviation of the secondspindle is indicated in diagnostic dat...

  • Page 921

    B–63003EN–1/029. SPINDLE SPEED FUNCTION899[Operation] When this signal is set to 1, the control unit operates as follows:– Activates the parking function for the second spindle placed undersimple spindle synchronous control.When the SPK bit (bit 7 of parameter No. 4800) is set to 1, #7 of G...

  • Page 922

    B–63003EN–1/029. SPINDLE SPEED FUNCTION900#7#6#5#4#3#2#1#03701SS2[Data type] Bit typeNOTEAfter setting this parameter, turn the power off then on againso that the setting will take effect.SS2 Under serial spindle control, the second serial spindle is:0 : Not used.1 : Used.NOTE1. This paramete...

  • Page 923

    B–63003EN–1/029. SPINDLE SPEED FUNCTION9014811Allowable error count for the error pulses between two spindles in the serial spindlesynchronization control mode[Data type] Word type[Unit of data] Pulse[Valid data range] 0 to 32767Set the allowable error count for the error pulses between two s...

  • Page 924

    B–63003EN–1/029. SPINDLE SPEED FUNCTION902Master spindle motion error while spindle synchronous control or simplespindle synchronous control is applied414Slave spindle motion error while spindle synchronous control or simplespindle synchronous control is applied415Absolute value of synchroniz...

  • Page 925

    B–63003EN–1/0210. TOOL FUNCTIONS90310 TOOL FUNCTIONSÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

  • Page 926

    10. TOOL FUNCTIONSB–63003EN–1/02904(M series)Selection of tools can be done by commanding tool numbers with up toan 8-digit numeral after address T.(T series)Selection of tools and offset amounts can be done by commanding toolnumbers and offset numbers with up to an 8-digit numeral after addr...

  • Page 927

    B–63003EN–1/0210. TOOL FUNCTIONS905#7#6#5#4#3#2#1#05002LGNLD1[Data type] BitLD1 Offset number of tool offset (Wear offset number when option of toolgeometry/wear compensation is selected)0 : Specified using the lower two digits of a T code1 : Specified using the lower one digit of a T codeLGN...

  • Page 928

    10. TOOL FUNCTIONSB–63003EN–1/02906NOTEWhen a move command and a tool function are specified inthe same block, the commands are executed in one of thefollowing two ways:(i) Simultaneous execution of the move command and toolfunction commands.(ii) Executing tool function commands upon complet...

  • Page 929

    B–63003EN–1/0210. TOOL FUNCTIONS90710.2TOOL COMPENSATION VALUE/TOOL COMPENSATION NUMBER/TOOL COMPENSATION MEMORY(M series)Tool compensation values include tool geometry compensation valuesand tool wear compensation values (Fig. 10.2 (a)).The geometry compensation and wear compensation can be ...

  • Page 930

    10. TOOL FUNCTIONSB–63003EN–1/02908(2) Tool compensation memory BMemory for geometry compensation and wear compensation isprepared separately in tool compensation memory B. Geometrycompensation and wear compensation can thus be set separately.There is no difference between cutter compensatio...

  • Page 931

    B–63003EN–1/0210. TOOL FUNCTIONS909Tool compensation values can be entered into CNC memory from theCRT/MDI panel or from a program.A tool compensation value is selected from the CNC memory when thecorresponding code is specified after address T in a program. The value is used for tool offset ...

  • Page 932

    10. TOOL FUNCTIONSB–63003EN–1/02910#7#6#5#4#3#2#1#03109DWT[Data type] BitDWT Characters G and W in the display of tool wear/geometry compensationamount0 : The characters are displayed at the left of each number.1 : The characters are not displayed.#7#6#5#4#3#2#1#03290GOFWOF[Data type] BitWOF ...

  • Page 933

    B–63003EN–1/0210. TOOL FUNCTIONS911#7#6#5#4#3#2#1#0WNP5002LGN[Data type] BitLGN Geometry offset number of tool offset (When the option of tool geometry/wear compensation is selected, it is effective.)0 : Is the same as wear offset number1 : Specifies the geometry offset number by the tool sel...

  • Page 934

    10. TOOL FUNCTIONSB–63003EN–1/02912This parameter sets the maximum value of tool wear compensation. Thefollowing alarm or warning will be informed when the tool wearcompensation (absolute value) exceeding this setting value is set. Input from MDIÁÁÁÁÁÁÁÁÁToo many digitsÁÁÁÁÁÁÁ...

  • Page 935

    B–63003EN–1/0210. TOOL FUNCTIONS913Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁII.14.8ÁÁÁÁÁÁÁÁTOOL COMPENSATION VAL-UES, NUMBER OF COM-PENSATION VALUES, AND EN-TERING VALUES FROM THEPROGRAM (G10)ÁÁÁ...

  • Page 936

    10. TOOL FUNCTIONSB–63003EN–1/02914When tools are classified into several groups, average tool life (No. ofuses or time) is designated for each group. Whenever a tool is used, theusage time is subtracted from the tool life; when the tool life expires, thenext tool in the group is selected. T...

  • Page 937

    B–63003EN–1/0210. TOOL FUNCTIONS915[Operation] When the signal is set to 1, the control unit operates as follows:· Clears all executable data, including the life count of the group.If the same group is specified after machining is resumed, the first tool inthe group is selected.NOTETool chan...

  • Page 938

    10. TOOL FUNCTIONSB–63003EN–1/02916(i) Designate the group number for the tool by tool group numberselection signal then turn the tool skip signal TLSKP to “1”. The nextT-code command will pass over the current tool in the group for whichthe skip was designated, and select the next tool....

  • Page 939

    B–63003EN–1/0210. TOOL FUNCTIONS917[Classification] Input signal[Function] When the TLRST or TLSKP signals are input, the tool group numbermust be given in advance, using the tool group number selection signalsTL01 to TL64 (T series) or TL01 to TL128 (M series). Command the following value in...

  • Page 940

    10. TOOL FUNCTIONSB–63003EN–1/02918ÁÁÁÁ#7TL128G047#6TL64#5TL32#4TL16#3TL08#2TL04#1TL02#0TL01ÁÁÁÁÁÁÁÁÁÁÁÁÁÁTLRSTG048TLRSTITLSKPTL256ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ*TLV7G049*TLV6*TLV5*TLV4*TLV3*TLV2*TLV1*TLV0ÁÁÁÁÁÁG050*TLV9*TLV8ÁÁÁ#7F064#6#5#4#3#2TLCHI#1TLNW#...

  • Page 941

    B–63003EN–1/0210. TOOL FUNCTIONS919SNG Input of the tool skip signal when a tool that is not considered tool lifemanagement is selected.0 : Skips the tool of the group used last or of the specified group (usingSIG, #3 of parameter No. 6800).1 : Ignores a tool skip signalIGI Tool back number0 ...

  • Page 942

    10. TOOL FUNCTIONSB–63003EN–1/02920M6E When a T code is specified in the same block as M060 : The T code is processed as a return number or as a group numberselected next. Either is set by parameter M6T No. 6800#7.1 : The tool group life is counted immediately.6810Tool life management ignore...

  • Page 943

    B–63003EN–1/0210. TOOL FUNCTIONS921NumberÁÁÁÁÁÁÁMessageÁÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ149ÁÁÁÁÁÁÁFORMAT ERROR IN G10L3ÁÁÁÁÁÁÁÁÁÁÁA code other than Q1,Q2,P1 or P2 was spe-cified as the life count type in the extendedtool life manageme...

  • Page 944

    10. TOOL FUNCTIONSB–63003EN–1/02922When the tool is moved, the tool path can be shifted by the radius of thetool.To make an offset as large as the radius of the tool, first create an offsetvector with a length equal to the radius of the tool (start–up). The offsetvector is perpendicular to...

  • Page 945

    B–63003EN–1/0210. TOOL FUNCTIONS923ÇÇÇÇÇÇÇÇÇÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ...

  • Page 946

    10. TOOL FUNCTIONSB–63003EN–1/02924#7#6#5#4#3#2#1#05003CCNSUVSUP[Data type] BitSUP Start up or cancel in cutter compensation C0 : Type A1 : Type BSUV When G40, G41, and G42 are specified independently,0 : The start up and cancel operation conforms to the standardspecification.1 : Moves by a d...

  • Page 947

    B–63003EN–1/0210. TOOL FUNCTIONS925NumberÁÁÁÁÁÁÁMessageÁÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ033ÁÁÁÁÁÁÁNO SOLUTION AT CRCÁÁÁÁÁÁÁÁÁÁÁA point of intersection cannot be deter-mined for cutter compensation C.Modify the program.ÁÁÁÁÁÁÁÁ...

  • Page 948

    10. TOOL FUNCTIONSB–63003EN–1/02926It is difficult to produce the compensation necessary to form accurate partswhen using only the tool offset function due to tool nose roundness intaper cutting or circular cutting. The tool nose radius compensationfunction compensates automatically for the ...

  • Page 949

    B–63003EN–1/0210. TOOL FUNCTIONS927#7#6#5#4#3#2#1#05003CCN[Data type] BitCCN When automatic reference position return (G28) is specified in the cuttercompensation C mode (M series) or in tool nose radius compensation (Tseries):0 : The cutter compensation vector is cancelled in movement to ani...

  • Page 950

    10. TOOL FUNCTIONSB–63003EN–1/02928NumberÁÁÁÁÁÁÁMessageÁÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ033ÁÁÁÁÁÁÁÁNO SOLUTION AT CRCÁÁÁÁÁÁÁÁÁÁÁÁA point of intersection cannot be deter-mined for tool nose radius compensa-tion. Modify the program. ...

  • Page 951

    B–63003EN–1/0211. PROGRAM COMMAND92911 PROGRAM COMMANDÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

  • Page 952

    11. PROGRAM COMMANDB–63003EN–1/02930Numerical values can be entered with a decimal point. A decimal pointcan be used when entering a distance, time, or speed. Decimal points canbe specified with the following addresses:X, Y, Z, U, V, W, A, B, C, I, J, K, Q, R, FM series. . . . . . . . . . ....

  • Page 953

    B–63003EN–1/0211. PROGRAM COMMAND931NumberÁÁÁÁÁÁÁMessageÁÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ007ÁÁÁÁÁÁÁÁÁÁÁÁÁILLEGAL USE OF DEC-IMAL POINTÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁDecimal point “ · ” input error (A decimalpoint was input...

  • Page 954

    11. PROGRAM COMMANDB–63003EN–1/02932There are three G code systems : A,B, and C (Table 11.2). Select a G codesystem using parameter GSC (No. 3401#7) and parameter GSB (No.3401#6).Table 11.2 G code list (1/3)G codeÁÁÁÁÁÁÁÁÁÁÁGro pÁÁÁÁÁÁF nctionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ...

  • Page 955

    B–63003EN–1/0211. PROGRAM COMMAND933Table 11.2 G code list (2/3)G codeFunctionGroupÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁAFunctionGroupCBÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁG50.2(G250)ÁÁÁÁÁÁÁÁG50.2(G250)ÁÁÁÁÁÁÁÁÁÁÁG50.2(G25...

  • Page 956

    11. PROGRAM COMMANDB–63003EN–1/02934Table 11.2 G code list (3/3)G codeFunctionGroupÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁAFunctionGroupCBÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ—ÁÁÁÁÁG90ÁÁÁÁÁÁÁÁÁÁG90ÁÁÁÁÁÁÁÁ03ÁÁÁÁÁÁ...

  • Page 957

    B–63003EN–1/0211. PROGRAM COMMAND935NOTE1 If the CNC enters the clear state (see bit 6 (CLR) ofparameter 3402) when the power is turned on or the CNCis reset, the modal G codes change as follows.(1) G codes marked with in Table 11.2 are enabled.(2) When the system is cleared due to powe...

  • Page 958

    11. PROGRAM COMMANDB–63003EN–1/02936Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Lathe) (B–63004EN)ÁÁÁÁÁÁÁÁÁÁÁÁII.3ÁÁÁÁÁÁÁÁPREPARATORY FUNCTION (G FUNCTION)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁAPPENDIX EÁÁÁÁÁÁÁÁÁÁSTATUS WHEN TURNI...

  • Page 959

    B–63003EN–1/0211. PROGRAM COMMAND937A program consists of the following components:Table 11.3Program componentsComponentsÁÁÁÁÁÁÁÁÁÁÁDescriptionsÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁTape startÁÁÁÁÁÁÁÁÁÁSymbol indicating the start of a program fileÁÁÁÁÁÁÁÁÁÁÁ...

  • Page 960

    11. PROGRAM COMMANDB–63003EN–1/02938#7#6#5#4#3#2#1#00100CTVSetting entry is acceptable.[Data type] BitCTV: Character counting for TV check in the comment section of a program.0 : Not performed1 : Performed#7#6#5#4#3#2#1#03201NPEN99[Data type] BitN99 With an M99 block, when bit 6 (NPE) of para...

  • Page 961

    B–63003EN–1/0211. PROGRAM COMMAND939NumberÁÁÁÁÁÁÁMessageÁÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ001ÁÁÁÁÁÁÁTH PARITY ALARMÁÁÁÁÁÁÁÁÁÁÁTH alarm (A character with incorrectparity was input).ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ002ÁÁÁÁÁÁÁÁÁ...

  • Page 962

    11. PROGRAM COMMANDB–63003EN–1/02940Either inch or metric input can be selected by G code.[Classification] Output signal[Function] This signal indicates that inch input mode is in progress.[Output condition] “1”indicates that the inch input mode (G20) is in progress, and “0”indicates...

  • Page 963

    B–63003EN–1/0211. PROGRAM COMMAND941#7#6#5#4#3#2#1#01006ROSxROTxNOTEWhen this parameter is changed, turn off the power beforecontinuing operation.[Data type] Bit axisROTx, ROSx Setting linear or rotation axisROSxÁÁÁÁÁÁÁÁÁROTxÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ...

  • Page 964

    11. PROGRAM COMMANDB–63003EN–1/029421250Coordinate value of the reference position used when automatic coordinate systemsetting is performed[Data type] Two–word axisIncrement systemÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁIS–AÁÁÁÁÁÁÁÁÁÁÁÁÁIS–BÁÁÁÁÁÁÁÁÁÁÁÁÁIS–CÁÁÁÁÁ...

  • Page 965

    B–63003EN–1/0211. PROGRAM COMMAND943#7#6#5#4#3#2#1#03104MCN[Data type] BitMCN Machine position is:0 : Not displayed according to the unit of input.(Regardless of whether input is made in mm or inches, the machineposition is displayed in mm for millimeter machines, or in inches forinch machine...

  • Page 966

    11. PROGRAM COMMANDB–63003EN–1/02944WARNINGWhen switching inch input (G20) to metric input (G21) andvice versa, the tool compensation value must be re–setaccording to the least input increment.However, when bit 0 (OIM) of parameter 5006 is 1, toolcompensation values are automatically conver...

  • Page 967

    B–63003EN–1/0211. PROGRAM COMMAND945This function can convert the machining profile to a data group that canbe distributed as pulses at high-speed by the macro compiler and macroexecutor. The function can also call and execute the data group as amachining cycle using the CNC command (G05 com...

  • Page 968

    11. PROGRAM COMMANDB–63003EN–1/02946Data for the high speed cycle cutting is assigned to variables (#20000 to#85535) for the high–speed cycle cutting by the macro compiler andmacro executor.Configuration of the high speed cycle cutting dataNumber of registered cyclesHeader of cycle 1Header...

  • Page 969

    B–63003EN–1/0211. PROGRAM COMMAND947Specify the repetition count for the cycle. Values from 0 to 32767 can bespecified. When 0 or 1 is specified, the cycle is executed once.Specify the number (1 to 999) of the cycle to be executed after the cycle.When no connection cycle exists because of t...

  • Page 970

    11. PROGRAM COMMANDB–63003EN–1/02948#7#6#5#4#3#2#1#0IPC7501IPCIT2IT2IT1IT1IT0IT0CSP[Data type] BitCSP Cs contouring control function dedicated to a piston lathe is0 : Not used.1 : Used.IT0, IT1, IT2IT2ÁÁÁÁÁIT1ÁÁÁÁÁIT0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ0ÁÁÁÁÁÁ0ÁÁÁÁÁ...

  • Page 971

    B–63003EN–1/0211. PROGRAM COMMAND949HUNx Specifies whether the unit of data to be distributed during cutting in ahigh-speed cycle is ten times the least input increment.0 : The unit of data is the same as the least input increment.1 : The unit of data is ten times the least input increment.NO...

  • Page 972

    11. PROGRAM COMMANDB–63003EN–1/02950NumberDescriptionMessageÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ178ÁÁÁÁÁÁÁG05 COMMANDED ING41/G42 MODEÁÁÁÁÁÁÁÁÁÁG05 was commanded in the G41/G42mode.Correct the program.ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ179Á...

  • Page 973

    B–63003EN–1/0211. PROGRAM COMMAND951Although subprograms are useful for repeating the same operation, thecustom macro function also allows use of variables, arithmetic and logicoperations, and conditional branches for easy development of generalprograms such as pocketing and user–defined ca...

  • Page 974

    11. PROGRAM COMMANDB–63003EN–1/02952 P : Macro number of bolt hole circle r : Radius α : Start angle β : Angle between circles k : Number of circles[Classification] Input signal[Function] No function is provided for the control unit. These signals can be read bya custom macro as a type...

  • Page 975

    B–63003EN–1/0211. PROGRAM COMMAND953[Function] No function is provided for the control unit. These signals can be read orwritten by a custom macro as a type of system variable, and are used forinterface signals between custom macros and the PMC.These signals correspond to system variables as ...

  • Page 976

    11. PROGRAM COMMANDB–63003EN–1/02954#7#6#5#4#3#2#1#06000SBM[Data type] BitSBM Custom macro statement0 : Not stop the single block1 : Stops the single block#7#6#5#4#3#2#1#0CLV6001CCVTCSCROPV5PRT[Data type] BitPRT Reading zero when data is output using a DPRNT command0 : Outputs a space1 : Out...

  • Page 977

    B–63003EN–1/0211. PROGRAM COMMAND955#7#6#5#4#3#2#1#0*76010*6*5*4*3*2*1*0=76011=6=5=4=3=2=1=0#76012#6#5#4#3#2#1#0[76013[6[5[4[3[2[1[0]76014]6]5]4]3]2]1]0[Data type] Bit These parameters are used to input/output macro statements with EIAcode.The numeral of a suffix indicates the bit position in...

  • Page 978

    11. PROGRAM COMMANDB–63003EN–1/029566050G code that calls the custom macro of program number 90106051G code that calls the custom macro of program number 90116052G code that calls the custom macro of program number 90126053G code that calls the custom macro of program number 90136054G code th...

  • Page 979

    B–63003EN–1/0211. PROGRAM COMMAND957NOTESetting value 0 is invalid. No custom macro can be calledby M00.6080M code that calls the custom macro of program number 90206081M code that calls the custom macro of program number 90216082M code that calls the custom macro of program number 90226083M...

  • Page 980

    11. PROGRAM COMMANDB–63003EN–1/02958NumberÁÁÁÁÁÁÁMessageÁÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ076ÁÁÁÁÁÁÁÁADDRESS P NOT DEFINEDÁÁÁÁÁÁÁÁÁÁÁÁAddress P (program number) was not com-manded in the block which includes anM98, G65, or G66 comm...

  • Page 981

    B–63003EN–1/0211. PROGRAM COMMAND959NumberDescriptionMessageÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ116ÁÁÁÁÁÁÁWRITE PROTECTED VARIABLEÁÁÁÁÁÁÁÁÁÁÁThe left side of substitution statement is avariable whose substitution is inhibited.Modify the pr...

  • Page 982

    11. PROGRAM COMMANDB–63003EN–1/02960Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁÁII.15ÁÁÁÁÁÁÁCustom macroÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Lathe) (B–63004EN)ÁÁÁÁÁÁÁÁ...

  • Page 983

    B–63003EN–1/0211. PROGRAM COMMAND961When a program is being executed, another program can be called byinputting an interrupt signal (UINT) from the machine. This function isreferred to as an interruption type custom macro function. Program aninterrupt command in the following format:M96 Pff...

  • Page 984

    11. PROGRAM COMMANDB–63003EN–1/02962When M96Pxxxx is specified in a program, subsequent programoperation can be interrupted by an interrupt signal (UINT) input toexecute the program specified by Pxxxx.Any interrupt signal (UNIT, asterisked in Fig. 11.6.2) issued after M97is ignored.Do not ent...

  • Page 985

    B–63003EN–1/0211. PROGRAM COMMAND963MPR Custom macro interrupt valid/invalid M code0 : M96/M971 : M code set using parameters (Nos. 6033 and 6034)MSB Interrupt program0 : Uses a dedicated local variable (Macro–type interrupt)1 : Uses the same local variable as in the main program (Subprogr...

  • Page 986

    11. PROGRAM COMMANDB–63003EN–1/02964Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁÁII.15.11ÁÁÁÁÁÁÁInterruption type custom macroÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Lathe) (B–6300...

  • Page 987

    B–63003EN–1/0211. PROGRAM COMMAND965Example) When this parameter is set to 10, the custom macro variables are specifiedas follows:Custom macro variables 100 to 109: Used commonly between two pathsCustom macro variables 110 to 149: Used independently for each pathNOTE1 This parameter is dedi...

  • Page 988

    11. PROGRAM COMMANDB–63003EN–1/02966Canned cycles make it easier for the programmer to create programs.With a canned cycle, a frequently–used machining operation can bespecified in a single block with a G function; without canned cycles,normally more than one block is required. In addition...

  • Page 989

    B–63003EN–1/0211. PROGRAM COMMAND967In some canned cycles, a spindle command to rotate the spindle in reversedirection may be output.The following canned cycles require spindle control:M seriesÁÁÁÁÁÁÁÁÁÁÁÁÁT seriesÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁReverse tapping cycle G74ÁÁÁÁÁ...

  • Page 990

    11. PROGRAM COMMANDB–63003EN–1/02968ÁÁÁÁÁNote) It is possible to not outputM05 code by using parame-ter M5T (No. 5101#6).Next block(G99 mode)FINFINMFMFM03M05FINFINMFMFM05M04ZX, YZZD G74 (Counter tapping cycle)FINFINMFMFM19M05FINFINMFMFM03M03ZZZReturn to ini-tial level inG98 modeX, YX, YZ...

  • Page 991

    B–63003EN–1/0211. PROGRAM COMMAND969ÁÁÁÁÁFINFINFINMFMFM03M03M05MFNext block(G98 mode)Return to initial level in G98 modeX, YZZFINFINMFMFMFMFMFM05 M19M03M05M19MFM03FINFINFINFINZZZX, Y(Note 1) Back boring cycle is not used in G99 mode but inG98 mode.(Note 2) It is possible to not output M0...

  • Page 992

    11. PROGRAM COMMANDB–63003EN–1/02970X, C(Z, C)Z(X)Z(X)FINFINMFMFM04M05FINFINMFMFM05M03ZZ(X)Dwell(Note 1)D G84 (Face tapping cycle)G88 (Side tapping cycle)Next block(G98 mode)Next block(G99 mode)(Note 2)Dwell(Note 1) (Note 2)(Note 1) When parameter M5T (No. 5101#6)=0, M05 is not output.(Note 2...

  • Page 993

    B–63003EN–1/0211. PROGRAM COMMAND971[Classification] Output signal[Function] Reports that the system is in tapping mode.[Output condition] The signal is set to 1 when:– The system is in tapping cycle mode.G74, G84: M seriesG84, G88: T series– The system is in tapping mode.G63: M seri...

  • Page 994

    11. PROGRAM COMMANDB–63003EN–1/02972RD2, RD1 Set the axis and direction in which the tool in drilling canned cycle G76 orG87 is got free. RD2 and RD1 are set as shown below by plane selection.RD2ÁÁÁÁÁÁRD1ÁÁÁÁÁÁG17ÁÁÁÁÁÁG18ÁÁÁÁÁG19ÁÁÁÁÁÁÁÁ0ÁÁÁÁÁÁ0ÁÁÁÁ...

  • Page 995

    B–63003EN–1/0211. PROGRAM COMMAND9735110C–axis clamp M code in drilling canned cycle[Data type] Byte[Valid data range] 0 to 99This parameter sets the C–axis clamp M code in a drilling canned cycle.5111Dwell time when C–axis unclamping is specified in drilling canned cycle[Data type] Wor...

  • Page 996

    11. PROGRAM COMMANDB–63003EN–1/029745114Return or clearance value of drilling canned cycle G83Return value of high–speed peck drilling cycle G73[Data type] WordIncrement systemÁÁÁÁÁÁÁÁIS-AÁÁÁÁÁÁÁIS-BÁÁÁÁÁÁÁIS-CÁÁÁÁÁÁÁUnitÁÁÁÁÁÁÁÁMetric inputÁÁÁÁÁÁ...

  • Page 997

    B–63003EN–1/0211. PROGRAM COMMAND9755115Clearance canned cycle G83[Data type] WordIncrement systemÁÁÁÁÁÁÁÁIS-AÁÁÁÁÁÁÁIS-BÁÁÁÁÁÁÁIS-CÁÁÁÁÁÁÁUnitÁÁÁÁÁÁÁÁMetric inputÁÁÁÁÁÁÁÁ0.01ÁÁÁÁÁÁÁ0.001ÁÁÁÁÁÁÁ0.001ÁÁÁÁÁÁÁmmÁÁÁÁÁÁÁÁInc...

  • Page 998

    11. PROGRAM COMMANDB–63003EN–1/02976Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁÁII.13.1ÁÁÁÁÁÁÁCanned cycleÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Lathe) (B–63004EN)ÁÁÁÁÁÁÁ...

  • Page 999

    B–63003EN–1/0211. PROGRAM COMMAND977Upon completion of positioning in each block in the program, an externaloperation function signal can be output to allow the machine to performspecific operation.G81 IP_ ; (The IP_ is axis move command )Every time positioning for the IP_ move command is co...

  • Page 1000

    11. PROGRAM COMMANDB–63003EN–1/02978[Classification] Output signal[Function] Reports that the positioning of G81 has been completed in the externalmotion function, and that a special external operation is required.[Output condition] For details of the output condition and procedure, see the ...

  • Page 1001

    B–63003EN–1/0211. PROGRAM COMMAND979This option canned cycles to make CNC programming easy. For instance,the data of the finish work shape describes the tool path for roughmachining. And also, a canned cycles for the thread cutting is available.The following example shows stock removals in ...

  • Page 1002

    11. PROGRAM COMMANDB–63003EN–1/02980[Classification] Input signal[Function] Executes chamfering in a threading cycle. Specify the chamferingdistance in parameter No. 5130.[Operation] When the signal is set to 1, chamfering is not executed in the threadingcycle.When the signal is set to 0, ch...

  • Page 1003

    B–63003EN–1/0211. PROGRAM COMMAND981QSR Before a multiple repetitive canned cycle (G70 to G73) is started, a checkto see if the program contains a block that has the sequence numberspecified in address Q is:0 : Not made.1 : Made. (If the sequence number specified in address Q cannot befound, ...

  • Page 1004

    11. PROGRAM COMMANDB–63003EN–1/029825135Escape in multiple repetitive canned cycle G73 in X–axis direction5136Escape in multiple repetitive canned cycle G73 in Z–axis direction[Data type] Two–wordIncrement systemÁÁÁÁÁÁÁÁIS-AÁÁÁÁÁÁÁIS-BÁÁÁÁÁÁÁIS-CÁÁÁÁÁÁÁUnit...

  • Page 1005

    B–63003EN–1/0211. PROGRAM COMMAND9835140Minimum depth of cut in multiple repetitive canned cycle G76[Data type] Two–wordIncrement systemÁÁÁÁÁÁÁÁÁIS-AÁÁÁÁÁÁÁÁIS-BÁÁÁÁÁÁÁÁIS-CÁÁÁÁÁÁÁÁUnitÁÁÁÁÁÁÁÁÁÁMetric inputÁÁÁÁÁÁÁ0.01ÁÁÁÁÁÁ0.001ÁÁÁ...

  • Page 1006

    11. PROGRAM COMMANDB–63003EN–1/02984NumberÁÁÁÁÁÁÁMessageÁÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ061ÁÁÁÁÁÁÁADDRESS P/Q NOTFOUND IN G70–G73ÁÁÁÁÁÁÁÁÁÁÁAddress P or Q is not specified in G70,G71, G72, or G73 command.Modify the program.ÁÁÁÁ...

  • Page 1007

    B–63003EN–1/0211. PROGRAM COMMAND9851 Necessary parameters (such as P, Q, X, Z, U, W, and R) must be setcorrectly for an individual block that specifies a multiple repetitivecanned cycle.2 In G71, G72, and G73 blocks having a sequence number specifiedusing P, always specify G00 or G01 in grou...

  • Page 1008

    11. PROGRAM COMMANDB–63003EN–1/02986Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Lathe) (B–63004EN)ÁÁÁÁÁÁÁÁÁÁÁÁII.13.1II.13.2ÁÁÁÁÁÁCanned cycleMultiple repetitive canned cycleÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSeries 21i/210iÁÁÁÁÁÁÁÁÁOPERATOR’S ...

  • Page 1009

    B–63003EN–1/0211. PROGRAM COMMAND987Mirror image can be applied to X–axis with G code.G68 : Double turret mirror image on G69 : Mirror image cancelWhen G68 is designated, the coordinate system is shifted to the matingturret side, and the X–axis sign is reversed from the programmedcommand ...

  • Page 1010

    11. PROGRAM COMMANDB–63003EN–1/029881290Distance between two turrets in mirror image[Data type] Two–wordIncrement systemÁÁÁÁÁÁÁÁIS–AÁÁÁÁÁÁÁIS–BÁÁÁÁÁÁÁIS–CÁÁÁÁÁÁÁUnitÁÁÁÁÁÁÁÁMillimeter machineÁÁÁÁÁÁÁÁ0.01ÁÁÁÁÁÁÁ0.001ÁÁÁÁÁÁÁ0.00...

  • Page 1011

    B–63003EN–1/0211. PROGRAM COMMAND989By specifying indexing positions (angles) for the indexing axis (onerotation axis, A, B, or C), the index table of the machining center can beindexed.Before and after indexing, the index table is automatically unclamped orclamped .The control axis that inde...

  • Page 1012

    11. PROGRAM COMMANDB–63003EN–1/02990(8) When *BECLP is turned to “0”, the CNC then turns BCLP to “0”,informing it received the *BECLP signal. (Type B -- When BCLPturns to “0”, the B axis position control servo is turned off.)(9) On the PMC side, when BCLP changes to “0”, *BECL...

  • Page 1013

    B–63003EN–1/0211. PROGRAM COMMAND991B axis manual feed selection signal +Jb*1<G100>B axis position control servo ONB axis unclamp signal BUCLP<F061#0>B axis unclamp completion signal *BEUCP<G038#6>B axis rotationB axis deceleration signal DECb*1<X009>B axis return c...

  • Page 1014

    11. PROGRAM COMMANDB–63003EN–1/02992[Classification] Output signal[Function] Instructs the PMC side to clamp the B axis mechanically with a clutch orshot pin.[Output condition] The output condition and procedure are the same as those described in thebasic procedure for positioning the index t...

  • Page 1015

    B–63003EN–1/0211. PROGRAM COMMAND993#7#6#5#4#3#2#1#0*BECLPG038*BEUCP#7#6#5#4#3#2#1#0F061BCLPBUCLP#7#6#5#4#3#2#1#01006ROSxROTxNOTEWhen this parameter is changed, turn off the power beforecontinuing operation.[Data type] Bit axisROTx, ROSx Setting linear or rotation axisROSxÁÁÁÁÁROTxÁÁÁ...

  • Page 1016

    11. PROGRAM COMMANDB–63003EN–1/02994#7#6#5#4#3#2#1#0IDX5500G90INCABSRELDDP[Data type] BitDDP Selection of decimal–point input method of index table indexing axis0 : Conventional method (Example IS–B: B1; = 0.001 deg)1 : Pocket calculator method (Example IS–B: B1; = 1.000 deg)REL Rel...

  • Page 1017

    B–63003EN–1/0211. PROGRAM COMMAND995NOTESet ABS, #2 of parameter No. 5500, to 1.5512Unit of index table indexing angle[Data type] Two–wordIncrement systemÁÁÁÁÁÁÁÁIS–AÁÁÁÁÁÁÁIS–BÁÁÁÁÁÁÁIS–CÁÁÁÁÁÁÁUnitÁÁÁÁÁÁÁÁMetric inputÁÁÁÁÁÁÁÁÁÁÁÁÁÁ0...

  • Page 1018

    11. PROGRAM COMMANDB–63003EN–1/02996NOTE1 Specify a rotation axis as the index table indexing axis. (Set1 in the ROTx bit (bit 0 of parameter No. 1006).)2 The servo off signal for the index table indexing axis isinvalid.3 Single direction positioning (G60) cannot be specified.4 While the ind...

  • Page 1019

    B–63003EN–1/0211. PROGRAM COMMAND997A programmed figure can be magnified or reduced (scaling).The dimensions specified with X_, Y_, and Z_ can each be scaled up ordown with the same or different rates of magnification.The magnification rate can be specified in the program.Unless specified in ...

  • Page 1020

    11. PROGRAM COMMANDB–63003EN–1/02998Each axis can be scaled by different magnifications. Also when a negativemagnification is specified, a mirror image is applied. First of all, set aparameter XSC (No. 5400#6) which validates each axis scaling (mirrorimage).Then, set parameter SCLx (No. 540...

  • Page 1021

    B–63003EN–1/0211. PROGRAM COMMAND999#7#6#5#4#3#2#1#0SCR5400XSC[Data type] BitXSC Axis scaling and programmable mirror image0 : Invalidated (The scaling magnification is specified by P.)1 : ValidatedSCR Scaling magnification unit0 : 0.00001 times (1/100,000)1 : 0.001 times#7#6#5#4#3#2#1#05401S...

  • Page 1022

    11. PROGRAM COMMANDB–63003EN–1/0210005421Scaling magnification for every axis[Data type] Two–word axis[Unit of data] 0.001 or 0.00001 times (Selected using SCR, #7 of parameter No. 5400)[Valid data range] * 999999X* 1, 1X 999999This parameter sets the scaling magnification for every axis.Nu...

  • Page 1023

    B–63003EN–1/0211. PROGRAM COMMAND1001A programmed shape can be rotated. By using this function it becomespossible, for example, to modify a program using a rotation commandwhen a workpiece has been placed with some angle rotated from theprogrammed position on the machine. Further, when ther...

  • Page 1024

    11. PROGRAM COMMANDB–63003EN–1/021002G17 (G18 or G19) : Select the plane in which contains the figure to be rotated.α_β_Absolute command for two of the x_,y_,and Z_ axes thatcorrespond to the current plane selected by a command (G17, G18, or G19). The command specifiesthe coordinates of th...

  • Page 1025

    B–63003EN–1/0211. PROGRAM COMMAND1003#7#6#5#4#3#2#1#05400RIN[Data type] BitRIN Coordinate rotation angle command (R)0 : Specified by an absolute method1 : Specified by G90 or G915410Angular displacement used when no angular displacement is specified for coordinate system rotation[Data type] T...

  • Page 1026

    11. PROGRAM COMMANDB–63003EN–1/021004The coordinate system can be rotated about an axis by specifying thecenter of rotation, direction of the axis of rotation, and angulardisplacement. This coordinate conversion function is quite useful forthree–dimensional machining using a diesinking mac...

  • Page 1027

    B–63003EN–1/0211. PROGRAM COMMAND1005#7#6#5#4#3#2#1#0DAC3104DALDRCDRL[Data type] BitDRL Relative position0 : The actual position displayed takes into account tool length offset.1 : The programmed position displayed does not take into account toollength offset.DRC Relative position0 : The actu...

  • Page 1028

    11. PROGRAM COMMANDB–63003EN–1/021006NumberÁÁÁÁÁÁÁMessageÁÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ047ÁÁÁÁÁÁÁÁÁILLEGAL AXIS SELECTÁÁÁÁÁÁÁÁÁÁÁÁÁFor startup of three–dimensional toolcompensation or three–dimensionalcoordinate conversion,...

  • Page 1029

    B–63003EN–1/0211. PROGRAM COMMAND1007A tool can retrace the tool path along which the tool has moved. Thisoperation is referred to as retrace. In addition, a tool can move forwardagain along the path that the tool has retraced. This operation is referredto as re–forward. The tool can then...

  • Page 1030

    11. PROGRAM COMMANDB–63003EN–1/021008[Classification] Input signal[Function] Directs the control unit to retrace the tool along the path which the toolwas moved in automatic operation (memory command, tape command,manual data input).[Operation] When RVS turns to “1” while the tool is bein...

  • Page 1031

    B–63003EN–1/0211. PROGRAM COMMAND1009Retrace end Re–forwarding start(Retrace signal RVS is “0”)Position to which auxiliaryfunction is output duringretracingBlock in which the move command andauxiliary function are includedÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁRetrace start(Retrace sig...

  • Page 1032

    11. PROGRAM COMMANDB–63003EN–1/021010While a tool is in retrace, the retrace–in–progress signal RVSL is sent, andthe character string RVRS blinks on the CRT screen to signal that the toolis currently in retrace. When a tool is in re–forward, the character stringRTRY blinks to signal tha...

  • Page 1033

    B–63003EN–1/0211. PROGRAM COMMAND1011There are two types of NC programs; those which, once created, arescarcely changed, and those which are changed for each machining type.The former are programs created by the custom macro, and the latter aremachining programs. If programs of these types ar...

  • Page 1034

    11. PROGRAM COMMANDB–63003EN–1/021012This is a repetition of a peck drilling cycle in which when an overloadtorque detection signal (skip signal is used) is received with an arborhaving an overload torque detection function during drilling, the tool isretracted, and the spindle speed and cutt...

  • Page 1035

    B–63003EN–1/0211. PROGRAM COMMAND1013The cutting conditions are changed at each pecking operation (forwarding→ cutting→ retracting) during one G83 cycle. (Appropriate setting ofbits 1 and 2 of parameter No. 5160 can specify that the cutting conditionsare not to be changed.)The cutting fe...

  • Page 1036

    11. PROGRAM COMMANDB–63003EN–1/021014[Classification] Input signal[Function] Retracts a tool if an overload torque is applied it.[Operation] When this signal becomes “1”, the control unit operates as follows:S Assuming that an overload torque is applied to a tool, retracts it, andchanges ...

  • Page 1037

    B–63003EN–1/0211. PROGRAM COMMAND1015NOL When the depth of cut per action is satisfied although no overload torquesignal is received in a peck drilling cycle of a small diameter, the feed andspindle speed are:0 : Not changed.1 : Changed.5163M code that specifies the peck drilling cycle mode o...

  • Page 1038

    11. PROGRAM COMMANDB–63003EN–1/0210165166Percentage of cutting feedrate to be changed when the tool is retracted after anoverload torque signal is received[Data type] Byte[Unit of data] %[Valid data range] 0 to 255This parameter sets the percentage of the cutting feedrate to be changedwhen th...

  • Page 1039

    B–63003EN–1/0211. PROGRAM COMMAND10175170Number of the macro variable to which the total number of retractions during cuttingis output[Data type] Word[Valid data range] 100 to 149This parameter sets the number of the macro variable to which the totalnumber of times the tool is retracted durin...

  • Page 1040

    11. PROGRAM COMMANDB–63003EN–1/0210185174Clearance in a peck drilling cycle of a small diameter[Data type] WordIncrement systemÁÁÁÁÁÁÁÁIS–AÁÁÁÁÁÁÁIS–BÁÁÁÁÁÁÁIS–CÁÁÁÁÁÁÁUnitÁÁÁÁÁÁÁÁLinear axis(millimeter input)ÁÁÁÁÁÁÁÁÁ0.01ÁÁÁÁÁÁÁÁ0.0...

  • Page 1041

    B–63003EN–1/0211. PROGRAM COMMAND1019When high–speed cycle machining is to be interrupted, retracting can beperformed by setting the high–speed cycle machining retract signal HSRTto 1.It is also possible to specify and execute a special type of escape afterretracting by previously registe...

  • Page 1042

    11. PROGRAM COMMANDB–63003EN–1/021020When retracting begins, the retracting signal HSRA <F062#2> becomes1. Once retracting begins, resetting the retract signal HSRT to 0 does notstop retract operation.[Example](1) Parameter No. 7515 setting < remaining distribution count for thecurr...

  • Page 1043

    B–63003EN–1/0211. PROGRAM COMMAND1021(2) Parameter No. 7515 setting >= remaining distribution count for thecurrent cycleA number of pulses for retracting until the end of the current cycle aresuperimposed on a usual operation. When retracting ends, the CNCshifts to an automatic operation ...

  • Page 1044

    11. PROGRAM COMMANDB–63003EN–1/021022Previously registering a retract cycle in the high–speed cycle headercauses the retract cycle to be executed after retracting. If the machiningcycle data is cycle connection information indicating that connection ofmore than one machining cycle is attem...

  • Page 1045

    B–63003EN–1/0211. PROGRAM COMMAND1023Bit 7 of the data type specification variable in the high–speed cycle headerspecifies whether to enable retracting. If this bit is off, the retract signalHSRT is ignored; so neither retracting nor retract cycle is executed.Data type specification variab...

  • Page 1046

    11. PROGRAM COMMANDB–63003EN–1/021024NOTEP–code variable numbers enclosed in parentheses apply todata variable addition A/B.[Classification] Input signal[Function] Starts high–speed cycle machining retracting.[Operation] When this signal becomes 1, the control unit behaves as follows:D If...

  • Page 1047

    B–63003EN–1/0211. PROGRAM COMMAND10257514Escape direction and speed for high–speed cycle machining retracting[Data type] Two–word axisIncrement systemÁÁÁÁÁÁÁÁUnit of dataÁÁÁÁÁÁÁÁÁValid data rangeÁÁÁÁÁÁÁÁÁÁÁÁÁÁIncrement systemÁÁUnit of dataÁÁIS–A, IS–...

  • Page 1048

    12. DISPLAY/SET/EDITB–63003EN–1/02102612 DISPLAY/SET/EDITÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

  • Page 1049

    B–63003EN–1/0212. DISPLAY/SET/EDIT1027Time is displayed in the hour/minute/second format on each displayscreen. Some screens allows display of the year, month, and day.The custom macro system variable can be used to read the time. The timewill be told through the window on the PMC side.Time i...

  • Page 1050

    12. DISPLAY/SET/EDITB–63003EN–1/021028This function displays a history of the key and signal operations, performed bythe CNC operator, upon the occurrence of a failure or CNC alarm. The historycan also be displayed for previously generated CNC alarms.The following history data is recorded:(1...

  • Page 1051

    B–63003EN–1/0212. DISPLAY/SET/EDIT10293122Time interval used to record time data in operation history[Data type] Word[Unit of data] Minutes[Valid data range] 0 to 1439Time data is recorded in operation history at set intervals. When 0 isspecified in this parameter, 10 minutes is assumed as t...

  • Page 1052

    12. DISPLAY/SET/EDITB–63003EN–1/021030The help function displays on the screen detailed information aboutalarms issued in the CNC and about CNC operations. The followinginformation is displayed.When the CNC is operated incorrectly or an erroneous machiningprogram is executed, the CNC enters ...

  • Page 1053

    B–63003EN–1/0212. DISPLAY/SET/EDIT1031Up to 25 of the most recent CNC alarms are stored and displayed on thescreen.The following information items are displayed.(1) The date the alarm was issued(2) Alarm No.(3) Alarm message (some contains no message)Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁO...

  • Page 1054

    12. DISPLAY/SET/EDITB–63003EN–1/021032Series16i/160i/18i/180i/21i/210iÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁMAINTENANCE MANUAL(B–63005EN)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ5.2ÁÁÁÁÁÁÁÁÁÁServo Tuning ScreenÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOn the spindle set...

  • Page 1055

    B–63003EN–1/0212. DISPLAY/SET/EDIT1033Waveform diagnosis is classified into two main types.(1) One–shot typeOne–shot waveform diagnosis provides graphs of waveforms toillustrate changes in the following data.In one–shot waveform diagnosis, the start of data collection can betriggered by...

  • Page 1056

    12. DISPLAY/SET/EDITB–63003EN–1/0210343120Time from the output of an alarm to the termination of sampling (waveform diagno-sis function)[Data type] Word[Unit of data] ms[Valid data range] 1 to 32760This parameter specifies the time allowed from the time a servo alarmcondition occurs until dat...

  • Page 1057

    B–63003EN–1/0212. DISPLAY/SET/EDIT1035When a breakdown occurs, in order to quickly determine the cause, thefollowing should be done.First, it has to be determined as to whether the breakdown occurred in theCNC internal section, or the PMC or machine side.There are times when it appears that a...

  • Page 1058

    12. DISPLAY/SET/EDITB–63003EN–1/021036The required hardware/software configuration for CNC maintenance canbe displayed on the screen.The system configuration screen displays the following information:(1) Printed circuit board configurationThe type and function of the printed circuit board mou...

  • Page 1059

    B–63003EN–1/0212. DISPLAY/SET/EDIT1037Indication of the current position can be suppressed by setting bit 0(NDPx) of parameter No. 3115, or by issuing the position indicationignore signal.Bit 1 (NDAx) of parameter No. 3115 enables the display of positions inthe machine coordinate system only....

  • Page 1060

    12. DISPLAY/SET/EDITB–63003EN–1/021038#7#6#5#4#3#2#1#03115NDAxNDPx[Data type] Bit axisNDPx Display of the current position for each axis0 : The current position is displayed.1 : The current position is not displayed.NDAx Position display using absolute coordinates and relative coordinates is:...

  • Page 1061

    B–63003EN–1/0212. DISPLAY/SET/EDIT1039[Classification] Output signal[Function] Reports to the PMC that the specified number of parts have beenmachined.[Output condition] The PRTSF signal is set to 1 when:@ Machining of the specified number of parts has been completed.When 0 (infinity) is set ...

  • Page 1062

    12. DISPLAY/SET/EDITB–63003EN–1/021040#76700#6#5#4#3#2#1#0PCM[Data type] BitPCM M code that counts the total number of machined parts and the number ofmachined parts0 : M02, or M30, or an M code specified by parameter No. 67101 : Only M code specified by parameter No. 67106710M code that coun...

  • Page 1063

    B–63003EN–1/0212. DISPLAY/SET/EDIT1041NOTEWhen bit 0 (PCM) of parameter No. 6700 is set to 1, thenumber of parts is not counted with M02 and M30.6713Number of required partsSetting entry is acceptable.[Data type] Word[Unit of data] One piece[Valid data range] 0 to 9999This parameter sets the ...

  • Page 1064

    12. DISPLAY/SET/EDITB–63003EN–1/0210426753Integrated value of cutting timeSetting entry is acceptable.[Data type] Two–word[Unit of data] One ms[Valid data range] 0 to 600006754Integrated value of cutting timeSetting entry is acceptable.[Data type] Two–word[Unit of data] One minute[Valid d...

  • Page 1065

    B–63003EN–1/0212. DISPLAY/SET/EDIT10436757Operation time (integrated value of one automatic operation time)Setting entry is acceptable.[Data type] Two–word[Unit of data] One ms[Valid data range] 0 to 600006758Operation time (integrated value of one automatic operation time)Setting entry is ...

  • Page 1066

    12. DISPLAY/SET/EDITB–63003EN–1/021044It is possible to draw the programmed tool path on the screen, whichmakes it possible to check the progress of machining, while observing thepath on the screen.In addition, it is also possible to enlarge/reduce the screen.The drawing coordinates (paramete...

  • Page 1067

    B–63003EN–1/0212. DISPLAY/SET/EDIT1045MEM STRT * * * FIN 08 : 24 : 56HEAD1HEAD1 O0001N00021X1200.000Z1200.000HEAD2 O0020N00020X2220.000Z2160.00062.5ÁÁÁÁÁÁZ1X162.5ÁÁÁZ2X2(OPRT)G.PRMZOOMÁÁÁÁGRAPHT series (Two–path control)There are the following two functions in D...

  • Page 1068

    12. DISPLAY/SET/EDITB–63003EN–1/021046 O1126 N01126ÁÁÁÁÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÄÄÄÄÄÄÄÄÁÁF.STSTOPREWINDA.STSOLID GRAPHIC (EXECUTION)ZYXPart MachinedThe background graphic fun...

  • Page 1069

    B–63003EN–1/0212. DISPLAY/SET/EDIT1047#7#6#5#4#3#2#1#0MVG3003[Data type] BitMVG While drawing using the dynamic graphics function (with no machinemovement), the axis–in–movement signal is:0 : Output1 : Not output#7#6#5#4#3#2#1#03109BGOBGO Response when the <OFFSET> function key is p...

  • Page 1070

    12. DISPLAY/SET/EDITB–63003EN–1/021048DPO Current position on the solid drawing (machining profile drawing) or toolpath drawing screen0 : Not appear1 : AppearsWhen the background graphic function is used, modal informationitems F, S, and T are displayed, together with the current position.Whe...

  • Page 1071

    B–63003EN–1/0212. DISPLAY/SET/EDIT10496509Coordinate system for drawing a single spindle (2–path control)ÁÁZÁÁX1ÁX2ÁÁX1X2ZÁÁÁX1X2ZGRPAX=0, 10GRPAX=1, 11GRPAX=2, 12ÁÁZÁÁX1ÁX2ÁÁÁX1X2ZÁÁÁÁX1X2ZGRPAX=3, 13GRPAX=4, 14GRPAX=5, 15ÁÁZÁÁX1ÁX2ÁÁX1X2ZGRPAX=6, 16GRPAX=7, 17...

  • Page 1072

    12. DISPLAY/SET/EDITB–63003EN–1/0210506510Drawing coordinate system[Data type] Byte[Valid data range] 0 to 7This parameter specifies the drawing coordinate system for the graphicfunction.The following show the relationship between the set values and thedrawing coordinate systems.ÁÁÁÁÁÁ...

  • Page 1073

    B–63003EN–1/0212. DISPLAY/SET/EDIT10516511Right margin in solid drawing6512Left margin in solid drawing6513Upper margin in solid drawing6514Lower margin in solid drawing[Data type] Word[Unit of data] DotThese parameters set the machining profile drawing position in marginson the screen. The ...

  • Page 1074

    12. DISPLAY/SET/EDITB–63003EN–1/021052#7#6#5#4#3#2#1#08100NWPRST[Data type] Bit typeRST When the reset key on the MDI panel is pressed:0 : The reset is effective for both paths. Alternatively, the reset iseffective for both the machining side and the background graphic side(M series).1 : The...

  • Page 1075

    B–63003EN–1/0212. DISPLAY/SET/EDIT1053The reading on the load meter can be displayed for each servo axis andthe serial spindle.The reading on the load meter can be displayed for up to three servo axesby setting parameters 3151 to 3153.When serial spindles are used, the reading on the load met...

  • Page 1076

    12. DISPLAY/SET/EDITB–63003EN–1/0210542086Rated current parameter (RTCURR)[Data type] Word axis4127Load meter displayed value for maximum output[Data type] Word axisNOTEThe reading on the load meter depends on servo parameter2086 and spindle parameter 4127.These parameters are set by the auto...

  • Page 1077

    B–63003EN–1/0212. DISPLAY/SET/EDIT1055When a program is executed, its main program machining time isdisplayed on the program machining time display screen. The machiningtime can be displayed, in hours, minutes, and seconds format, for up to10 main programs. Upon the execution of the elevent...

  • Page 1078

    12. DISPLAY/SET/EDITB–63003EN–1/021056NOTEWhen M02 does not reset the control unit, and completionsignal FIN is sent to continuously reexecute the programfrom the beginning (when bit 5 (M02) of parameter No. 3404is set to 0), counting of machining time is terminated bycompletion signal FIN.Se...

  • Page 1079

    B–63003EN–1/0212. DISPLAY/SET/EDIT1057The software operator’s panel function replaces part of the controlswitches on the machine operator’s panel with soft switches which can beturned on or off using the MDI of the control unit.The control switches for the functions listed in the followin...

  • Page 1080

    12. DISPLAY/SET/EDITB–63003EN–1/021058GroupÁÁÁÁÁÁFunctionÁÁÁÁÁÁOutput signalÁÁÁÁÁÁÁÁÁRelated input signalÁÁÁÁÁÁÁÁÁÁÁ1ÁÁÁÁÁÁÁÁÁMode selectionÁÁÁÁÁÁMD1O <F073#0>MD2O <F073#1>MD4O <F073#2>ZRNO <F073#4>ÁÁÁÁÁÁÁÁÁÁÁÁ...

  • Page 1081

    B–63003EN–1/0212. DISPLAY/SET/EDIT1059#7#6#5#4#3#2#1#0OUT7F072OUT6OUT5OUT4OUT3OUT2OUT1OUT0F073ZRNOMD4OMD2OMD1OF074SPOF075KEYODRNOMLKOSBKOBDTOF076ROV2OROV1OMP2OMP1OF077RTOHS1DOHS1COHS1BOHS1AO*FV7OF078*FV6O*FV5O*FV4O*FV3O*FV2O*FV1O*FV0O*JV7OF079*JV6O:JV5O*JV4O*JV3O*JV2O*JV1O*JV0O*JV15OF080*JV14...

  • Page 1082

    Arrow keys on the MDI panelÁÁÁÁÁÁÁÁÁÁÁÁ78965412312. DISPLAY/SET/EDITB–63003EN–1/021060OP7 Feed hold on software operator’s panel0 : Not performed1 : Performed7210Jog–movement axis and its direction on software operator’s panel “↑”7211Jog–movement axis and its directi...

  • Page 1083

    B–63003EN–1/0212. DISPLAY/SET/EDIT1061Under X, Y, and Z axis configuration, to set arrow keys to feed the axesin the direction specified as follows, set the parameters to the values givenbelow. [8 ] to the positive direction of the Z axis, [2–] to the negativedirection of the Z axis, [6‡ ...

  • Page 1084

    12. DISPLAY/SET/EDITB–63003EN–1/021062Parameter No. 7223:Sets the character code (078) corresponding to N of SIGNAL 1.Parameter No. 7224:Sets the character code (065) corresponding to A of SIGNAL 1.Parameter No. 7225:Sets the character code (076) corresponding to L of SIGNAL 1.Parameter No. 7...

  • Page 1085

    B–63003EN–1/0212. DISPLAY/SET/EDIT1063Character to Code Correspondence TableCharacterÁÁÁÁÁÁCodeÁÁÁÁÁÁCom-mentÁÁÁÁÁÁÁCharacterÁÁÁÁÁÁCodeÁÁÁÁÁÁCommentÁÁÁÁÁÁÁÁÁCharacterÁÁÁÁÁÁCodeÁÁÁÁÁÁCom-mentÁÁÁÁÁÁÁCharacterÁÁÁÁÁÁCodeÁÁÁÁÁÁ...

  • Page 1086

    12. DISPLAY/SET/EDITB–63003EN–1/021064NOTE1 Only the modes shown below can be selected by softswitches. When the mode for DNC operation is to beequipped, for example, all control switches for modeselection should be on the machine operator’s panel or ageneral–purpose soft switch should be...

  • Page 1087

    B–63003EN–1/0212. DISPLAY/SET/EDIT1065NOTE4 The following table lists the override values which can beselected by soft switches for jog feedrate.ÁÁÁÁÁ*JV00 – *JV150(*JV0 – *JV150)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ1512 ––ÁÁÁÁÁÁÁÁÁÁÁÁÁ8...

  • Page 1088

    12. DISPLAY/SET/EDITB–63003EN–1/021066NOTE5 The following table lists the override values which can beselected by soft switches for feedrate override.ÁÁÁÁÁ*FV0O – *FV7O (*FV0 – *FV7)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOverrideÁÁÁÁÁÁÁÁÁÁÁÁ74––ÁÁÁÁÁÁÁÁÁÁÁÁÁ0–...

  • Page 1089

    B–63003EN–1/0212. DISPLAY/SET/EDIT1067Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁÁIII.11.4.10ÁÁÁÁÁÁÁÁDisplaying and Setting the Soft-ware Operator’s PanelÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPERATOR...

  • Page 1090

    12. DISPLAY/SET/EDITB–63003EN–1/021068The LCD screens are displayed in a parameter–set language.#7#6#5#4#3#2#1#03102SPNHNGITACHIFRNGRMJPN#7#6#5#4#3#2#1#03119PORPORDAN[Data type] Bit typeNOTEWhen this parameter is set, turn off the power once.These bits select the language to be used for the...

  • Page 1091

    B–63003EN–1/0212. DISPLAY/SET/EDIT1069The remote diagnosis function allows CNC status monitoring andmodification to CNC data to be performed remotely by menu–basedoperation. The remote diagnosis function, operating under MS–DOS, isinstalled on a standard personal computer, connected as a...

  • Page 1092

    12. DISPLAY/SET/EDITB–63003EN–1/021070c. CNC ‡ computer(1) Alarm information(2) Machine position(3) Absolute position(4) Skip position(5) Servo delay(6) Acceleration/deceleration delay(7) Diagnosis(8) Parameter(9) Tool life management data(10) Display screen status(11) Modal inf...

  • Page 1093

    B–63003EN–1/0212. DISPLAY/SET/EDIT1071External operator messages can be logged in a history file.These messages can be displayed on the external operator message historyscreen.#7#6#5#4#3#2#1#03112OMH[Data type] BitOMH The external operator message history screen is:0 : Not displayed.1 : Displ...

  • Page 1094

    12. DISPLAY/SET/EDITB–63003EN–1/021072Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁÁIII.11.7.1ÁÁÁÁÁÁÁExternal operator message log-ging and displayÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(...

  • Page 1095

    B–63003EN–1/0212. DISPLAY/SET/EDIT1073Displaying the same characters in the same positions on the screen causesa LCD to degrade relatively quickly. To help prevent this, the screen canbe cleared by pressing specific keys. It is also possible to specify theautomatic clearing of the screen if...

  • Page 1096

    12. DISPLAY/SET/EDITB–63003EN–1/021074Automatic erase screen display cancel signal *CRTOF (G062#1) is validonly for the signals for path 1. This signal is invalid for the signals of path2 (G1062#1) and those of the loader (G062#1).If parameter No. 3123 is set to 0, clearing of the screen usi...

  • Page 1097

    B–63003EN–1/0212. DISPLAY/SET/EDIT10753123Time until erase screen display is applied[Data type] Bytes[Unit of data] Minutes[Valid data range] 1 to 255This parameter specifies the period that must elapse before the erasescreen display is applied. If 0 is set, the screen is not cleared.Series1...

  • Page 1098

    12. DISPLAY/SET/EDITB–63003EN–1/021076A touch pad can be used on the LCD display, as follows:(1) The soft keys (F0 to F9, FR, and FL) in the lower section on the10.4–inch color LCD/MDI panel are changed to those for the touchpad.(2) Touch pad operation substitutes for cursor control on the ...

  • Page 1099

    B–63003EN–1/0212. DISPLAY/SET/EDIT1077(2) Reception data sampling intervalThe coordinates of a point on the touch pad are output via an RS–232Cinterface. The information is received at sampling intervals of 50 ms.(3) Positional precisionA positional precision of +2.5 mm can be maintained b...

  • Page 1100

    12. DISPLAY/SET/EDITB–63003EN–1/0210784 Press the [TP CAL] soft key.The following touch pad compensation screen appears.CALIBRATION OF TOUCH PANELPLEASE PUSH CALIBRATED POINTS (+ OF 9 POINTS).IF CALIBRATION IS ENDED, PLEASE PUSH <INPUT> KEY.IF CALIBRATION IS CANCELED, PLEASE PUSH <CA...

  • Page 1101

    B–63003EN–1/0212. DISPLAY/SET/EDIT10790 : Enabled.1 : Disabled.As described in “Hardware connection,” the touch pad is connected toRS–232–C serial port 2 (JD36B) on the CNC motherboard. When thetouch pad is used, serial port 2 (JD36B) is set up for touch pad operation,regardless of a...

  • Page 1102

    12. DISPLAY/SET/EDITB–63003EN–1/021080The periodic maintenance screen shows the current statuses of thoseconsumables that require periodic replacement (backup battery, LCDbacklight, touch pad, etc.). An item whose service life has expired isindicated by the machine run time or the like.1 Pre...

  • Page 1103

    B–63003EN–1/0212. DISPLAY/SET/EDIT1081(1)Consumables namesThe names of consumables to be subjected to periodic maintenance areset up here. They can be registered using either the correspondingmenu or MDI keys.1) Menu–based setup1 To display the setting menu, place the cursor on the desired...

  • Page 1104

    12. DISPLAY/SET/EDITB–63003EN–1/021082To delete a registered item name, place the cursor on it, and press the[CLEAR] soft key, then the [EXEC] soft key.[Machine consumables screen]PERIODICAL MAINTENANCEO0001 N12345(MACHINE)ITEM NAME 01 02 03 04 05 06 07 08 09 10>_EDIT *** ***** *** ****19:...

  • Page 1105

    B–63003EN–1/0212. DISPLAY/SET/EDIT1083[CNC consumables screen]PERIODICAL MAINTENANCEO0001 N12345(NC)ITEM NAME 01BATTERY FOR CONTROLLER 02BATTERY FOR PULSECODER 03FAN MOTOR 04LCD BACK LIGHT 05 06 07 08 09 10>_EDIT *** ***** *** ****19:27:05[ ][ STATUS ][ MACHIN ][ NC ][ (OPRT) ]ÁÁ[...

  • Page 1106

    12. DISPLAY/SET/EDITB–63003EN–1/021084(2) Remaining lifetimeThe remaining lifetime of an item is the time allowed before it mustbe replaced. It is displayed in a count–down format. When theremaining lifetime becomes less than the percentage specified inparameter No. 8911 of the correspond...

  • Page 1107

    B–63003EN–1/0212. DISPLAY/SET/EDIT1085(1) Service lifeThe service life of consumables can be specified here. To specify theservice life, key in the corresponding data and press the [INPUT] softkey (or INPUT key). The same data is set up as both the service life andremaining lifetime. In ad...

  • Page 1108

    12. DISPLAY/SET/EDITB–63003EN–1/021086NOTE1 If an attempt is made to enter data for an item number forwhich no item name or service life has been registered, thewarning message “EDIT REJECTED” appears.2 If an attempt is made to enter data that does not fall in thevalid data range, the war...

  • Page 1109

    B–63003EN–1/0212. DISPLAY/SET/EDIT1087In EDIT mode, pressing the [PUNCH] soft key causes registered data tobe output in the following formats.f Status and setting screensG10 L60 P01 Aa Rr [n] Qq ;G10 L60 P02 Aa Rr [n] Qq ;G10 L60 P03 Aa Rr [n] Qq ;:f Menu screen (machine consumables only)G10 ...

  • Page 1110

    12. DISPLAY/SET/EDITB–63003EN–1/021088One of the following part program length can be selected.FS16i/160i (m)ÁÁÁÁÁÁÁ—ÁÁÁÁÁÁÁÁÁ40ÁÁÁÁÁ80ÁÁÁÁ160ÁÁÁÁÁ320ÁÁÁÁ640ÁÁÁÁÁ1280ÁÁÁÁÁ2560ÁÁÁÁ5120ÁÁÁÁÁÁÁFS18i/180i (m)ÁÁÁÁÁÁÁÁÁÁÁÁ20ÁÁÁ...

  • Page 1111

    B–63003EN–1/0212. DISPLAY/SET/EDIT1089One of the following no. of registered programs can be selected.63/125/200/400/1000NumberÁÁÁÁÁÁMessageÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ072ÁÁÁÁÁÁÁÁÁÁÁÁÁTOO MANY PROGRAMSÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ...

  • Page 1112

    12. DISPLAY/SET/EDITB–63003EN–1/021090A key called the data protection key is used to prevent part programs,offset values, parameters, and setting data from being registered,modified, or deleted erroneously.[Classification] Input signal[Function] Enables the changing of the memory contents fr...

  • Page 1113

    B–63003EN–1/0212. DISPLAY/SET/EDIT1091#7#6#5#4#3#2#1#0KEY3290KEY For memory protection keys:0 : The KEY1, KEY2, KEY3, and KEY4 signals are used.1 : Only the KEY1 signal is used.NOTEThe functions of the signals depend on whether KEY = 0 orKEY = 1.Warning messageÁÁÁÁÁÁÁÁÁÁÁÁÁConten...

  • Page 1114

    12. DISPLAY/SET/EDITB–63003EN–1/021092The password function locks NE9 (bit 4 of parameter No. 3202), used toprotect program Nos. 9000 to 9999, by using the PASSWD (No. 3210)and KEYWD (No. 3211) parameters. When NE9 is locked, NE9 cannotbe set to 0. Therefore, the protection for programs num...

  • Page 1115

    B–63003EN–1/0212. DISPLAY/SET/EDIT10933210Password(PASSWD)[Data type] Two–wordSet a secret number to this parameter. Its value is not displayed.CAUTIONThis parameter show 0, when no value is set to thisparameter. Once a key is lock, parameter NE9 cannotbecome 0 and PASSWD cannot be change...

  • Page 1116

    12. DISPLAY/SET/EDITB–63003EN–1/021094Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁIII.9.9ÁÁÁÁÁÁÁÁÁÁPASSWORD FUNCTIONÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ...

  • Page 1117

    B–63003EN–1/0212. DISPLAY/SET/EDIT1095NOTEAlarm in background edit is displayed in the key input lineof the background edit screen instead of the ordinary alarmscreen and is resettable by any of the MDI key operation.Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining...

  • Page 1118

    12. DISPLAY/SET/EDITB–63003EN–1/021096When the playback option is selected, the TEACH IN JOG mode(TJOG) and TEACH IN HANDLE mode (THND) are added. In thesemodes, a machine position along the X, Y, and Z axes obtained by manualoperation is stored in memory as a program position to create a pro...

  • Page 1119

    B–63003EN–1/0212. DISPLAY/SET/EDIT1097Programs can be created block after block on the conversational screenwhile displaying the G code menu.Blocks in a program can be modified, inserted, or deleted using the G codemenu and converstional screen.Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁÁOPERA...

  • Page 1120

    13. INPUT/OUTPUT OF DATAB–63003EN–1/02109813 INPUT/OUTPUT OF DATAÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

  • Page 1121

    B–63003EN–1/0213. INPUT/OUTPUT OF DATA1099The data shown below can be input/output through reader/puncherinterface.1. Program2. Offset data3. Parameter4. Pitch error compensation data5. Custom macro common variables.13.1READER/PUNCHERINTERFACEGeneral

  • Page 1122

    13. INPUT/OUTPUT OF DATAB–63003EN–1/021100This CNC has three channels of input/output device interfaces. Theinput/output device to be used is specified by setting the channelconnected to that device in setting parameter I/O CHANNEL.The specified data, such as a baud rate and the number of st...

  • Page 1123

    B–63003EN–1/0213. INPUT/OUTPUT OF DATA11010020I/O CHANNEL: Selection of an input/output deviceSetting entry is acceptable.[Data type] Byte[Valid data range] 0 to 30 : Select the device of channel 1 (I/O device connected to JD36A ofmotherboard)1 : Select the device of channel 1 (I/O device c...

  • Page 1124

    13. INPUT/OUTPUT OF DATAB–63003EN–1/021102MOTHERBOARDSERIAL COMMUNICATION BOARDThis CNCI/ O CHANNEL=0I/ O CHANNEL=2I/ O CHANNEL=3I/ O CHANNEL=3orI/ O CHANNEL=1Channel 1 JD36ARS–232–CChannel 3Channel 2 JD36BRS–232–CRS–232–CRS–422JD6AÂÂÂÂÂReader/puncherÂÂÂÂÂÂReader...

  • Page 1125

    B–63003EN–1/0213. INPUT/OUTPUT OF DATA1103NFD Feed before and after the data at data output0 : Output1 : Not outputNOTEWhen input/output devices other than the FANUC PPR areused, set NFD to 1.0102Number specified for the input/output device (when the I/O CHANNEL is set to 0)[Data type] ByteSe...

  • Page 1126

    13. INPUT/OUTPUT OF DATAB–63003EN–1/021104(3) Parameters for channel 1 (I/O CHANNEL=1)#7NFD0111#6#5#4#3ASI#2#1#0SB2[Data type] BitThese parameters are used when I/O CHANNEL is set to 1. The meaningsof the bits are the same as for parameter 0101.0112Number specified for the input/output devic...

  • Page 1127

    B–63003EN–1/0213. INPUT/OUTPUT OF DATA1105NumberÁÁÁÁÁÁÁÁÁÁÁMessageÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ001ÁÁÁÁÁÁÁTH PARITY ALARMÁÁÁÁÁÁÁÁÁÁÁTH alarm (A character with incorrectparity was input). Co...

  • Page 1128

    13. INPUT/OUTPUT OF DATAB–63003EN–1/021106Refer to Remote Buffer DESCRIPTIONS (B–61802E–1) for detailedinformetion of remote buffer.13.2REMOTE BUFFER

  • Page 1129

    B–63003EN–1/0213. INPUT/OUTPUT OF DATA1107Refer to FANUC DNC1 DESCRIPTIONS(B–61782E) for detailedinformation of DNC1 interface.0020I/O CHANNEL: Selection of an input/output deviceSetting entry is acceptable.[Data type] ByteSet value. :100133Baud rate[Data type] ByteThe baud rate of HDLC is...

  • Page 1130

    13. INPUT/OUTPUT OF DATAB–63003EN–1/0211080142Station address of the CNC (DNC1 interface)[Data type] Byte[Valid data range] 2 to 52This parameter specifies the station address of the CNC when the CNCis connected via the DNC1 interface using multipoint connection.NOTEWhen this parameter is set...

  • Page 1131

    B–63003EN–1/0213. INPUT/OUTPUT OF DATA1109COMMUNICATION OPERATION O0001 N00000 DNC FILE SELECTION>MDI *** STOP *** *** *** 12 : 34 : 53[C–OPER][C–SERV][ ][ ...

  • Page 1132

    13. INPUT/OUTPUT OF DATAB–63003EN–1/021110(b) Service ScreenPress soft key [C–SERV] and the following screen is displayed.Three pages are available and one of the pages is selected by page key.COMMUNICATION PARAMETER O0001 N00000 NC ...

  • Page 1133

    B–63003EN–1/0213. INPUT/OUTPUT OF DATA1111COMMUNICATION PARAMETER O0001 N00000 PASCAL STACK ADDRESSUPPER LIMIT 01ABC000LOWER LIMIT01ABC0FF SERVICE MODE 10101010000000010 SERVICE MODE 201000000 ...

  • Page 1134

    13. INPUT/OUTPUT OF DATAB–63003EN–1/021112[Setting procedure]1 Put the system in the MDI mode.2 Cause the setting screen or service screen to appear, and press the[(OPRT)] soft key.3 Move the cursor to the item you want to specify, using the page andcursor keys.4 Enter the setting value from ...

  • Page 1135

    B–63003EN–1/0213. INPUT/OUTPUT OF DATA11135) Press the [INPUT] soft key to input the values. DNC FILE SELECTION O1000.PRGJ> MDI *** STOP *** *** *** 12 : 34 : 53[ STRING ] [ INPUT ] [ CLEAR ] [ INS. CH ...

  • Page 1136

    13. INPUT/OUTPUT OF DATAB–63003EN–1/021114(1) Setting screenD DNC file selectionTo start DNC operation, specify a file name in the host computer.Format: Oxxxx. PRG (where xxxx is a four–digit decimalnumber.)(2) Service screenD CNC and host application namesSpecify these parameters with CNC...

  • Page 1137

    B–63003EN–1/0213. INPUT/OUTPUT OF DATA1115* For the T series (two–path control), bits 08 to 11 correspond to M00to M30 at HEAD2 respectively, and bits 12 to 15, at HEAD1.D Status post maskNot usedD Alarm post This parameter specifies whether the bit position of a CNC alarmis posted to the ...

  • Page 1138

    13. INPUT/OUTPUT OF DATAB–63003EN–1/021116Refer to an item of FANUC DNC2 DESCRIPTIONS ( B–61992E ) fordetailed information of DNC2 interface.13.4DNC2 INTERFACE

  • Page 1139

    B–63003EN–1/0213. INPUT/OUTPUT OF DATA1117It is possible to request from the outside that a program be registered,collated, or output.D Registeration/CollationAs triggered by the external read start signal EXRD, the backgroundedit function saves programs from an external input unit onto tape ...

  • Page 1140

    13. INPUT/OUTPUT OF DATAB–63003EN–1/021118D There are some other conditions to determine whether a program canbe registered or collated. For example, a program cannot be registeredor collated, if a program with the same program number is beingexecuted in the foreground processing.[Classifica...

  • Page 1141

    B–63003EN–1/0213. INPUT/OUTPUT OF DATA1119[Classification] Output signal[Function] This signal indicates that the background edit function is operating.[Output condition] This signal becomes logical 1 when:D The [BG EDIT] soft key is pressed to put the CNC in the backgroundedit mode.D The MDI...

  • Page 1142

    13. INPUT/OUTPUT OF DATAB–63003EN–1/021120[Classification] Output signal[Function] This signal indicates that an alarm condition has occurred during programregisteration, collation, or output triggered by the external read or punchstart signal.[Output condition] This signal becomes logical 1,...

  • Page 1143

    B–63003EN–1/0213. INPUT/OUTPUT OF DATA1121Input/output channel number (parameter No. 0020) ↓Stop bit and other dataNumber specified for the in-put/output deviceBaud rateStop bit and other dataNumber specified for the in-put/output deviceBaud rateStop bit and other dataNumber specified for ...

  • Page 1144

    13. INPUT/OUTPUT OF DATAB–63003EN–1/021122N99 With an M99 block, when bit 6 (NPE) of parameter No. 3201 = 0, programregistration is assumed to be:0 : Completed1 : Not completedNPE With an M02, M30, or M99 block, program registration is assumed to be:0 : Completed1 : Not completed#73202#6#5#4N...

  • Page 1145

    B–63003EN–1/0213. INPUT/OUTPUT OF DATA1123NumberÁÁÁÁÁÁÁMessageÁÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ079ÁÁÁÁÁÁÁÁÁBP/S ALARMÁÁÁÁÁÁÁÁÁÁÁÁÁIn memory or program collation,a pro-gram in memory does not agree withthat read from an external I/...

  • Page 1146

    13. INPUT/OUTPUT OF DATAB–63003EN–1/021124Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁÁIII.8.4ÁÁÁÁÁÁÁPROGRAM INPUT/OUTPUTÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Lathe) (B–63004EN)...

  • Page 1147

    B–63003EN–1/0213. INPUT/OUTPUT OF DATA1125While an automation operation is being performed, a program input froman I/O device connected to the reader/punch interface can be executed andstored in memory.Similarly, a program stored in memory can be executed and outputthrough the reader/punch in...

  • Page 1148

    13. INPUT/OUTPUT OF DATAB–63003EN–1/021126[Classification] Input signal[Function] When this signal becomes logical 1, the control unit:D Selects the output and run simultaneous mode.To select the output and run simultaneous mode, it is necessary toselect the DNC operation mode and to set this...

  • Page 1149

    B–63003EN–1/0213. INPUT/OUTPUT OF DATA1127NOTE1 If a value beyond the valid data range is specified, thenumber of the input program is registered.2 When the eight–digit program number function is notprovided, the program number should not be set in thisparameter but in parameter 3218.Number...

  • Page 1150

    13. INPUT/OUTPUT OF DATAB–63003EN–1/021128By using the external program input start signal, a program can be loadedfrom an input unit into CNC memory.When an input unit such as the FANUC Handy File or FANUC FloppyCassette is being used, a file can be searched for using the workpiecenumber sea...

  • Page 1151

    B–63003EN–1/0213. INPUT/OUTPUT OF DATA1129Workpiece no. search signalÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁFile noÁÁÁÁÁÁÁÁÁPN16ÁÁÁÁÁÁPN8ÁÁÁÁÁÁPN4ÁÁÁÁÁÁÁPN2ÁÁÁÁÁÁÁÁÁPN1ÁÁÁÁÁÁFile no.ÁÁÁÁ0ÁÁÁÁÁÁÁ0ÁÁÁÁÁÁÁ0ÁÁÁÁÁÁÁÁ1ÁÁÁÁÁÁ...

  • Page 1152

    13. INPUT/OUTPUT OF DATAB–63003EN–1/021130In this case, the general operation flow is as shown below.ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁPress the cycle start button.Á Issuing the extern...

  • Page 1153

    B–63003EN–1/0213. INPUT/OUTPUT OF DATA1131ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁExecution of a machining programM code command for the Mxxxnext program inputCode signalM00~M31Strobe signalMFSingle–block signalSBKCompletion signalFINCycle start lamp signalSTLExternal program input MINPstart ...

  • Page 1154

    13. INPUT/OUTPUT OF DATAB–63003EN–1/021132NOTE1 A program can be input according to the external programinput start signal only when the program has only oneprogram number.To read programs having multiple program numbers, resetthe CNC each time the CNC reads one program. Afterreset, search f...

  • Page 1155

    B–63003EN–1/0213. INPUT/OUTPUT OF DATA1133Power Mate programs, parameters, macro variables, and diagnostic(PMC) data are input/output through the FANUC I/O Link.With the FANUC I/O Link, slaves from group 0 to group 15 can beconnected, thus enabling data input/output to and from a maximum of 1...

  • Page 1156

    13. INPUT/OUTPUT OF DATAB–63003EN–1/021134(1) Program input/output(a) Program input·When the data input/output function based on the I/O Linkis used1)Specify a number between 20 to 35 as the I/O channel onthe setting screen to specify a group number.2)Specify EDIT mode.3)Display the program ...

  • Page 1157

    B–63003EN–1/0213. INPUT/OUTPUT OF DATA11355)Key in a program number.6)Using soft keys [(OPRT)], continuous–menu key ,[PUNCH], and [EXEC], output the programcorresponding to the keyed–in program number.·When data input/output function B based on the I/O Link isused1)Using the PMC function...

  • Page 1158

    13. INPUT/OUTPUT OF DATAB–63003EN–1/021136(a) Macro variable input·When the data input/output function based on the I/O Linkis usedWith Power Mate DI signals EDG00 to EDG15, specify astart number for the macro variables to be read. WithEDN00 to EDN15, specify the number of macro variablesto...

  • Page 1159

    B–63003EN–1/0213. INPUT/OUTPUT OF DATA1137(a) Diagnostic (PMC) data input·When the data input/output function based on the I/O Linkis usedWith Power Mate DI signals EDG00 to EDG15, specify astart number for the diagnostic data items to be read. WithEDN00 to EDN15, specify the number of diag...

  • Page 1160

    13. INPUT/OUTPUT OF DATAB–63003EN–1/021138There are two methods of forcibly terminating input/output.(1) Termination by a resetInput/output can be terminated by a reset. In this case, however, slaveread/write stop signal ESTPIO is not output. Therefore, theoperation of the Power Mate is not...

  • Page 1161

    B–63003EN–1/0213. INPUT/OUTPUT OF DATA1139When the data input/output function based on the I/O Link is used, thestate signals for a specified Power Mate must be reported to the Series16i/18i/21i. These signals must be posted to the Series 16i/18i/21i via thefollowing path:ÁÁÁÁÁÁÁÁ1)2...

  • Page 1162

    13. INPUT/OUTPUT OF DATAB–63003EN–1/021140The DI/DO signal timing charts applicable when data input/outputfunction B based on the I/O Link is used are shown below. When theordinary data input/output function based on the I/O Link is used, 1)through 4) in the figures are subject to MDI–base...

  • Page 1163

    B–63003EN–1/0213. INPUT/OUTPUT OF DATA1141(1) I/O Link specification sig-nal IOLS(6)(14) Slave input/output dataselection signals EPRG,EVAR, EPARM, EDGN(2) External read/punch sig-nal EXRD/EXWT(3) I/O Link confirmation sig-nal IOLACK(4) Power Mate read/write in–progress signal BGION(5) Powe...

  • Page 1164

    13. INPUT/OUTPUT OF DATAB–63003EN–1/021142(2) When an alarm is issued by the Series 16i/18i/21i (including the casewhere processing is stopped by external read/punch signal EXSTP)Steps 1) to 10) are the same as those for ordinary input/output.11) When the Series 16i/18i/21i issues an alarm, o...

  • Page 1165

    B–63003EN–1/0213. INPUT/OUTPUT OF DATA1143(1) I/O Link specification signalIOLS(6)(14) Slave input/output data selec-tion signals EPRG, EVAR,EPARM, EDGN(2) External read/punch signalEXRD/EXWT(3) I/O Link confirmation signalIOLACK(4) Power Mate read/write in–progress signal BGION(5) Power Ma...

  • Page 1166

    13. INPUT/OUTPUT OF DATAB–63003EN–1/021144(3) When an alarm is issued by the Power MateSteps 1) to 10) are the same as those for ordinary input/output.11) When the Power Mate issues an alarm, Power Materead/write alarm signal BGIALM is set to 1, and PowerMate read/write in–progress signal B...

  • Page 1167

    B–63003EN–1/0213. INPUT/OUTPUT OF DATA1145(1) I/O Link specification signalIOLS(6)(14) Slave input/output dataselection signals EPRG,EVAR, EPARM, EDGN(2) External read/punch signalEXRD/EXWT(3) I/O Link confirmation signalIOLACK(4) Power Mate read/write in–progress signal BGION(5) Power Mate...

  • Page 1168

    13. INPUT/OUTPUT OF DATAB–63003EN–1/021146The data input/output function based on the FANUC I/O Link isimplemented by various elements such as ladder programs, I/O Linkassignment, Series 16i/18i/21i parameters, and Power Mate parameters.So, problems may occur when the function is started.The ...

  • Page 1169

    B–63003EN–1/0213. INPUT/OUTPUT OF DATA1147SymptomCause and corrective actionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁWhen an attempt is made to outputdata to a Power Mate:Series 16i/18i/21i:OUTPUT blinks con-tinuously.Power Mate : No response is re-turned.(Caution)ÁÁÁÁÁÁ...

  • Page 1170

    13. INPUT/OUTPUT OF DATAB–63003EN–1/021148SymptomCause and corrective actionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁWhen an attempt is made to outputmacro variables to a Power Mate:Series 16i/18i/21i :Alarm 86 is issued.Power Mate : Alarm 1 is issued.ÁÁÁÁÁÁÁÁÁÁÁÁÁ...

  • Page 1171

    B–63003EN–1/0213. INPUT/OUTPUT OF DATA1149[Classification] Input signal[Function] This signal indicates that an alarm has been issued while the Power Matewas performing data input/output.[Operation] This signal is set to 1 upon the issue of an alarm while the Power Mateis performing data inpu...

  • Page 1172

    13. INPUT/OUTPUT OF DATAB–63003EN–1/021150[Classification] Input signal[Function] This signal specifies whether those signals that are shared by the externalI/O device control function are to be used with data input/output functionB based on the I/O Link.[Operation] When this signal is set to...

  • Page 1173

    B–63003EN–1/0213. INPUT/OUTPUT OF DATA1151– When data input/output is terminatedThis signal is a Power Mate control signal. The corresponding PowerMate side signal is IOLNK <G099#7/G251#0> (the second address beingfor Power Mate–MODEL D, F, H, and the first address for all othermod...

  • Page 1174

    13. INPUT/OUTPUT OF DATAB–63003EN–1/021152[Classification] Output signal[Function] This signal indicates that the Series 16i/18i/21i has started data input.[Output condition] This signal is set to 1 in the following case:– When data input is startedThis signal is set to 0 in the following c...

  • Page 1175

    B–63003EN–1/0213. INPUT/OUTPUT OF DATA1153This signal is set to 0 in the following case:– When data input/output is terminatedThis signal is a Power Mate control signal. The corresponding PowerMate side signal is EVAR <G098#5/G251#5> (the second address beingfor Power Mate–MODEL D...

  • Page 1176

    13. INPUT/OUTPUT OF DATAB–63003EN–1/021154[Classification] Output signal[Function] These signals indicate the group number of the Power Mate that is actingas a slave.[Operation] The group number of the Power Mate that is acting as a slave is specifiedwith the values of four binary code signal...

  • Page 1177

    B–63003EN–1/0213. INPUT/OUTPUT OF DATA1155#7G058#6#5#4#3EXWT#2EXSTP#1EXRD#0G091SRLNI3SRLNI2SRLNI1SRLNI0#7#6#5#4#3#2#1#0G092BGENBGIALMBGIONIOLSIOLACK#7#6#5#4#3#2#1#0F053BGEACTRPALMRPBSY#7#6#5#4#3#2#1#0EDGNF177EPARMEVAREPRGEWTIOESTPIOERDIOIOLINK#7#6#5#4#3#2#1#0F178SRLNO3SRLNO2SRLNO1SRLNO0#7#6#5...

  • Page 1178

    13. INPUT/OUTPUT OF DATAB–63003EN–1/021156NOTEAn input/output device can also be selected using thesetting screen. Usually the setting screen is used.8760Program number for data registration (data input/output function using the I/O link)[Data type] Word[Valid data range] 0 to 9999When the da...

  • Page 1179

    B–63003EN–1/0213. INPUT/OUTPUT OF DATA1157NumberÁÁÁÁÁÁMessageÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ085ÁÁÁÁÁÁÁÁÁÁCOMMUNICATIONERRORÁÁÁÁÁÁÁÁÁÁÁÁWhen entering data in the memory by usingReader / Puncher interface, or FANUC I/O Linkan overrun, pa...

  • Page 1180

    14. MEASUREMENTB–63003EN–1/02115814 MEASUREMENTÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

  • Page 1181

    B–63003EN–1/0214. MEASUREMENT1159The value displayed as a relative position can be set in the offset memoryas an offset value by a soft key.Call offset value display screen on the CRT. Relative positions are alsodisplayed on this screen. Then select the reference tool and set it at thefixed...

  • Page 1182

    14. MEASUREMENTB–63003EN–1/021160When a tool is moved to the measurement position by execution of acommand given to the CNC, the CNC automatically measures thedifference between the current coordinate value and the coordinate valueof the command measurement position and uses it as the offset ...

  • Page 1183

    B–63003EN–1/0214. MEASUREMENT1161The tool decelerates and temporarily stops at the distance γ before themeasuring position.The tool then moves to the measuring position at the speed preset by aparameter No. 6241. If the measuring position reached signalcorresponding to the G code is turned ...

  • Page 1184

    14. MEASUREMENTB–63003EN–1/021162NOTE1 The measuring position reached signal requires at least 10msec.2 The CNC directly inputs the measuring position reachedsignals from the machine tool; the PMC does not processthem.3 If automatic tool offset nor automatic tool lengthmeasurement is not used...

  • Page 1185

    B–63003EN–1/0214. MEASUREMENT1163CAUTIONSet a radius value irrespective of whether the diameterprogramming or the radius programming is specified.6254e value on X axis during automatic tool offsete value during tool length automatic measurement6255e value on Z axis during tool automatic offse...

  • Page 1186

    14. MEASUREMENTB–63003EN–1/021164NumberÁÁÁÁÁÁÁMessageÁÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ080ÁÁÁÁÁÁÁÁÁG37 ARRIVAL SIGNAL NOT ASSERTED(M series)ÁÁÁÁÁÁÁÁÁÁÁÁÁIn the automatic tool length measure-ment function (G37), the measurementposit...

  • Page 1187

    B–63003EN–1/0214. MEASUREMENT1165NOTE1 Measurement speed, γ, and ε are set as parameters.ε mustbe positive numbers and keep condition of γ>ε.2 The compensation value is updated by the followingformula:New compensation value =(Current compensation value)+[(Current position of thetool a...

  • Page 1188

    14. MEASUREMENTB–63003EN–1/021166Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁÁII.14.2ÁÁÁÁÁÁÁAUTOMATIC TOOL LENGTHMEASUREMENT (G37)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Lathe) (B...

  • Page 1189

    B–63003EN–1/0214. MEASUREMENT1167Linear interpolation can be commanded by specifying axial movefollowing the G31 command, like G01. If an external skip signal is inputduring the execution of this command, execution of the command isinterrupted and the next block is executed.The skip function...

  • Page 1190

    14. MEASUREMENTB–63003EN–1/021168NOTE1 The skip signal width requires at least 10 msec.2 The CNC directly reads the skip signal SKIP<X004#7> fromthe machine tool; the PMC no longer requires to process thesignal.3 If the skip function G31 is not used, the PMC can use thesignal terminal S...

  • Page 1191

    B–63003EN–1/0214. MEASUREMENT1169WARNINGDisable feedrate override, dry run, and automaticacceleration/deceleration (enabled with parameter No.6200#7 SKF=1) when the feedrate per minute is specified,allowing for reducing an error in the position of the tool whena skip signal is input. These fu...

  • Page 1192

    14. MEASUREMENTB–63003EN–1/021170Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Machining Center)(B–63014EN)ÁÁÁÁÁÁÁÁÁÁÁÁÁII.4.16ÁÁÁÁÁÁÁSKIP FUNCTION(G31)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Lathe) (B–63004EN)ÁÁÁÁÁÁ...

  • Page 1193

    B–63003EN–1/0214. MEASUREMENT1171(2) Type B: The deviation is assumed to be a sum of the number ofremaining pulses due to acceleration/deceleration causedwhen the skip signal is turned on, and the positional error.ÁÁÁÁÁÁÁÁÁÁDirection in which the toolmovesHigh–speedskip signalOri...

  • Page 1194

    14. MEASUREMENTB–63003EN–1/021172NOTEFor type A (parameter SEA (No. 6201 #0)=1), the skip signalmust be turned on when the tool moves at constantfeedrate.[Classification] Output signal[Function] This signal informs the PMC of the input status of the high-speed skipsignal. The signal-to-bit c...

  • Page 1195

    B–63003EN–1/0214. MEASUREMENT1173#76201#6#5#4IGX#3#2#1SEB#0SEA[Data type] Bit typeSEA When a high speed skip signal goes on while the skip function is used,acceleration/deceleration and servo delay are:0 : Ignored.1 : Considered and compensated (type A).SEB When a high speed skip signal goes ...

  • Page 1196

    14. MEASUREMENTB–63003EN–1/021174In a block specifying P1 to P4 after G31, the multi-step skip functionstores coordinates in a custom macro variable and cancels the remainingdistance that the block was supposed to be moved when a skip signal (8points) or high-speed skip signal (8 points howev...

  • Page 1197

    B–63003EN–1/0214. MEASUREMENT1175· The skip signal is monitored not for a rising edge, but for its state. So,if a skip signal continues to be “1”, a skip condition is assumed to besatisfied immediately when the next skip cutting or dwell operation isspecified.#7SKIPX004#6ESKIPSKIP6#5–M...

  • Page 1198

    14. MEASUREMENTB–63003EN–1/021176#71S86202#61S7#51S6#41S5#31S4#21S3#11S2#01S12S862032S72S62S52S42S32S22S13S862043S73S63S53S43S33S23S14S862054S74S64S54S44S34S24S1DS86206DS7DS6DS5DS4DS3DS2DS1[Data type] Bit type 1S1~1S8, 2S1~2S8, 3S1~3S8, 4S1~4S8, DS1~DS8Specify which skip signal is enabled...

  • Page 1199

    B–63003EN–1/0214. MEASUREMENT1177NOTEThe skip cutting commands G31 P1, G31 P2, G31 P3, andG31 P4 are all identical, except that they correspond todifferent skip signals. The tool moves along the specifiedaxis until the SKIP signal is set to “1” or the end point of thespecified movement i...

  • Page 1200

    14. MEASUREMENTB–63003EN–1/021178Specifying a move command after G31 P99 (or G31 P98) with a motortorque limit set (for example, specifying a torque limit on the PMCwindow) allows the same cutting feed as that specified with G01 to beperformed.While the tool is moved with a motor torque limit...

  • Page 1201

    B–63003EN–1/0214. MEASUREMENT1179#7TRQL8F114#6TRQL7#5TRQL6#4TRQL5#3TRQL4#2TRQL3#1TRQL2#0TRQL1#76201#6#5#4#3TSA#2TSE#1#0[Data type] Bit typeTSE When a skip operation is performed by the G31 P99 or P98 command usedto specify torque limit skip:0 : Corrects servo errors.(1)1 : Does not correct se...

  • Page 1202

    14. MEASUREMENTB–63003EN–1/021180NumberÁÁÁÁÁÁÁMessageÁÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ015ÁÁÁÁÁÁÁÁÁÁTOO MANY AXES COM-MANDEDÁÁÁÁÁÁÁÁÁÁÁÁÁÁIn the block including the command forthe skip function (G31 P99/P98), to beexecuted under ...

  • Page 1203

    B–63003EN–1/0214. MEASUREMENT1181The continuous high–speed skip function enables reading of absolutecoordinates by using the high–speed skip signals (HDI0 to HDI7). Oncea high–speed skip signal has been input in a G31P90 block, absolutecoordinates are read into custom macro variables #...

  • Page 1204

    14. MEASUREMENTB–63003EN–1/021182#76200#6SRE#5#4HSS#3#2#1#0[Data type] Bit typeHSS 0 : The skip function does not use high-speed skip signals.1 : The skip function uses high-speed skip signals.SRE When a high-speed skip signal is used:0 : The signal is considered to be input at the rising edg...

  • Page 1205

    B–63003EN–1/0214. MEASUREMENT1183#79S86208#69S7#59S6#49S5#39S4#29S3#19S2#09S1[Data type] Bit type9S1 to 9S8 Specify valid high–speed skip signals for high–speed skip commandG31P90. The bits correspond to signals as follows:9S1HDI0ÁÁ9S2HDI1ÁÁ9S3HDI2ÁÁ9S4HDI3ÁÁ9S5HDI4ÁÁ9S6HDI5Á...

  • Page 1206

    14. MEASUREMENTB–63003EN–1/021184High–speed skip signalThese portions are ignored.ÁÁÁÁÁÁÁÁÁÁTime interval during which signals are ignored (parameter No. 6220)NumberÁÁÁÁÁÁMessageÁÁÁÁÁÁÁÁContentsÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ5068ÁÁÁÁÁÁÁÁÁÁÁG31 P90 FORMA...

  • Page 1207

    B–63003EN–1/0214. MEASUREMENT1185This is a function of setting an offset value by key-inputting a workpiecediameter manually cut and measured from the MDI keyboard.First the workpiece is cut in the longitudinal or in the cross directionmanually. When the position record signal is turned “1...

  • Page 1208

    14. MEASUREMENTB–63003EN–1/021186NOTETo use this signal, set parameter PRC (No.5005#2) to 1.#7G040#6PRC#5#4#3#2#1#0#75005#6#5#4#3#2PRC#1#0[Data type] Bit typePRC Direct input of tool offset value and workpiece coordinate-system shiftvalue0 : Not use a PRC signal1 : Uses a PRC signalSeries16i/...

  • Page 1209

    B–63003EN–1/0214. MEASUREMENT1187When the touch sensor is provided, the tool offset value is automaticallysettable in the tool offset memory, by moving the tool to make contactwith the touch sensor during manual operation. The workpiececoordinate system shift amount is also automatically set...

  • Page 1210

    14. MEASUREMENTB–63003EN–1/021188(Tool offset value to be set)= (Mechanical coordinate value when tool compensation value writesignal has become “1”) – (Reference value (parameter value)corresponding to the tool compensation value write signal)The tool offset value to be set differs acc...

  • Page 1211

    B–63003EN–1/0214. MEASUREMENT1189The measuring reference point may be an imaginary point (imaginaryzero point), as shown in the figure below. The difference between theimaginary zero point and the measuring tool nose tip position at themechanical reference point is settable as the tool offset...

  • Page 1212

    14. MEASUREMENTB–63003EN–1/021190(0,0)ÁÁÁÁÁÁÁÁ+ZÁÁÁÁÁÁÁÁ–EXOFSZÁÁÁÁÁÁOFSXÁÁÁÁÁÁOFSZÁÁÁÁÁÁÁÁÁÁZt+XÁMeasuring tool noseposition at the mechani-cal machine positionMachine zero pointWorkpiece coordinate system zero point (programmed zero point)EXOFSz :Wor...

  • Page 1213

    B–63003EN–1/0214. MEASUREMENT1191(1)Execute manual reference position return.By executing manual reference position return, a machine coordinatesystem is established.The tool offset value is computed on the machine coordinate system.(2)Select manual handle mode or manual continuous feed mode ...

  • Page 1214

    14. MEASUREMENTB–63003EN–1/021192(1)Set the tool geometry offset values of each tool in advance.(2)Execute manual reference position return.By executing manual reference position return, the machinecoordinate system is established.The workpiece coordinate system shifting amount is computed ba...

  • Page 1215

    B–63003EN–1/0214. MEASUREMENT1193[Classification] Input signal[Function] Each of these signals inhibits the tool from being fed along the corre-sponding axis during manual operation. When signal GOQSM for select-ing the mode for writing tool compensation is set to “1”, the manual feedis i...

  • Page 1216

    14. MEASUREMENTB–63003EN–1/021194[Classification] Input signal[Function] Selects the mode for writing the shift amount for the workpiece coordinatesystem.[Operation] When this signal is turned “1” in a manual operation mode, the mode forwriting the shift amount for the workpiece coordinat...

  • Page 1217

    B–63003EN–1/0214. MEASUREMENT1195#73003#6#5#4#3DIT#2#1#0[Data type] Bit typeDIT Interlock for each axis direction0 : Enabled1 : Disabled#75005#6#5QNI#4#3#2#1#0[Data type] Bit typeQNI In the function of input of offset value measured B0 : Not automatically select the tool offset number1 : Auto...

  • Page 1218

    14. MEASUREMENTB–63003EN–1/021196 ÁÁÁÁÁÁÁÁÁÁÁÁZ axis – contactfaceZ axis + contact faceX axis – contact faceX axis + contactfaceZpZmXmXp+X+ZMeasuring reference positionÁÁÁÁÁ5020Tool offset number used for the input of tool offset value measured B[Data type] Byte type[Vali...

  • Page 1219

    B–63003EN–1/0214. MEASUREMENT1197By directly entering the measured deviation of the actual coordinatesystem from a programmed work coordinate system, the workpiece zeropoint offset at the cursor is automatically set so that a command valuematches the actual measurement.Series16i/160i/18i/180i...

  • Page 1220

    14. MEASUREMENTB–63003EN–1/021198Two functions have been provided to measure the tool length: The automatic tool length measurement function (Section 14.2)automatically measures the tool length at a programmed command (G37);The tool length measurement function (Section 14.1) measures the too...

  • Page 1221

    B–63003EN–1/0214. MEASUREMENT1199The ten code signals (binary code) select a tool offset number. Codesignals 0 to 998 correspond to tool offset numbers 1 to 999.NOTEThis signal is valid only when the QNI bit (bit of 5 parameterNo. 5005) is set to 1.[Classification] Input signal[Function] Sel...

  • Page 1222

    14. MEASUREMENTB–63003EN–1/021200#75005#6#5QNI#4#3#2#1#0[Data type] Bit typeQNI When the tool length measurement B function is executed, a tool offsetnumber is selected:0 : According to the selection the operator makes on an MDI unit (bymoving the cursor).1 : According to the signal input fro...

  • Page 1223

    B–63003EN–1/0214. MEASUREMENT12015022Distance from the reference tool tip position to the base measurement surface[Data type] 2–word axis typeÁÁÁÁÁÁÁÁIncrement systemÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁIS–AÁÁÁÁÁÁÁÁÁIS–BÁÁÁÁÁÁÁÁIS–CÁÁÁÁÁÁÁMilli...

  • Page 1224

    15. PMC CONTROL FUNCTIONB–63003EN–1/02120215 PMC CONTROL FUNCTIONÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

  • Page 1225

    B–63003EN–1/0215. PMC CONTROL FUNCTION1203The PMC can directly control any given axis, independently of the CNC.In other words, moving the tool along axes that are not controlled by theCNC is possible by entering commands, such as those specifying movingdistance and feedrate, from the PMC. T...

  • Page 1226

    15. PMC CONTROL FUNCTIONB–63003EN–1/021204Commands from path 1Commands from path 2Commands from path 3Commands from path 4α axis controlβ axis controlγ axis controlε axis controlGroup AGroup BGroup C PMC CNC DI/ DOGroup DÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁIn the following ...

  • Page 1227

    B–63003EN–1/0215. PMC CONTROL FUNCTION1205These signals, together with block stop prohibition signal EMSBKg(described later), determine one complete operation, which is tantamountto one block executed during CNC–controlled automatic operation.These signals may be collectively called the axi...

  • Page 1228

    15. PMC CONTROL FUNCTIONB–63003EN–1/021206⋅ command [2] is transferred from the waiting buffer to the executingbuffer;⋅ command [3] is transferred from the input buffer to the waiting buffer;and⋅ command [4] is transferred to the input buffer as the command block(axis control block data...

  • Page 1229

    B–63003EN–1/0215. PMC CONTROL FUNCTION1207(5) Repeat steps (3) and (4) until all the blocks have been issued.When the final block has been issued, set control axis selectionsignals EAX1 to EAX8 to “0”. Before setting these signals to “0”,however, check that the blocks stored in the C...

  • Page 1230

    15. PMC CONTROL FUNCTIONB–63003EN–1/021208No.Signal nameSymbolÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ17ÁÁÁÁÁÁEMBUFgÁÁÁÁÁÁÁÁÁBuffering disable signalÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ18ÁÁÁÁÁÁÁ*EAXSLÁÁÁÁÁÁÁÁÁÁControl axis selectio...

  • Page 1231

    B–63003EN–1/0215. PMC CONTROL FUNCTION1209[Classification] Input signal[Function] When the signal is set to “1”, the corresponding axis becomes subject toPMC control.When the signal is set to “0”, PMC control becomes invalid. Changingthe setting of the control axis selection signal ...

  • Page 1232

    15. PMC CONTROL FUNCTIONB–63003EN–1/021210Axis controlcommand(hexadecimalcode)OperationÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ02hÁÁÁÁÁÁÁÁÁCutting feed – feed per revolution (exponential acceleration/deceleration or linear acceleration/deceleration...

  • Page 1233

    B–63003EN–1/0215. PMC CONTROL FUNCTION1211Axis controlcommand(hexadecimalcode)OperationÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ0EhÁÁÁÁÁÁÁExternal pulse synchronization – 2nd manual handleÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ0EhÁÁÁSynchronizes...

  • Page 1234

    15. PMC CONTROL FUNCTIONB–63003EN–1/021212The reference position return command (EC0g to EC6g: 05h) enables thefollowing operation: When DLZ, bit 1 of parameter No. 1002, specifyingreference position return without dogs for all axes, or DLZx, bit 1 ofparameter No. 1005, specifying reference...

  • Page 1235

    B–63003EN–1/0215. PMC CONTROL FUNCTION1213When using the speed command (EC0g to EC6g: 10h), specify the axisto be controlled as a rotation axis in ROTX, bit 0 of parameter No. 1006.While position control is being executed for the continuous feedcommand (EC0g to EC6g: 06h), the speed command...

  • Page 1236

    15. PMC CONTROL FUNCTIONB–63003EN–1/021214When follow–up is not performed, an integrated travel value (errorcount) exceeding the value of parameter No. 1885 causes servoalarm 423 to be issued. When torque control is switched to positioncontrol, follow–up is always performed, even if foll...

  • Page 1237

    B–63003EN–1/0215. PMC CONTROL FUNCTION1215CAUTION1 If the torque control axis may be moved in torque controlmode, the follow–up parameter TRF (bit 4 of parameter No.1803) must be set to “1”.2 If torque control mode is canceled while the torque controlaxis is moving, the return to positi...

  • Page 1238

    15. PMC CONTROL FUNCTIONB–63003EN–1/021216OperationCommand dataAxis control code signal EC0g to EC6gÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ1st reference positionreturnÁÁÁÁÁÁÁÁÁÁÁ07hÁÁÁÁÁÁÁÁÁÁÁRapid traverse rate EIF0g to EIF15gÁÁÁÁÁ...

  • Page 1239

    B–63003EN–1/0215. PMC CONTROL FUNCTION1217(4) 3rd reference position return (EC0g to EC6g: 09h)(5) 4th reference position return (EC0g to EC6g: 0Ah)(6) Machine coordinate system selection (EC0g to EC6g: 20h)For these commands, signals EIF0g to EIF15g are used to specifythe rapid traverse r...

  • Page 1240

    15. PMC CONTROL FUNCTIONB–63003EN–1/021218[Valid data range] 1 to 65535 (Actual values must fall within the ranges given in the following table.)ÁÁÁÁÁÁÁÁÁÁÁData rangeÁÁÁÁÁÁÁÁÁÁÁÁÁUnitÁÁÁÁÁÁÁÁÁÁÁIS–BÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁIS–CÁÁÁÁÁÁÁÁÁÁÁ...

  • Page 1241

    B–63003EN–1/0215. PMC CONTROL FUNCTION1219[Valid data range] 1 to 65535 (Actual values must fall within the ranges given in the following table.)ÁÁÁÁÁÁÁÁÁÁÁData rangeÁÁÁÁÁÁÁÁÁÁÁÁÁÁUnitÁÁÁÁÁÁÁÁÁÁÁÁÁIS–BÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁIS–CÁÁÁÁÁÁÁÁ...

  • Page 1242

    15. PMC CONTROL FUNCTIONB–63003EN–1/021220NOTEWhen diameter programming is specified with bit 3 (DIAx)of parameter No. 1006, bit 1 (CDI) of parameter No. 8005can be used to specify whether a radius or diameter is to beused in a command.(14) Continuous feed (EC0g to EC6g: 06h)Set the feedrate...

  • Page 1243

    B–63003EN–1/0215. PMC CONTROL FUNCTION1221ÁÁÁÁÁÁIS–BÁÁÁÁÁÁÁÁÁÁÁÁIS–CÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁMetric inputÁÁÁÁÁÁÁInch inputÁÁÁÁÁÁÁÁMetric inputÁÁÁÁÁÁÁInch inputÁÁÁÁÁÁÁÁÁMagni-fied by 1ÁÁÁÁÁÁÁ65535mm/minÁÁÁÁÁÁÁÁ655.35inch/...

  • Page 1244

    15. PMC CONTROL FUNCTIONB–63003EN–1/021222(a) The speed command for PMC axis control requires specificationof the servo motor speed, not the feedrate along an axis. Tospecify a feedrate along the axis when gears are used to link theservo motor and axis, the feedrate must be converted to a ro...

  • Page 1245

    B–63003EN–1/0215. PMC CONTROL FUNCTION1223[Classification] Input signal[Function]ÁÁÁÁÁÁÁÁÁIS–BÁÁÁÁÁÁÁÁIS–CÁÁÁÁÁÁÁÁÁUnitÁÁÁÁÁÁÁÁMetric input Degree inputÁÁÁÁÁÁÁÁÁÁ0.001ÁÁÁÁÁÁÁÁÁ0.0001ÁÁÁÁÁÁÁÁÁÁmmdegÁÁÁÁÁÁÁÁÁÁInch inpu...

  • Page 1246

    15. PMC CONTROL FUNCTIONB–63003EN–1/021224Signals EID0g to EID30g are undefined.(7) Auxiliary functions (EC0g to EC6g: 12h)For this command, the signals are used to specify, in binary format,an auxiliary function code to be sent to the PMC. The auxiliaryfunction code can be specified using ...

  • Page 1247

    B–63003EN–1/0215. PMC CONTROL FUNCTION1225[Classification] Output signal[Function] Notifies the system that the CNC has read a block of command data forPMC axis control and has stored the block in the input buffer. See “Basicprocedure” for details of the output conditions and the procedu...

  • Page 1248

    15. PMC CONTROL FUNCTIONB–63003EN–1/021226(2) When the tool is dwelling: Stops the operation.(3) When an auxiliary function is being executed: Stops the operationwhen auxiliary function completion signal EFINg is input.The stopped operation can be restarted by setting this signal to “0”...

  • Page 1249

    B–63003EN–1/0215. PMC CONTROL FUNCTION1227[Classification] Output signal[Classification] Output signal[Classification] Input signal[Function] When an auxiliary function command (EC0g to EC6g: 12h) is issued bythe PMC, the auxiliary function code is specified in a byte (using signalsEID0g to ...

  • Page 1250

    15. PMC CONTROL FUNCTIONB–63003EN–1/021228[Function] When this signal is set to “1”, commands from the PMC are not read whilethe executing, waiting, or input buffer contains a block. If this signal isset to “1” when any of these buffers contain a block, that block is executedbut subs...

  • Page 1251

    B–63003EN–1/0215. PMC CONTROL FUNCTION1229(5) External pulse synchronization – third manual handle (EC0g to EC6g: 0Fh)(6) Speed command (EC0g to EC6g: 10h)[Classification] Output signal[Function] When this signal is set to “0”, control axis selection signals EAX1 toEAX8 can be changed...

  • Page 1252

    15. PMC CONTROL FUNCTIONB–63003EN–1/021230[Classification] Output signal[Function] This signal is set to “1” when following zero check or in–position checkis being performed for the corresponding PMC–controlled axis.[Classification] Output signal[Function] This signal is set to “1...

  • Page 1253

    B–63003EN–1/0215. PMC CONTROL FUNCTION1231NOTEThis signal is set to “0” when distribution for the axis iscompleted (the signal is set to “0” during deceleration).[Classification] Output signal[Function] When an auxiliary function (EC0g to EC6g: 12h) is specified by thePMC, this signa...

  • Page 1254

    15. PMC CONTROL FUNCTIONB–63003EN–1/021232These signals are set to “0” when the overtravel alarm is released and resetsignal ECLRg is set to “1”. See “Alarm signal EIALg” for details of howto release an overtravel alarm.[Classification] Input signal[Function] Like the CNC’s fee...

  • Page 1255

    B–63003EN–1/0215. PMC CONTROL FUNCTION1233[Classification] Input signal[Function] These signals can be used to select the override for the rapid traverse rate,independently of the CNC, by setting bit 2 (OVE) of parameter No. 8001.Rapid traverse override signalsÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOv...

  • Page 1256

    15. PMC CONTROL FUNCTIONB–63003EN–1/021234[Classification] Output signal[Function] This signal is set to “1” when the feedrate override is 0%.[Classification] Input signal[Function] When this signal is set to “1” during executing the skip cutting command,the block being executed is im...

  • Page 1257

    B–63003EN–1/0215. PMC CONTROL FUNCTION1235[Classification] Input signal[Function] These signals are also used by the CNC. The signals are provided for eachdirection of the individual controlled axes. The plus or minus sign in thesignal name indicates the direction, and the number at the end...

  • Page 1258

    15. PMC CONTROL FUNCTIONB–63003EN–1/021236[Classification] Input signal[Function] Setting this signal to 1 causes an accumulated zero check between blocksto be made at a subsequent cutting feed command.(1) Cutting feed per minute (EC0g to EC6g: 01h)(2) Cutting feed per rotation (EC0g to EC6g...

  • Page 1259

    B–63003EN–1/0215. PMC CONTROL FUNCTION1237#7#6#5#4#3#2#1#0EBUFAECLRAESTPAESOFAESBKAEMBUFAEFINAEMSBKAEC6AEC5AEC4AEC3AEC2AEC1AEC0AEIF7AEIF6AEIF5AEIF4AEIF3AEIF2AEIF1AEIF0AEIF15AEIF14AEIF13AEIF12A EIF11AEIF10AEIF9AEIF8AEID7AEID6AEID5AEID4AEID3AEID2AEID1AEID0AEID15AEID14AEID13AEID12AEID11AEID10AEI...

  • Page 1260

    15. PMC CONTROL FUNCTIONB–63003EN–1/021238#7#6#5#4#3#2#1#0EBUFCECLRCESTPCESOFCESBKC EMBUFCEFINCEMSBKCEC6CEC5CEC4CEC3CEC2CEC1CEC0CEIF7CEIF6CEIF5CEIF4CEIF3CEIF2CEIF1CEIF0CEIF15CEIF14CEIF13CEIF12C EIF11CEIF10CEIF9CEIF8CEID7CEID6CEID5CEID4CEID3CEID2CEID1CEID0CEID15CEID14CEID13CEID12C EID11CEID10C...

  • Page 1261

    B–63003EN–1/0215. PMC CONTROL FUNCTION1239CNC→PMCADDRESS#7EADEN8F112#6EADEN7#5EADEN6#4EADEN5#3EADEN4#2EADEN3#1EADEN2#0EADEN1*EAXSLF129EOV0#7#6#5#4#3#2#1#0EBSYAEOTNAEOTPAEGENAEDENAEIALAECKZAEINPAEABUFAEMFAEM28AEM24AEM22AEM21AEM18AEM14AEM12AEM11AÁÁÁÁÁÁForgroup AF130F131F132#7#6#5#4#3#2#...

  • Page 1262

    15. PMC CONTROL FUNCTIONB–63003EN–1/021240#7EACNT8F182#6EACNT7#5EACNT6#4EACNT5#3EACNT4#2EACNT3#1EACNT2#0EACNT1TRQM8F190TRQM7TRQM6TRQM5TRQM4TRQM3TRQM2TRQM11427External deceleration speed of each axis[Data type] Word axis typeIncrement systemÁÁÁÁÁÁÁÁUnit of dataÁÁÁÁÁÁÁÁÁValid d...

  • Page 1263

    B–63003EN–1/0215. PMC CONTROL FUNCTION1241NOTEThis parameter is valid when the TRF (bit 4 of parameter1803) is held 0.#72000#6#5#4#3#2#1DGPRx#0[Data type] Bit axis typeDGPRx At power–ON, the torque constant (parameter No. 2105):0 : Is automatically set to the standard value specific to the ...

  • Page 1264

    15. PMC CONTROL FUNCTIONB–63003EN–1/021242#7SKE8001#6AUX#5NCC#4#3RDE#2OVE#1#0MLE[Data type] Bit typeMLE Whether machine lock signal MLK is valid for PMC–controlled axes0 : Valid1 : InvalidNOTEEach–axis machine lock signals MLK1 to MLK8 are alwaysvalid, regardless of the setting of this pa...

  • Page 1265

    B–63003EN–1/0215. PMC CONTROL FUNCTION1243#7FR28002#6FR1#5PF2#4PF1#3F10#2SUE#1DWE#0RPD[Data type] Bit typeRPD Rapid traverse rate for PMC–controlled axes0 : Feedrate specified with parameter No. 14201 : Feedrate specified with the feedrate data in an axis control commandDWE Minimum time whi...

  • Page 1266

    15. PMC CONTROL FUNCTIONB–63003EN–1/021244#78003#6#5#4#3#2#1#0PIMNOTEWhen this parameter is set, the power must be turned offthen back on again to make the setting effective.[Data type] Bit typePIM If a linear axis is controlled solely by the PMC, the commands for that axisare:0 : Affected by...

  • Page 1267

    B–63003EN–1/0215. PMC CONTROL FUNCTION1245NOTEThe above setting is effective only when the NAHx bit (bit 7of parameter No. 1819) is set to 0.G8R If a rapid traverse command is specified for a PMC–controlled axis,look–ahead control is:0 : Disabled.1 : Enabled.NOTEThe above setting is effec...

  • Page 1268

    15. PMC CONTROL FUNCTIONB–63003EN–1/021246NOTE1 This parameter is valid when the DIAx bit (bit 3 of parameter1006) is held 1.2 When the CDI bit is set to 1, the NDI bit (bit 7 of parameter8004) is invalid.R10 When the RPD bit (bit 0 of parameter 8002) is set to 1, the units forspecifying the ...

  • Page 1269

    B–63003EN–1/0215. PMC CONTROL FUNCTION1247NOTEThe maximum feedrate set to first axis is valid to all axes.The data of after second axis are invalid.8028Linear acceleration/deceleration time constant for jog feed specified by the speed command for each PMC–controlled axis[Data type] Word axi...

  • Page 1270

    15. PMC CONTROL FUNCTIONB–63003EN–1/021248(1) P/S AlarmNumberÁÁÁÁÁÁÁMessageÁÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ130ÁÁÁÁÁÁÁÁÁILLEGAL AXIS OPERATIONÁÁÁÁÁÁÁÁÁÁÁÁÁAn axis control command was given byPMC to an axis controlled by CNC. Oran...

  • Page 1271

    B–63003EN–1/0215. PMC CONTROL FUNCTION1249CAUTION1 Emergency stop or machine lock is enabled. Machine lockcan be disabled if the MLE bit (bit 0 of parameter No. 8001)is specified accordingly. However, machine lock for anindividual axis is always enabled.2 In consecutive cutting feed blocks,...

  • Page 1272

    15. PMC CONTROL FUNCTIONB–63003EN–1/021250The following signals are used to send data from the PMC to the CNC.Signal nameÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSignal codeÁÁÁÁÁÁÁÁÁÁÁÁData signal for external data input (input)Address signal for external data input (input)Read signal fo...

  • Page 1273

    B–63003EN–1/0215. PMC CONTROL FUNCTION1251Kind of data accessed by external data inputNoÁÁÁÁÁItemÁÁÁÁÁÁÁÁÁÁÁESEE EÁÁÁÁÁÁÁEEE EÁÁÁÁÁÁÁED15 to ED0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁNo.ÁÁÁItemÁÁÁSTBEA6EA5EA4ÁÁÁEA3EA2EA1EA0ÁÁÁ15141312ÁÁÁÁÁÁÁ1110...

  • Page 1274

    15. PMC CONTROL FUNCTIONB–63003EN–1/021252A program number (1 to 9999) is specified from the outside and is selectedin the CNC memory. For machines that can load several kinds of workpieces, this function canautomatically select for execution the program corresponding to aspecific workpiece. ...

  • Page 1275

    B–63003EN–1/0215. PMC CONTROL FUNCTION1253ÁÁÁÁÁÁED2ÁÁÁÁÁÁED1ÁÁÁÁÁÁED0ÁÁÁÁÁÁED5ÁÁÁÁÁÁED4ÁÁÁÁÁÁÁÁÁED3ÁÁÁÁÁÁED6ÁÁÁÁÁÁED9ÁÁÁÁÁÁÁÁÁED8ÁÁÁÁÁÁED7ÁÁÁÁÁÁÁÁÁED12ÁÁÁÁÁÁED11ÁÁÁÁÁÁED10ÁÁÁÁÁÁED13ÁÁÁÁÁÁED14Á...

  • Page 1276

    15. PMC CONTROL FUNCTIONB–63003EN–1/021254The external workpiece coordinate system shift adjusts the workpiececoordinate system depending on the shift amount set via PMC. Each axis(parameter No. 1220) has this shift amount, and it is added to all theworkpiece coordinate systems for use. The s...

  • Page 1277

    B–63003EN–1/0215. PMC CONTROL FUNCTION1255NOTETwo characters are sent at a time (see ISO code given inTable below).ED15 to ED8Character code in 1st character.. . . . . . ED7 to ED0Character code in 2nd character.. . . . . . . If sending only one character, fill the second slot with a codesmal...

  • Page 1278

    15. PMC CONTROL FUNCTIONB–63003EN–1/021256Substitution is possible for the No. of parts required and the No. of partsmachined.BCD 4–digit code(0000 to 9999)Set to 110000.0 : No. of parts required1 : No. of parts machinedED15ÁÁÁÁÁÁEA6ÁÁÁÁÁÁEA5ÁÁÁÁÁÁEA4ÁÁÁÁÁÁEA3ÁÁÁ...

  • Page 1279

    B–63003EN–1/0215. PMC CONTROL FUNCTION1257[Classification] Output signal[Function] The signal reports that the control unit has finished reading the entereddata.[Operation] The output condition and procedure are described in the “basicprocedure.”[Classification] Output signal[Function] Th...

  • Page 1280

    15. PMC CONTROL FUNCTIONB–63003EN–1/021258#73202#6PSR#5#4#3#2#1#0[Data type] Bit typePSR Search for the program number of a protected program0 : Disabled1 : Enabled#76300#6#5#4ESR#3#2#1#0[Data type] Bit typeESR External program number search0 : Disabled1 : EnabledNumberÁÁÁÁÁÁMessageÁÁ...

  • Page 1281

    B–63003EN–1/0215. PMC CONTROL FUNCTION1259When several part programs are stored in program storage memory, aprogram can be searched with the workpiece number search signals PN1to PN16 from the machine side.When the cycle operation is actuated in the memory operation mode underreset status, th...

  • Page 1282

    15. PMC CONTROL FUNCTIONB–63003EN–1/021260Workpiece number search signalÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁWorkpieceÁÁÁÁÁÁÁÁÁPN16ÁÁÁÁÁÁPN8ÁÁÁÁÁÁPN4ÁÁÁÁÁÁÁPN2ÁÁÁÁÁÁÁÁÁPN1ÁÁÁÁÁÁWorkpiecenumberÁÁÁÁ1ÁÁÁÁÁÁÁ0ÁÁÁÁÁÁÁ0ÁÁÁÁÁÁÁÁ0...

  • Page 1283

    B–63003EN–1/0215. PMC CONTROL FUNCTION1261NOTE1 This function can be used only in memory operation. Itcannot be used during DNC operation and MDI operation.2 Select the program number from O001 ∼ O031.3 Program numbers from O001 to O031 can be used.However, programs corresponding to all th...

  • Page 1284

    15. PMC CONTROL FUNCTIONB–63003EN–1/021262The PMC can control the speed and polarity of each spindle motor,connected by the optional spindle serial output/spindle analog outputfunction.The first, second, and third spindles all have their own individualinterfaces. By using a PMC ladder progra...

  • Page 1285

    B–63003EN–1/0215. PMC CONTROL FUNCTION1263Spindle motor speed data =Spindle speedMaximum spindle speed 4095By using this expression, the spindle motor speed data can beobtained easily.The PMC can specify the spindle motor output polarity when thefollowing are executed:⋅ Switching the contr...

  • Page 1286

    15. PMC CONTROL FUNCTIONB–63003EN–1/021264To specify a rotation command for the second spindle, enter the gearsto be used for the second spindle in GR1 and GR2 and obtain the dataof the twelve code signals corresponding to the S value. Specify thedata as the speed output command for the seco...

  • Page 1287

    B–63003EN–1/0215. PMC CONTROL FUNCTION1265D Signal used to select the spindle motor speed command SINDx→ The above signal is used to select whether the spindle motor speed iscontrolled by the CNC or PMC.1: The spindle motor is controlled according to speed commands(R01Ix to R12Ix) issued by...

  • Page 1288

    15. PMC CONTROL FUNCTIONB–63003EN–1/021266[Classification] Output signal[Function] The S value, specified in the CNC part program, is converted to the speedoutput to the spindle motor that is required to control the connectedspindle. The converted value is sent to the PMC with twelve code si...

  • Page 1289

    B–63003EN–1/0215. PMC CONTROL FUNCTION1267#73705#6SFA#5NSF#4EVS#3#2#1#0ESFESF[Data type] Bit typeESF When the spindle control function (S analog output or S serial output) isused, and the constant surface speed control function is used or bit 7(GTT) of parameter No. 3705 is set to 1:0 : S cod...

  • Page 1290

    15. PMC CONTROL FUNCTIONB–63003EN–1/021268#73709#6#5#4#3#2MSI#1#0[Data type] Bit typeMSI In multi–spindle control, the SIND signal is valid:0 : Only when the first spindle is selected. (SIND signal for 2nd and 3rdspindle become invalid)1 : For each spindle irrespective of whether the spind...

  • Page 1291

    B–63003EN–1/0215. PMC CONTROL FUNCTION1269NOTE1 If the spindle fails to move after the PMC issues the spindlemotor speed command, check the following:Type A is selected (the MSI bit, bit 2 of parameter No. 3709,is set to 0) when the multispindle control function is used.→ The second or thir...

  • Page 1292

    15. PMC CONTROL FUNCTIONB–63003EN–1/021270MDI key codes can be sent from the PMC to CNC by means of interfacesignals. This allows the CNC to be controlled in the same way as whenthe operator performs MDI key operation.Control is realized by exchanging the following interface signals betweent...

  • Page 1293

    B–63003EN–1/0215. PMC CONTROL FUNCTION1271NOTERead processing is controlled by exclusive–ORing (XOR)the key code read signal (EKSET) with the read completionsignal (EKENB). When the EKSET and EKENB signalsdiffer in their logic, the CNC reads the input key code. Oncereading has been comple...

  • Page 1294

    15. PMC CONTROL FUNCTIONB–63003EN–1/021272[Classification] Output signal[Function] This signal is on “1” while the CNC is displaying a program screen.[Classification] Output signal[Function] This signal reports that the CNC has read a key code.#7EKSETG066#6#5#4#3#2#1ENBKY#0EKC7G098EKC6EKC...

  • Page 1295

    B–63003EN–1/0215. PMC CONTROL FUNCTION1273NOTE1 For the small keyboard, 0EDH is assigned to .For the standard keyboard, 0EDH is assigned to . 0EEH is assigned to .2 Handling of the soft keys[F0] to [F9], [FR], and [FL] in the key code table are the keycodes for the sof...

  • Page 1296

    15. PMC CONTROL FUNCTIONB–63003EN–1/021274MDI Key Code Table(00H–7FH) 0 1 2 3 4 5 6 7 0Space0@P 11AQ 22BR 3#3CS 44DT 55EU 6&6FV 77GW 8 (8HX 9)9IY A; (EOB)*JZ B+K [ C,L D–=M] E.N F / ?O

  • Page 1297

    B–63003EN–1/0215. PMC CONTROL FUNCTION1275MDI Key Code Table(80H–0FFH) 8 9 A B C D E F 0RESET[F0](Note2) 1[F1](Note2) 2[F2](Note2) 3[F3](Note2) 4INSERT[F4](Note2) 5DELETE[F5](Note2) 6CANALTER[F6](Note2) 7[F7](Note2) 8Cursor→INPUTPOS[F8](N...

  • Page 1298

    15. PMC CONTROL FUNCTIONB–63003EN–1/021276Activating memory operation in memory operation mode (MEM) withthe direct operation select signal set to 1 enables machining (directoperation) while reading a program stored in the PMC–SC or MMC.[Classification] Input signal[Function] Selects the mo...

  • Page 1299

    B–63003EN–1/0216. INTERFACES RELATED TO Series 20i MACRO127716 INTERFACES RELATED TO Series 20i MACROÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁThe following diagram shows the relationsh...

  • Page 1300

    16. INTERFACES RELATED TO Series 20i MACROB–63003EN–1/021278Coordinate originÁÁÁÁÁÁDatum plane setup signalsFirst–axis datum plane setup signal ORG1:Specifies a datum plane with the origin (0) set at thecurrent value of the first axis.Second–axis datum plane setup signal ORG2: Spec...

  • Page 1301

    B–63003EN–1/0216. INTERFACES RELATED TO Series 20i MACRO1279Machining guidance menu selectsignalÁÁÁÁÁÁÁÁÁÁÁÁÁÁMachining guidance menu to beselectedÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁGMN4ÁÁÁÁÁÁGMN3ÁÁÁÁÁÁGMN2ÁÁÁÁÁÁGMN1ÁÁÁÁÁÁGMN0ÁÁÁÁÁÁFÁÁÁÁÁÁÁÁ...

  • Page 1302

    16. INTERFACES RELATED TO Series 20i MACROB–63003EN–1/021280Feed–per–minute specification FMIN:When this signal is 1, it puts the machine tool in thefeed–per–minute mode.Feed–per–revolution specification FREV:When this signal is 1, it puts the machine tool in thefeed–per–revol...

  • Page 1303

    B–63003EN–1/0216. INTERFACES RELATED TO Series 20i MACRO1281Timing of signals for specifying feed per minute and feed per revolutionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁThe following descriptions use the timing chart shown below as anexample.ÁFeed–per–minute/–revolutionbutton(2)...

  • Page 1304

    16. INTERFACES RELATED TO Series 20i MACROB–63003EN–1/021282Teaching/playback functionÁÁÁÁÁÁÁÁÁTeaching (cutting) TCH: When this signal is 1, it registers acutting operation that is supposed to endat the current position in memory.Teaching (rapid traverse) RCH: When this signal is 1,...

  • Page 1305

    B–63003EN–1/0216. INTERFACES RELATED TO Series 20i MACRO1283Playback signal timingÁÁÁÁÁÁÁÁThe following descriptions use the timing chart shown below as anexample.(1) When the playback button is pressed, the PMC sets the PLB signal to1 to request MACRO to make preparation for playback...

  • Page 1306

    16. INTERFACES RELATED TO Series 20i MACROB–63003EN–1/021284Machining data setup signalsÁÁÁÁÁÁÁÁÁThese signals are used for manual handle/jog feed (linear/circular feed).AddressÁÁÁÁÁÁÁSizeÁÁÁÁÁLinear feedÁÁÁÁÁÁÁÁÁÁCircular feedÁÁÁÁÁÁÁÁÁÁÁÁR961ÁÁÁ...

  • Page 1307

    B–63003EN–1/0216. INTERFACES RELATED TO Series 20i MACRO1285Reset to 0 by themacro when settingends.Data at R961 to R974R979ÁÁSet to 1 by the NC when it finishes reading.ÁAddressÁÁÁÁÁÁÁSizeÁÁÁÁÁLinear feedÁÁÁÁÁÁÁÁÁÁCircular feedÁÁÁÁÁÁÁÁÁÁÁÁR980 to R963ÁÁ...

  • Page 1308

    16. INTERFACES RELATED TO Series 20i MACROB–63003EN–1/021286Timing of signals for machining guidance–based automatic operationÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁThe following descriptions use the timing chart shown below as anexample.ÁÁ(2)(7)(5)(6)(3)(1)ÁÁÁÁÁÁÁÁStartManual ...

  • Page 1309

    B–63003EN–1/0216. INTERFACES RELATED TO Series 20i MACRO1287(7) When the GST becomes 0, and the mode select signal returns to theprevious state, the CNC resets the mode selection configuration signalMMEM to 0 to terminate machining guidance–based automaticoperation.Timing of signals for mac...

  • Page 1310

    16. INTERFACES RELATED TO Series 20i MACROB–63003EN–1/021288Constant surface speed functionÁÁÁÁÁÁÁÁÁÁConstant surface speed function accepted signal SSCE:When this signal is 1, it indicates that MACRO hasaccepted a request for constant surface speed control.Teaching functionÁÁÁÁ...

  • Page 1311

    B–63003EN–1/0216. INTERFACES RELATED TO Series 20i MACRO1289ÁÁÁÁÁÁÁÁÁÁÁÁX–axis(–)Z–axis(+)(+)(–)Approach direction when thehandle is rotated clockwiseCOSSINSIN=1COS=1SIN=0COS=1SIN=0COS=0SIN=1COS=0If the CNC is the TAÁÁCutting axisÁÁÁÁCircular cutting clockwise/counte...

  • Page 1312

    16. INTERFACES RELATED TO Series 20i MACROB–63003EN–1/021290Limit data setup signalsÁÁÁÁÁÁÁÁAddressÁÁÁÁÁÁÁSet dataÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁR961ÁÁÁÁÁÁÁÁ4: Specifies a line.ÁÁÁÁÁÁÁÁÁÁÁ5: Specifies a limit condition.ÁÁÁÁÁÁÁÁÁÁÁÁ...

  • Page 1313

    B–63003EN–1/0216. INTERFACES RELATED TO Series 20i MACRO1291Timing of signals for polygon limit machiningÁÁÁÁÁÁÁÁÁÁÁÁÁÁThe following descriptions use the timing chart shown below as anexample.ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ...

  • Page 1314

    16. INTERFACES RELATED TO Series 20i MACROB–63003EN–1/021292(7) MACRO sets the polygon limit mode request signal (MLMRQ) to 1.On detecting that the signal is 1, the PMC sets the polygon limit enablesignal (MALNT) to 1. After this, the CNC enables the polygon limitfunction according to the li...

  • Page 1315

    APPENDIX

  • Page 1316

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1295A INTERFACE BETWEEN CNC AND PMC

  • Page 1317

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1296Interface addresses among CNC, PMC and Machine Tool are as follows:G000–CNCPMCMTF000–X000–Y000–Following shows table of addresses:In an item where both T series and M series are described, some signalsare covered with shade ( ) in the...

  • Page 1318

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1297AddressBit number#7X000#6#5#4#3#2#1#0X001X002ESKIPX003–MIT2+MIT2–MIT1+MIT1ZAEXAESKIPSKIP6SKIP5SKIP4SKIP3SKIP2SKIP8SKIP7SKIPSKIP5SKIP4SKIP3(T series)(M series)X004X005X006X007*ESP*DEC8X008*DEC7*DEC6*DEC5*DEC4*DEC3*DEC2*DEC1X009X010X011X012S...

  • Page 1319

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1298AddressBit number#7G000#6#5#4#3#2#1#0G001ESTBG002EA6EA5EA4EA3EA2EA1EA0G003G004MFIN3MFIN2FINBFING005AFLBFINTFINSFINEFINMFING006SKIPPOVC*ABSMSRNG007ERSG008RRW*SP*ESP*ITG009PN16PN8PN4PN2PN1G010ED7ED6ED5ED4ED3ED2ED1ED0ED15ED14ED13ED12ED11ED10ED9ED...

  • Page 1320

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1299#7#6#5#4#3#2#1#0G025G026CONG027*SSTP3*SSTP2*SSTP1SWS3SWS2SWS1PC2SLCG028SPSTP*SCPF*SUCPFGR2GR1G029*SSTPSORSARGR31GR21SOV7G030SOV6SOV5SOV4SOV3SOV2SOV1SOV0PKESS2G031PKESS1R08IG032R07IR06IR05IR04IR03IR02IR01ISINDG033SSINSGNR12IR11IR10IR09IR08I2G03...

  • Page 1321

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1300#7#6#5#4#3#2#1#0G050*TLV9*TLV8*CHLDG051CHPST*CHP8*CHP4*CHP2*CHP0RMTDI7G052RMTDI6 RMTDI5 RMTDI4 RMTDI3 RMTDI2 RMTDI1 RMTDI0CDZG053SMZUINTTMRONUI007G054UI006UI005UI004UI003UI002UI001UI000UI015G055UI014UI013UI012UI011UI010UI009UI008G056G057G058ST...

  • Page 1322

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1301#7#6#5#4#3#2#1#0RCHBG075RSLBINTGBSOCNBMCFNBSPSLB*ESPBARSTBRCHHGBG076MFNHGBINCMDBOVRIDB DEFMDBNRROBROTABINDXBG077MPOFBSLVBMORCMBSHA07G078SHA06SHA05SHA04SHA03SHA02SHA01SHA00G079SHA11SHA10SHA09SHA08SHB07G080SHB06SHB05SHB04SHB03SHB02SHB01SHB00G081...

  • Page 1323

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1302–LM1#7#6#5#4#3#2#1#0+J8G100+J7+J6+J5+J4+J3+J2+J1G101–J8G102–J7–J6–J5–J4–J3–J2–J1G103G104G105MI8G106MI7MI6MI5MI4MI3MI2MI1G107MLK8G108MLK7MLK6MLK5MLK4MLK3MLK2MLK1G109+LM8G110+LM7+LM6+LM5+LM4+LM3+LM2+LM1G111–LM8G112–LM7–LM...

  • Page 1324

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1303#7#6#5#4#3#2#1#0G124SVF8G125SVF7SVF6SVF5SVF4SVF3SVF2SVF1G126G127G128*IT8G129*IT7*IT6*IT5*IT4*IT3*IT2*IT1G130G131+MIT4+MIT3+MIT2+MIT1G132G133–MIT4–MIT3–MIT2–MIT1G134EAX8G135EAX7EAX6EAX5EAX4EAX3EAX2EAX1G136SYNC8G137SYNC7SYNC6SYNC5SYNC4SY...

  • Page 1325

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1304#7#6#5#4#3#2#1#0DRNEG149RTEOVCEROV2EROV1E*FV7EG150*FV6E*FV5E*FV4E*FV3E*FV2E*FV1E*FV0EG151G152EBUFBG153ECLRBESTPBESOFBESBKB EMBUFBEFINBEMSBKBG154EC6BEC5BEC4BEC3BEC2BEC1BEC0BEIF7BG155EIF6BEIF5BEIF4BEIF3BEIF2BEIF1BEIF0BEIF15BG156EIF14BEIF13BEIF12...

  • Page 1326

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1305#7#6#5#4#3#2#1#0G174G175G176EBUFDG177ECLRDESTPDESOFDESBKD EMBUFDEFINDEMSBKDG178EC6DEC5DEC4DEC3DEC2DEC1DEC0DEIF7DG179EIF6DEIF5DEIF4DEIF3DEIF2DEIF1DEIF0DEIF15DG180EIF14DEIF13DEIF12DEIF11DEIF10DEIF9DEIF8DEID7DG181EID6DEID5DEID4DEID3DEID2DEID1DEID...

  • Page 1327

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1306#7#6#5#4#3#2#1#0G199G200G201G202G203G204G205G206G207G208G209G210G211G212G213G214G215G216G217G218G219G220G221G222MRDYCORCMLSFRCSRVCCTH1CCTH2CTLMHCTLMLCRCHCRSLCINTGCSOCNCMCFNCSPSLC*ESPCARSTCRCHHGC MFNHGCINCMDCOVRIDC DEFMDCNRROCROTACINDXCMPOFCSLV...

  • Page 1328

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1307AddressBit number#7F000#6#5#4#3#2#1#0F001MDRNF002CUTSRNMVTHRDCSSRPDOINCHMTCHINF003MEDTMMEMMRMTMMDIMJMHMINCOPSASTLSPLRWDMATAPENBDENBALRSTALF004MBDT9F005MBDT8MBDT7MBDT6MBDT5MBDT4MBDT3MBDT2F006MREFMAFLMSBKMABSMMMLKMBDT1F007F008MF3MF2EFDM00F009DM0...

  • Page 1329

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1308#7#6#5#4#3#2#1#0F025T07T06T05T04T03T02T01T00T15T14T13T12T11T10T09T08S31S30S29S28S27S26S25S24T31T30T29T28T27T26T25T24B07B06B05B04B03B02B01B00T23T22T21T20T19T18T17T16B23B22B21B20B19B18B17B16B31B30B29B28B27B26B25B24B15B14B13B12B11B10B09B08SPALR08...

  • Page 1330

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1309MMPCC#7#6#5#4#3#2#1#0F050INCSTBPC1DEBMORA2BMORA1BPORA2BSLVSBRCFNBRCHPBCFINBCHPBUO007UO006UO005UO004UO003UO002UO001UO000UO015UO014UO013UO012UO011UO010UO009UO008EKENBBGEACTRPALMRPBSY PRGDPLINHKYUO115UO114UO113UO112UO111UO110UO109UO108UO123UO122U...

  • Page 1331

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1310#7#6#5#4#3#2#1#0F075ROV2OROV1ORTAPMP2OMP1ORTOHS1DOHS1COHS1BOHS1AOSPOKEYODRNOMLKOSBKOBDTO*JV7O*JV6O*JV5O*JV4O*JV3O*JV2O*JV1O*JV0O*JV15O*JV14O*JV13O*JV12O*JV11O*JV10O*JV9O*JV8O*FV7O*FV6O*FV5O*FV4O*FV3O*FV2O*FV1O*FV0ORVSL– J4O+ J4O– J3O+ J3O...

  • Page 1332

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1311TRQL8#7#6#5#4#3#2#1#0F100MV8MV7MV6MV5MV4MV3MV2MV1ZP48ZP47ZP46ZP45ZP44ZP43ZP42ZP41INP8INP7INP6INP5INP4INP3INP2INP1MMI8MMI7MMI6MMI5MMI4MMI3MMI2MMI1MVD8MVD7MVD6MVD5MVD4MVD3MVD2MVD1MDTCH8MDTCH7MDTCH6MDTCH5MDTCH4MDTCH3MDTCH2MDTCH1EADEN8EADEN7EADEN6...

  • Page 1333

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1312#7#6#5#4#3#2#1#0F125*EAXSLEOV0EBSYAEOTNAEOTPAEGENAEDENAEIALAECKZAEINPAEM28AEM24AEM22AEM21AEM18AEM14AEM12AEM11AEBSYBEOTNBEOTPBEGENBEDENBEIALBECKZBEINPBEABUFAEMFAEM28BEM24BEM22BEM21BEM18BEM14BEM12BEM11BEBSYCEOTNCEOTPCEGENCEDENCEIALCECKZCEINPCEAB...

  • Page 1334

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1313#7#6#5#4#3#2#1#0F150EM48DEM44DEM42DEM41DEM38DEM34DEM32DEM31DF151F152F153F154F155F156F157F158F159F160F161F162F163F164F165F166F167F168F169F170F171F172F173F174ORARCTLMCLDT2CLDT1CSARCSDTCSSTCALMCMORA2CMORA1CPORA2CSLVSCRCFNCRCHPCCFINCCHPCINCSTCPC1DEC

  • Page 1335

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1314#7#6#5#4#3#2#1#0F175EACNT8EACNT7EACNT6EACNT5EACNT4EACNT3EACNT2EACNT1F176F177F178F179F180F181F182F183F184F185F186F187F188F189F190F191F192F193F194F195EDGNEPARMEVAREPRGEWTIOESTPIOERDIOIOLNKSRLNO3SRLNO2SRLNO1SRLNO0CLRCH8CLRCH7CLRCH6CLRCH5CLRCH4CLR...

  • Page 1336

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1315Interface addresses among CNC, PMC and Machine Tool are as follows:G000–CNCPMCMTF000–X000–Y000–G1000–F1000–Path 1Path 2Signals addresses for each path are usually assigned as follows:Signal addressContentsG000–G255Signals on path...

  • Page 1337

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1316AddressBit numberSKIP5 #2–MIT2 #2SKIP4 #2+MIT2 #2XAE #2SKIP8 #2SKIP2 #2SKIP2 #2SKIP3 #1SKIP5 #1SKIP7 #1XAE #1YAE #1ZAE #1–MIT1 #1SKIP4 #1–MIT2 #1SKIP8 #1SKIP2 #1SKIP4 #1ESKIPSKIP6 #1#7#6#5#4#3#2#1#0X000X001X002X003*DEC7 #2*DEC4 #2 *DEC3 ...

  • Page 1338

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1317AddressBit numberBFIN #1EFIN #1ALNGH #1F1D #1#7G000#6#5#4#3#2#1#0G001ESTB #1G002EA6 #1EA5 #1EA4 #1EA3 #1EA2 #1EA1 #1EA0 #1ED7 #1ED6 #1ED5 #1ED4 #1ED3 #1ED2 #1ED1 #1ED0 #1ED15 #1 ED14 #1 ED13 #1ED12 #1 ED11 #1ED10 #...

  • Page 1339

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1318TL256 #1SPPHS #1SPPHS#7#6#5#4#3#2#1#0G025CON #1*SSTP3#1 *SSTP2#1 *SSTP1#1SWS3 #1*SSTP#1SOR #1SAR #1GR31 #1GR21 #1SOV7 #1SOV6 #1SOV5 #1SOV4 #1SOV3 #1SOV2 #1SOV1 #1SOV0 #1PC2SLC#1SPSTP#1*SCPF#1 *SUCPF#1GR2 #1GR1 #1SIND #1SSIN #1SGN #1R12I #1R11...

  • Page 1340

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1319RGTSP2#1#7#6#5#4#3#2#1#0G050UI007 #1UI006 #1UI005 #1UI004 #1UI003 #1UI002 #1UI001 #1UI000 #1UI015 #1UI014 #1UI013 #1UI012 #1UI011 #1UI010 #1UI009 #1UI008 #1CDZ #1SMZ #1UINT #1TMRON#1EXWT #1 EXSTP #1 EXRD #1MINP#1*TSB #1RGTSP1#1RGTAP#1TRRTN #1 ...

  • Page 1341

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1320#7#6#5#4#3#2#1#0G075RCHB#1 RSLB #1SOCNB#1 MCFNB#1 SPSLB#1*ESPB#1ARSTB#1SHA11#1SHA10#1SHA09#1SHA08#1SHB07#1SHB06#1SHB05#1SHB04#1SHB03#1SHB02#1SHB01#1SHB00#1SHA07#1SHA06#1SHA05#1SHA04#1SHA03#1SHA02#1SHA01#1SHA00#1Reserved for order made macroSHB...

  • Page 1342

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1321PK7#1#7#6#5#4#3#2#1#0G100–J7 #1–J6 #1–J5 #1–J4 #1–J3 #1–J2 #1–J1 #1+J7#1+J6#1+J5#1+J4 #1 +J3 #1+J2 #1+J1 #1MLK7 #1MLK6 #1MLK5 #1MLK4 #1MLK3 #1MLK2 #1MLK1 #1MI7 #1MI6 #1MI5 #1MI4 #1MI3 #1MI2 #1MI1 #1*–L7 #1*–L6 #1*–L5 #1*...

  • Page 1343

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1322#7#6#5#4#3#2#1#0G124SVF7 #1SVF5 #1SVF4 #1SVF3 #1SVF2 #1SVF1 #1*IT7 #1*IT5 #1*IT4 #1*IT3 #1*IT2 #1*IT1 #1MIX7MIX5MIX4MIX3MIX2MIX1+MIT4 #1+MIT1 #1EAX7 #1EAX5 #1EAX4 #1EAX3 #1EAX2 #1EAX1 #1SYNC7#1SYNC5#1 SYNC4#1SYNC3#1SYNC2#1 SYNC1#1SYNCJ7#1EMSBK...

  • Page 1344

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1323#7#6#5#4#3#2#1#0G149*FV7E#1 *FV6E#1 *FV5E#1 *FV4E#1 *FV3E#1 *FV2E#1 *FV1E#1 *FV0E#1DRNE#1 RTE #1OVCE#1ROV2E#1 ROV1E#1EBUFB#1ESTPB#1ESOFB#1 ESBKB#1 EMBUFB#1EFINB#1EMSBKB#1EC6B #1EC5B #1EC4B #1EC3B #1EC2B #1EC1B #1EC0B #1EIF15B#1EIF14B#1 EIF13B#...

  • Page 1345

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1324#7#6#5#4#3#2#1#0G174EMSBKD#1EC6D #1EC5D #1EC4D #1EC3D #1EC2D #1EC1D #1EC0D #1EIF7D#1EIF6D#1 EIF5D#1EIF4D#1 EIF3D#1EIF2D#1EIF1D#1 EIF0D#1EBUFD#1 ECLRD#1ESTPD#1 ESOFD#1 ESBKD#1 EMBUFD#1EFIND#1EID7D#1 EID6D#1 EID5D#1 EID4D#1 EID3D#1 EID2D#1 EID1D...

  • Page 1346

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1325#7#6#5#4#3#2#1#0G199G200G201G202G203G204G205G206G207G208G209G210G211G212G213G214G215G216G217G218G219

  • Page 1347

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1326AddressBit numberRLSOT#2STLK#2EFIN#2BFIN#2BFIN#2#7G1000#6#5#4#3#2#1#0G1001ESTB#2G1002EA6#2EA5#2EA4#2EA3#2EA2#2EA1#2EA0#2G1003G1004MFIN3#2 MFIN2#2FIN#2G1005AFL#2TFIN#2SFIN#2MFIN#2G1006SKIPP#2OVC#2*ABSM#2SRN#2G1007ERS#2G1008RRW#2*SP#2*ESP#2*IT#2...

  • Page 1348

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1327TL256#2*BECLP #2#7G1025#6#5#4#3#2#1#0CON#2G1026*SSTP3#2 *SSTP2#2 *SSTP1#2SWS3#2SWS2#2 SWS1#2PC2SLC#2G1027SPSTP#2*SCPF#2*SUCPF#2GR2#2GR1#2G1028*SSTP#2SOR#2SAR#2GR31#2GR21#2SOV7#2G1029SOV6#2SOV5#2SOV4#2SOV3#2SOV2#2SOV1#2SOV0#2G1030R08I#2G1031R07...

  • Page 1349

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1328RGTSP2#2#7G1050#6#5#4#3#2#1*TLV9 #2#0*TLV8 #2G1051CDZ#2G1052SMZ#2UINT#2TMRON#2G1053UI007#2UI006#2UI005#2UI004#2UI003#2UI002#2UI001#2UI000#2UI015#2G1054UI014#2UI013#2UI012#2UI011#2UI010#2UI009#2UI008#2G1055G1056G1057G1058TRRTN#2TRESC#2*TSB#2G10...

  • Page 1350

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1329#7RCHB#2G1075#6RSLB#2#5#4SOCNB#2#3MCFNB#2#2SPSLB#2#1*ESPB#2#0ARSTB#2G1076SHA07#2G1077SHA06#2 SHA05#2 SHA04#2 SHA03#2 SHA02#2 SHA01#2 SHA00#2G1078SHA11#2 SHA10#2 SHA09#2 SHA08#2SHB07#2G1079SHB06#2 SHB05#2 SHB04#2 SHB03#2 SHB02#2 SHB01#2 SHB00#2...

  • Page 1351

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1330#7G1100#6+J7#2#5+J6#2#4+J5#2#3+J4#2#2+J3#2#1+J2#2#0+J1#2G1101–J7#2–J6#2–J5#2–J4#2–J3#2–J2#2–J1#2G1102G1103G1104G1105MI7#2MI6#2MI5#2MI4#2MI3#2MI2#2MI1#2G1106G1107G1108G1109+LM7 #2G1110G1111G1112MLK7#2MLK6#2MLK5#2MLK4#2MLK3#2MLK2#...

  • Page 1352

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1331#7G1125#6#5#4#3#2#1#0G1126G1127G1128G1129*IT7#2*IT6#2*IT5#2*IT4#2*IT3#2*IT2#2*IT1#2G1130G1131+MIT4 #2G1132SVF7#2SVF6#2SVF5#2SVF4#2SVF3#2SVF2#2SVF1#2G1133G1134G1135EAX7#2EAX6#2EAX5#2EAX4#2EAX3#2EAX2#2EAX1#2G1136G1137SYNC7#2SYNC6#2SYNC5#2SYNC4#2...

  • Page 1353

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1332#7DRNE#2G1150#6RTE#2#5OVCE#2#4#3#2#1ROV2E#2#0ROV1E#2G1151G1152G1153*FV7E#2 *FV6E#2 *FV5E#2 *FV4E#2 *FV3E#2 *FV2E#2 *FV1E#2 *FV0E#2G1162G1163G1164G1165EBUFB#2ECLRB#2ESTPB#2ESOFB#2ESBKB#2EMBUFB#2EFINB#2EMSBKB#2G1154EC6B#2EC5B#2EC4B#2EC3B#2EC2B#2...

  • Page 1354

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1333#7G1175#6#5#4#3#2#1#0G1176G1177G1186G1187G1188G1189G1190G1191IGVRY7#2IGVRY6#2IGVRY5#2IGVRY4#2IGVRY3#2IGVRY2#2IGVRY1#2G1192G1193G1194G1195G1196G1197G1198NPOS7#2NPOS6#2NPOS5#2NPOS4#2NPOS3#2NPOS2#2NPOS1#2EBUFD#2ECLRD#2ESTPD#2ESOFD#2ESBKD#2EMBUFD#...

  • Page 1355

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1334#7G1200#6#5#4#3#2#1#0G1201G1202G1203G1204G1205G1206G1207G1208G1209G1210G1211G1212G1213G1214G1215G1216G1217G1218G1219G1199

  • Page 1356

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1335AddressBit numberBF#1EFD#1MBDT3#1MBDT6#1MBDT9#1#7F000#6#5#4#3#2#1#0F001MDRN#1F002CUT#1SRNMV#1THRD#1CSS#1RPDO#1INCH#1MTCHIN#1F003MEDT#1 MMEM#1MRMT#1 MMDI#1MJ#1MH#1MINC#1F004MREF#1MAFL#1MSBK#1MABSM#1MMLK#1 MBDT1#1F005MBDT8#1MBDT7#1MBDT5#1MBDT4#1...

  • Page 1357

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1336ENB3#1#7S31#1F025#6S30#1#5S29#1#4S28#1#3S27#1#2S26#1#1S25#1#0S24#1GR3O#1 GR2O#1 GR1O#1F034SPAL#1F035R08O#1R07O#1R06O#1R05O#1R04O#1R03O#1R02O#1R01O#1F036R12O#1R11O#1R10O#1R09O#1F037ENB2#1SUCLP#1SCLP#1F038AR7#1F039AR6#1AR5#1AR4#1AR3#1AR2#1AR1#1A...

  • Page 1358

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1337PSYN#1#7F050#6#5#4#3RCFNB#1#2RCHPB#1#1CFINB#1#0CHPB#1UO131#1 UO130#1 UO129#1 UO128#1 UO127#1 UO126#1 UO125#1 UO124#1F059ESEND#1 EREND#1F060BCLP#1 BUCLP#1PRTSF#1F061F062WATO#1PSAR#1PSE2#1PSE1#1F063F064RGSPM#1RGSPP#1F065G08MD#1F066F067F068TIALMT...

  • Page 1359

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1338#7SPO#1F075#6KEYO#1#5DRNO#1#4MLKO#1#3SBKO#1#2BDTO#1#1#0F084F085F086F087F088F089F090F091TRSPS#1TRACT#1F092F093ZP7#1ZP6#1ZP5#1ZP4#1ZP3#1ZP2#1ZP1#1F094F095ZP27#1ZP26#1ZP25#1ZP24#1ZP23#1ZP22#1ZP21#1F096F097ZP37#1ZP36#1ZP35#1ZP34#1ZP33#1ZP32#1ZP31#...

  • Page 1360

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1339TRQL7#1#7F100#6ZP47#1#5#4ZP45#1#3ZP44#1#2ZP43#1#1ZP42#1#0ZP41#1F109MDTCH7#1MDTCH5#1MDTCH4#1MDTCH3#1MDTCH2#1MDTCH1#1F110F111EADEN7#1EADEN5#1EADEN4#1EADEN3#1EADEN2#1EADEN1#1F112F113F114F115FRP7#1FRP5#1FRP4#1FRP3#1FRP2#1FRP1#1F116F117SYN7O#1F118T...

  • Page 1361

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1340#7F125#6#5#4#3#2#1#0EABUFB#1EMFB#1F134F144F146F147F149F126F127*EAXSL#1F128EOV0#1F129EBSYA#1EOTNA#1EOTPA#1EGENA#1 EDENA#1EIALA#1ECKZA#1EINPA#1F130EM28A#1F131EM24A#1EM22A#1EM21A#1EM18A#1EM14A#1EM12A#1EM11A#1EBSYB#1F132EOTNB#1EOTPB#1EGENB#1 EDENB...

  • Page 1362

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1341#7F150#6#5#4#3#2#1#0F159F160F161F162F163F164F165F166F167F168F169F170F171F172F173F174F152F153F154F155F156F157F158EM48D#1EM44D#1EM42D#1EM41D#1EM38D#1EM34D#1EM32D#1EM31D#1F151

  • Page 1363

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1342#7F175#6#5#4#3#2#1#0F184F185F186F187F188F189F190F191F192F193F194F195F176F177F178F179F180F181EACNT7#1 EACNT6#1 EACNT5#1 EACNT4#1 EACNT3#1 EACNT2#1 EACNT1#1F182F183EDGN#1 EPARM#1EVAR#1EPRG#1 EWTIO#1 ESTPIO#1ERDIO#1IOLNK#1SRLNO3#1CLRCH8#1SRLNO0#1...

  • Page 1364

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1343AddressBit numberBF#2EFD#2MBDT3#2MBDT6#2MBDT9#2#7F1000#6#5#4#3#2#1#0F1001MDRN#2F1002CUT#2SRNMV#2THRD#2CSS#2RPDO#2INCH#2MTCHIN#2F1003MEDT#2 MMEM#2MRMT#2 MMDI#2MJ#2MH#2MINC#2F1004MREF#2MAFL#2MSBK#2MABSM#1MMLK#2 MBDT1#2F1005MBDT8#2MBDT7#2MBDT5#2M...

  • Page 1365

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1344GR3O#2#7S31#2F1025#6S30#2#5S29#2#4S28#2#3S27#2#2S26#2#1S25#2#0S24#2GR2O#2 GR1O#2F1034SPAL#2F1035R08O#2R07O#2R06O#2R05O#2R04O#2R03O#2R02O#2R01O#2F1036R12O#2R11O#2R10O#2R09O#2F1037ENB3#2ENB2#2SUCLP#2SCLP#2F1038AR7#2F1039AR6#2AR5#2AR4#2AR3#2AR2#2...

  • Page 1366

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1345PECK2#2TLCHI#2#7F1050#6#5#4#3RCFNB#2#2RCHPB#2#1CFINB#2#0CHPB#2UO131#2 UO130#2 UO129#2 UO128#2 UO127#2 UO126#2 UO125#2 UO124#2F1059ESEND#2 EREND#2F1060BCLP#2 BUCLP#2PRTSF#2F1061F1062PSYN#2WATO#2PSAR#2PSE2#2PSE1#2F1063F1064RGSPM#2RGSPP#2F1065F10...

  • Page 1367

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1346#7SPO#2F1075#6KEYO#2#5DRNO#2#4MLKO#2#3SBKO#2#2BDTO#2#1#0F1084F1085F1086F1087F1088F1089F1090F1091TRSPS#2TRACT#2F1092F1093ZP7#2ZP6#2ZP5#2ZP4#2ZP3#2ZP2#2ZP1#2F1094F1095ZP27#2ZP26#2ZP25#2ZP24#2ZP23#2ZP22#2ZP21#2F1096F1097ZP37#2ZP36#2ZP35#2ZP34#2ZP...

  • Page 1368

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1347#7F1100#6ZP47#2#5#4ZP45#2#3ZP44#2#2ZP43#2#1ZP42#2#0ZP41#2F1109MDTCH7#2MDTCH5#2MDTCH4#2MDTCH3#2MDTCH2#2MDTCH1#2F1110F1111EADEN7#2EADEN5#2EADEN4#2EADEN3#2EADEN2#2EADEN1#2F1112F1113F1114F1115FRP7#2FRP5#2FRP4#2FRP3#2FRP2#2FRP1#2F1116F1117SYN7O#2SY...

  • Page 1369

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1348#7F1125#6#5#4#3#2#1#0EABUFB#2EMFB#2F1134F1144F1146F1147F1149F1126F1127*EAXSL#2F1128EOV0#2F1129EBSYA#2EOTNA#2EOTP#2EGENA#2 EDENA#2EIALA#2ECKZA#2EINPA#2F1130EM28A#2F1131EM24A#2EM22A#2EM21A#2EM18A#2EM14A#2EM12A#2EM11A#2EBSYB#2F1132EOTNB#2EOTB#2EG...

  • Page 1370

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1349#7F1150#6#5#4#3#2#1#0F1159F1160F1161F1162F1163F1164F1165F1166F1167F1168F1169F1170F1171F1172F1173F1174F1152F1153F1154F1155F1156F1157F1158EM48D#2EM44D#2EM42D#2EM41D#2EM38D#2EM34D#2EM32D#2EM31D#2F1151

  • Page 1371

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1350#7F1175#6#5#4#3#2#1#0F1184F1185F1186F1187F1188F1189F1190F1191F1192F1193F1194F1176F1177F1178F1179F1180F1181EACNT7#2 EACNT6#2 EACNT5#2 EACNT4#2 EACNT3#2 EACNT2#2 EACNT1#2F1182F1183EDGN#2 EPARM#2EVAR#2EPRG#2 EWTIO#2 ESTPIO#2ERDIO#2IOLNK#2SRLNO3#2...

  • Page 1372

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1351The figure below illustrates the addresses of interface signals between theCNC and PMC.G000 ∼CNCPMCMTF000 ∼X000 ∼Y000 ∼Following shows table of addresses:In an item where both T series and M series are described, some signalsare covere...

  • Page 1373

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1352#7G000#6#5#4#3#2#1#0G001ESTBG002EA6EA5EA4EA3EA2EA1EA0G003G004MFIN3MFIN2FINBFING005AFLBFINTFINSFINEFINMFING006SKIPPOVC*ABSMSRNG007ERSG008RRW*SP*ESP*ITG009PN16PN8PN4PN2PN1G010ED7ED6ED5ED4ED3ED2ED1ED0ED15ED14ED13ED12ED11ED10ED9ED8RLSOTEXLM*FLWURL...

  • Page 1374

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1353#7#6#5#4#3#2#1#0G025G026CONG027*SSTP3*SSTP2*SSTP1SWS3SWS2SWS1PC2SLCG028SPSTP*SCPF*SUCPFGR2GR1G029*SSTPSORSARGR31GR21SOV7G030SOV6SOV5SOV4SOV3SOV2SOV1SOV0PKESS2G031PKESS1R08IG032R07IR06IR05IR04IR03IR02IR01ISINDG033SSINSGNR12IR11IR10IR09IR08I2G03...

  • Page 1375

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1354#7#6#5#4#3#2#1#0G050*TLV9*TLV8G051RMTDI7G052RMTDI6 RMTDI5 RMTDI4 RMTDI3 RMTDI2 RMTDI1 RMTDI0CDZG053SMZUINTTMRONUI007G054UI006UI005UI004UI003UI002UI001UI000UI015G055UI014UI013UI012UI011UI010UI009UI008G056G057G058EXWTEXSTPEXRDMINPG059*TSBG060G06...

  • Page 1376

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1355#7#6#5#4#3#2#1#0RCHBG075RSLBINTGBSOCNBMCFNBSPSLB*ESPBARSTBRCHHGBG076MFNHGBINCMDBOVRIDB DEFMDBNRROBROTABINDXBG077MPOFBSLVBMORCMBSHA07G078SHA06SHA05SHA04SHA03SHA02SHA01SHA00G079SHA11SHA10SHA09SHA08SHB07G080SHB06SHB05SHB04SHB03SHB02SHB01SHB00G081...

  • Page 1377

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1356–LM1#7#6#5#4#3#2#1#0G100+J4+J3+J2+J1G101G102–J4–J3–J2–J1G103G104G105G106MI4MI3MI2MI1G107G108MLK4MLK3MLK2MLK1G109G110+LM4+LM3+LM2+LM1G111G112–LM4–LM3–LM2G113G114*+L4*+L3*+L2*+L1G115G116*–L4*–L3*–L2*–L1G117G118*+ED4*+ED3*...

  • Page 1378

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1357#7#6#5#4#3#2#1#0G124G125SVF4SVF3SVF2SVF1G126G127G128G129*IT4*IT3*IT2*IT1G130G131+MIT4+MIT3+MIT2+MIT1G132G133–MIT4–MIT3–MIT2–MIT1G134G135EAX4EAX3EAX2EAX1G136G137SYNC4SYNC3SYNC2SYNC1G138G139SYNCJ4 SYNCJ3 SYNCJ2 SYNCJ1G140EBUFAG141ECLRAES...

  • Page 1379

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1358#7#6#5#4#3#2#1#0DRNEG149RTEOVCEROV2EROV1E*FV7EG150*FV6E*FV5E*FV4E*FV3E*FV2E*FV1E*FV0EG151G152EBUFBG153ECLRBESTPBESOFBESBKB EMBUFBEFINBEMSBKBG154EC6BEC5BEC4BEC3BEC2BEC1BEC0BEIF7BG155EIF6BEIF5BEIF4BEIF3BEIF2BEIF1BEIF0BEIF15BG156EIF14BEIF13BEIF12...

  • Page 1380

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1359#7#6#5#4#3#2#1#0G174G175G176EBUFDG177ECLRDESTPDESOFDESBKD EMBUFDEFINDEMSBKDG178EC6DEC5DEC4DEC3DEC2DEC1DEC0DEIF7DG179EIF6DEIF5DEIF4DEIF3DEIF2DEIF1DEIF0DEIF15DG180EIF14DEIF13DEIF12DEIF11DEIF10DEIF9DEIF8DEID7DG181EID6DEID5DEID4DEID3DEID2DEID1DEID...

  • Page 1381

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1360#7#6#5#4#3#2#1#0G199G200G201G202G203G204G205G206G207G208G209G210G211G212G213G214G215G216G217G218G219G220G221G222

  • Page 1382

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1361AddressBit number#7F000#6#5#4#3#2#1#0F001MDRNF002CUTSRNMVTHRDCSSRPDOINCHMTCHINF003MEDTMMEMMRMTMMDIMJMHMINCOPSASTLSPLRWDMATAPENBDENBALRSTALF004MBDT9F005MBDT8MBDT7MBDT6MBDT5MBDT4MBDT3MBDT2F006MREFMAFLMSBKMABSMMMLKMBDT1F007F008MF3MF2EFDM00F009DM0...

  • Page 1383

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1362#7#6#5#4#3#2#1#0F025T07T06T05T04T03T02T01T00T15T14T13T12T11T10T09T08S31S30S29S28S27S26S25S24T31T30T29T28T27T26T25T24B07B06B05B04B03B02B01B00T23T22T21T20T19T18T17T16B23B22B21B20B19B18B17B16B31B30B29B28B27B26B25B24B15B14B13B12B11B10B09B08SPALR08...

  • Page 1384

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1363#7#6#5#4#3#2#1#0F050INCSTBPC1DEBMORA2BMORA1BPORA2BSLVSBRCFNBRCHPBCFINBCHPBUO007UO006UO005UO004UO003UO002UO001UO000UO015UO014UO013UO012UO011UO010UO009UO008EKENBBGEACTRPALMRPBSY PRGDPLINHKYUO115UO114UO113UO112UO111UO110UO109UO108UO123UO122UO121U...

  • Page 1385

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1364#7#6#5#4#3#2#1#0F075ROV2OROV1ORTAPMP2OMP1ORTOHS1DOHS1COHS1BOHS1AOSPOKEYODRNOMLKOSBKOBDTO*JV7O*JV6O*JV5O*JV4O*JV3O*JV2O*JV1O*JV0O*JV15O*JV14O*JV13O*JV12O*JV11O*JV10O*JV9O*JV8O*FV7O*FV6O*FV5O*FV4O*FV3O*FV2O*FV1O*FV0O– J4O+ J4O– J3O+ J3O– J...

  • Page 1386

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1365#7#6#5#4#3#2#1#0F100MV4MV3MV2MV1ZP44ZP43ZP42ZP41INP4INP3INP2INP1MMI4MMI3MMI2MMI1MVD4MVD3MVD2MVD1MDTCH4MDTCH3MDTCH2MDTCH1EADEN4EADEN3EADEN2EADEN1TRQL4TRQL3TRQL2TRQL1HDO0ZRF4ZRF3ZRF2ZRF1F101F102F103F104F105F106F107F108F109F110F111F112F113F114F11...

  • Page 1387

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1366#7#6#5#4#3#2#1#0F125*EAXSLEOV0EBSYAEOTNAEOTPAEGENAEDENAEIALAECKZAEINPAEM28AEM24AEM22AEM21AEM18AEM14AEM12AEM11AEBSYBEOTNBEOTPBEGENBEDENBEIALBECKZBEINPBEABUFAEMFAEM28BEM24BEM22BEM21BEM18BEM14BEM12BEM11BEBSYCEOTNCEOTPCEGENCEDENCEIALCECKZCEINPCEAB...

  • Page 1388

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1367#7#6#5#4#3#2#1#0F150EM48DEM44DEM42DEM41DEM38DEM34DEM32DEM31DF151F152F153F154F155F156F157F158F159F160F161F162F163F164F165F166F167F168F169F170F171F172F173F174

  • Page 1389

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1368#7#6#5#4#3#2#1#0F175EACNT4EACNT3EACNT2EACNT1F176F177F178F179F180F181F182F183F184F185F186F187F188F189F190F191F192F193F194F195EDGNEPARMEVAREPRGEWTIOESTPIOERDIOIOLNKSRLNO3SRLNO2SRLNO1SRLNO0CLRCH4CLRCH3CLRCH2CLRCH1

  • Page 1390

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1369The following dialog shows the relationships between the addresses forthe interface signals between the CNC and PMC.G000 ∼CNCPMCMTF000 ∼X000 ∼Y000 ∼If a signal in an item common to both T and F series is disabled for eithermodel, its n...

  • Page 1391

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1370AddressBit numberHS3DSTLK7G0006543210G001ESTBG002EA6EA5EA4EA3EA2EA1EA0G003G004MFIN3MFIN2FING005AFLTFINSFINEFINMFING006SKIPPOVC*ABSMSRNG007ERSG008RRW*SP*ESP*ITG009PN16PN8PN4PN2PN1G010ED7ED6ED5ED4ED3ED2ED1ED0ED15ED14ED13ED12ED11ED10ED9ED8RLSOTEX...

  • Page 1392

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1371HS3IB76543210G025G026G027G028GR2GR1G029*SSTPSORSARSOV7G030SOV6SOV5SOV4SOV3SOV2SOV1SOV0G031R08IG032R07IR06IR05IR04IR03IR02IR01ISINDG033SSINSGNR12IR11IR10IR09IG034G035G036G037G038G039G040HS2IDG041HS2ICHS2IBHS2IAHS1IDHS1ICHS1IBHS1IAG042HS3IDHS3IC...

  • Page 1393

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1372RGTAP76543210G050G051RMTDI7G052RMTDI6 RMTDI5 RMTDI4 RMTDI3 RMTDI2 RMTDI1 RMTDI0CDZG053SMZTMRONUI007G054UI006UI005UI004UI003UI002UI001UI000UI015G055UI014UI013UI012UI011UI010UI009UI008G056G057G058EXWTEXSTPEXRDMINPG059G060G061G062*CRTOFG063G064G0...

  • Page 1394

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC137376543210G075G076G077SHA07G078SHA06SHA05SHA04SHA03SHA02SHA01SHA00G079SHA11SHA10SHA09SHA08G080G081G082G083G084G085G086G087G088G089G090G091G092G093G094G095HROVG096*HROV6 *HROV5 *HROV4 *HROV3 *HROV2 *HROV1 *HROV0G097EKC7G098EKC6EKC5EKC4EKC3EKC2EKC...

  • Page 1395

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1374–LM176543210G100+J4+J3+J2+J1G101G102–J4–J3–J2–J1G103G104G105G106MI4MI3MI2MI1G107G108MLK4MLK3MLK2MLK1G109G110+LM4+LM3+LM2+LM1G111G112–LM4–LM3–LM2G113G114*+L4*+L3*+L2*+L1G115G116*–L4*–L3*–L2*–L1G117G118G119G120G121G122G123

  • Page 1396

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1375EMBUFAEC1AESOFA+MIT4SVF4+MIT276543210G124G125SVF3SVF2SVF1G126G127G128G129*IT4*IT3*IT2*IT1G130G131+MIT3+MIT1G132G133–MIT4–MIT3–MIT2–MIT1G134G135EAX4EAX3EAX2EAX1G136G137G138G139G140EBUFAG141ECLRAESTPAESBKAEFINAEMSBKAG142EC6AEC5AEC4AEC3AE...

  • Page 1397

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC137676543210DRNEG149RTEOVCEROV2EROV1E*FV7EG150*FV6E*FV5E*FV4E*FV3E*FV2E*FV1E*FV0EG151G152EBUFBG153ECLRBESTPBESOFBESBKB EMBUFBEFINBEMSBKBG154EC6BEC5BEC4BEC3BEC2BEC1BEC0BEIF7BG155EIF6BEIF5BEIF4BEIF3BEIF2BEIF1BEIF0BEIF15BG156EIF14BEIF13BEIF12BEIF11BE...

  • Page 1398

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1377IGVRY376543210G174G175G176EBUFDG177ECLRDESTPDESOFDESBKD EMBUFDEFINDEMSBKDG178EC6DEC5DEC4DEC3DEC2DEC1DEC0DEIF7DG179EIF6DEIF5DEIF4DEIF3DEIF2DEIF1DEIF0DEIF15DG180EIF14DEIF13DEIF12DEIF11DEIF10DEIF9DEIF8DEID7DG181EID6DEID5DEID4DEID3DEID2DEID1DEID0D...

  • Page 1399

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC137876543210G199G200G201G202G203G204G205G206G207G208G209G210G211G212G213G214G215G216G217G218G219G220G221G222

  • Page 1400

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1379AddressBit numberEF7F0006543210F001MDRNF002CUTSRNMVTHRDCSSRPDOINCHMTCHINF003MEDTMMEMMRMTMMDIMJMHOPSASTLSPLRWDMATAPENBDENBALRSTALF004F005F006MREFMAFLMSBKMABSMMMLKMBDT1F007F008MF3MF2DM00F009DM01DM02DM30TFSFEFDMFF010M15F011M14M13M12M11M10M09M08M2...

  • Page 1401

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC138076543210F025T07T06T05T04T03T02T01T00T15T14T13T12T11T10T09T08S31S30S29S28S27S26S25S24T31T30T29T28T27T26T25T24B07B06B05B04B03B02B01B00T23T22T21T20T19T18T17T16B23B22B21B20B19B18B17B16B31B30B29B28B27B26B25B24B15B14B13B12B11B10B09B08R08OR07OR06OR05...

  • Page 1402

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1381RGSPM76543210F050UO007UO006UO005UO004UO003UO002UO001UO000UO015UO014UO013UO012UO011UO010UO009UO008EKENBBGEACTRPALMRPBSY PRGDPLINHKYUO115UO114UO113UO112UO111UO110UO109UO108UO123UO122UO121UO120UO119UO118UO117UO116UO107UO106UO105UO104UO103UO102UO1...

  • Page 1403

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC138276543210F075ROV2OROV1ORTAPMP2OMP1ORTOHS1DOHS1COHS1BOHS1AOSPOKEYODRNOMLKOSBKOBDTO*JV7O*JV6O*JV5O*JV4O*JV3O*JV2O*JV1O*JV0O*JV15O*JV14O*JV13O*JV12O*JV11O*JV10O*JV9O*JV8O*FV7O*FV6O*FV5O*FV4O*FV3O*FV2O*FV1O*FV0O– J4O+ J4O– J3O+ J3O– J2O+ J2O...

  • Page 1404

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1383EADEN4ZRF4MMI376543210F100MV4MV3MV2MV1INP4INP3INP2INP1MMI4MMI2MMI1MVD4MVD3MVD2MVD1EADEN3EADEN2EADEN1TRQL2TRQL1ZRF3ZRF2ZRF1F101F102F103F104F105F106F107F108F109F110F111F112F113F114F115F116F117F118F119F120F121F122F123F124

  • Page 1405

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1384EOV0*EAXSL76543210F125EBSYAEOTNAEOTPAEGENAEDENAEIALAECKZAEINPAEM28AEM24AEM22AEM21AEM18AEM14AEM12AEM11AEBSYBEOTNBEOTPBEGENBEDENBEIALBECKZBEINPBEABUFAEMFAEM28BEM24BEM22BEM21BEM18BEM14BEM12BEM11BEBSYCEOTNCEOTPCEGENCEDENCEIALCECKZCEINPCEABUFBEMFBE...

  • Page 1406

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC138576543210F150EM48DEM44DEM42DEM41DEM38DEM34DEM32DEM31DF151F152F153F154F155F156F157F158F159F160F161F162F163F164F165F166F167F168F169F170F171F172F173F174

  • Page 1407

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC138676543210F175EACNT4EACNT3EACNT2EACNT1F176F177F178F179F180F181F182F183F184F185F186F187F188F189F190F191F192F193F194F195EDGNEPARMEVAREPRGEWTIOESTPIOERDIOIOLNKSRLNO3SRLNO2SRLNO1SRLNO0

  • Page 1408

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1387f :AvailableF :Available only with2–path control–:UnavailableFunctionSignal nameSymbolAddressTseriesMseriesSectionPower Mate background operationsignalBGENG092#4ff13.8Power Mate read/write alarm signalBGIALMG092#3ff13.8Power Mate read/writ...

  • Page 1409

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1388FunctionSectionMseriesTseriesAddressSymbolSignal nameAlarm signalAlarm signalALF001#0ff24Alarm signalBattery alarm signalBALF001#2ff2.4Servo axis abnormal load detectedsignalABTQSVF090#0ffAbnormal loadFirst–spindle abnormal load detectedsign...

  • Page 1410

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1389FunctionSectionMseriesTseriesAddressSymbolSignal nameData signals for external data inputED0 to ED15G000, G001ffAddress signals for external data inputEA0 to EA6G002#0 to #6ffE ternal data inp tRead signal for external data inputESTBG002#7ff15...

  • Page 1411

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1390FunctionSectionMseriesTseriesAddressSymbolSignal nameTool change signalTLCHF064#0ffTool change reset signalTLRSTG048#7ffIndividual tool change signalTLCHIF064#2—fIndividual tool change reset signalTLRSTIG048#6—fTool life managementTool ski...

  • Page 1412

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1391FunctionSectionMseriesTseriesAddressSymbolSignal nameHigh–speed skipsignalHigh–speed skip status signalsHDO0 to HDO7F122ff14.3.2Canned cycle (M series)/cannedcycle for holemachining (T series)Tapping signalTAPF001#5ff11.7Servo off(mechanic...

  • Page 1413

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1392FunctionSectionMseriesTseriesAddressSymbolSignal namePolygon spindle stop signal*PLSSTG038#0f—PolygonalturningSpindle polygon speed reached signalPSARF063#2f—Polygonal turningwith two spindlesMaster axis not reached signalPSE1F063#0f—6.1...

  • Page 1414

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1393FunctionSectionMseriesTseriesAddressSymbolSignal nameSOCNAG071#4ffSoft start/stop cancel signals (serial spindle)SOCNBG075#4ff(serial s indle)SOCNCG205#4ffINTGAG071#5ffSpeed integral signals (serial spindle)INTGBG075#5ffINTGCG205#5ffRSLAG071#6...

  • Page 1415

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1394FunctionSectionMseriesTseriesAddressSymbolSignal nameSLVAG073#1ffSubordinate operation mode commandsignals (serial spindle)SLVBG077#1ffsignals (serial s indle)SLVCG207#1ffMPOFAG073#2ffMotor power cutoff command signals(serial spindle)MPOFBG077...

  • Page 1416

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1395FunctionSectionMseriesTseriesAddressSymbolSignal nameRCFNAF046#3ffOutput switch completion signals(serial spindle)RCFNBF050#3ff(serial s indle)RCFNCF169#3ffSLVSAF046#4ffSubordinate operation status signals(serial spindle)SLVSBF050#4ff(serial s...

  • Page 1417

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1396FunctionSectionMseriesTseriesAddressSymbolSignal nameManuallinear/circularinterpolationFeed axis and direction selectionsignals+Jg, –Jg, +Ja, –JaG086#0 to #3ff3.5HS1A to HS1DG018#0 to #3ffManual handle feed axis selectionsignalsHS2A to HS2...

  • Page 1418

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1397FunctionSectionMseriesTseriesAddressSymbolSignal nameStart lock signalSTLKG007#1f—Interlock signal*ITG008#0ffInterlock signal for each axis*IT1 to *IT8G130ffStart lock/interlockManual feed interlock signal for eachaxis and direction+MIT1, +M...

  • Page 1419

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1398FunctionSectionMseriesTseriesAddressSymbolSignal nameSoftware operator’s panel signal(ROV1)ROV1OF076#4ffSoftware operator’s panel signal(ROV2)ROV2OF076#5ffSoftware operator’s panel signal (BDT)BDTOF075#2ffSoftware operator’s panel sign...

  • Page 1420

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1399FunctionSectionMseriesTseriesAddressSymbolSignal nameSynchronous control axis selectionsignalsSYNC1 to SYNC8G138f—18Parking signalsPK1 to PK8G122f—1.8Synchronous controlSynchronous control under way signalsSYN10 to SYN80F118f—Synchronous...

  • Page 1421

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1400FunctionSectionMseriesTseriesAddressSymbolSignal nameEBUFAG142#7ffAxis control command read signalsEBUFBG154#7ffAxis control command read signals(PMC axis control)EBUFCG166#7ffEBUFDG178#7ffEID0A to EID31AG146 to G149ffAxis control data signals...

  • Page 1422

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1401FunctionSectionMseriesTseriesAddressSymbolSignal nameEFINAG142#0ffAuxiliary function completion signalsEFINBG154#0ffAuxiliary function com letion signals(PMC axis control)EFINCG166#0ffEFINDG178#0ffESOFAG142#4ffServo off signals (PMC axis contr...

  • Page 1423

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1402FunctionSectionMseriesTseriesAddressSymbolSignal nameEOTPAF130#5ffPositive–direction overtravel signalsEOTPBF133#5ffPositive direction overtravel signals(PMC axis control)EOTPCF136#5ffEOTPDF139#5ffFeedrate override signals (PMC axiscontrol)*...

  • Page 1424

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1403FunctionSectionMseriesTseriesAddressSymbolSignal nameFloating referenceposition returnFloating reference position return endsignalsFRP1 to FRP8F116ff4.6Program restartProgram restart signalSRNG006#0ff57Program restartProgram restart under way ...

  • Page 1425

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1404FunctionSectionMseriesTseriesAddressSymbolSignal name2nd position coder selection signalPC2SLCG028#7f—Multi–spindle control(T series)Spindle enable signalsENB2F038#2f—9.10(T series)Spindle enable signalsENB3F038#3f—Mirror imageMirror i...

  • Page 1426

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1405f :AvailableF :Available only with2–path control–:UnavailableGroupSymbol Signal nameAddressTseriesM series Reference item*+ED1 to *+ED8External deceleration signalG118ff7.1.9*+L1 to *+L8Overtravel signalG114ff2.3.1*-ED1 to *-ED8External de...

  • Page 1427

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1406Group Reference itemM seriesTseriesAddress Signal nameSymbol*SCPFSpindle clamp completion signalG028#5f-9.8*SPFeed hold signalG008#5ff5.1*SSTPSpindle stop signalG029#6ff9.3*SSTP1G027#3f-**SSTP2Stop signal in each spindleG027#4f-9.10*SSTP3G027#...

  • Page 1428

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1407Group Reference itemM seriesTseriesAddress Signal nameSymbolB00 to B312nd auxiliary function code signalF030 to F033ff8.1BALBattery alarm signalF001#2ff2.4BCLPB-axis clamp signalF061#1-f11.11BDT1,BDT2 to BDT9Optional block skip signalG044#0,G0...

  • Page 1429

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1408Group Reference itemM seriesTseriesAddress Signal nameSymbolDEFMDAG072#3ffDEFMDBDifferential mode command signal (serial spindle)G076#3ff9.2, 9.15DEFMDCG206#3ffDENDistribution end signalF001#3ff8.1DM00F009#7ffDM01Decode M signalF009#6ff81DM02D...

  • Page 1430

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1409Group Reference itemM seriesTseriesAddress Signal nameSymbolEBUFAG142#7ffEBUFBAxis control command read signal(PMC axisG154#7ff15 1EBUFCAxis control command read signal(PMC axiscontrol)G166#7ff15.1EBUFDG178#7ffEC0A to EC6AG143#0 to #6ffEC0B to...

  • Page 1431

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1410Group Reference itemM seriesTseriesAddress Signal nameSymbolEID0A to EID31AG146 to G149ffEID0B to EID31BAxis control data signal (PMC axis control)G158 to G161ff15 1EID0C to EID31CAxis controldata signal (PMC axis control)G170 to G173ff15.1EID...

  • Page 1432

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1411Group Reference itemM seriesTseriesAddress Signal nameSymbolEOTNAF130#6ffEOTNBNegative-direction-overtravel-signal-(PMC-axisF133#6ff15 1EOTNCNegative direction overtravel signal (PMC axiscontrol)F136#6ff15.1EOTNDF139#6ffEOTPAF130#5ffEOTPBPosit...

  • Page 1433

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1412Group Reference itemM seriesTseriesAddress Signal nameSymbolF1DF1-digit-feed-select-signalG016#7-f7.1.5FEED0Feed zero signalF066#2ff3.8FINCompletion-signalG004#3ff8.1FFRP1-to-FRP8Floating-reference-position-return-end-signalF116ff4.6FFSCSLCs-c...

  • Page 1434

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1413Group Reference itemM seriesTseriesAddress Signal nameSymbolIGNVRYAll-axis-VRDY-OFF-alarm-ignore-signalG066#0ff2.9IGVRY1-to-IGVRY8Each-axis-VRDY-OFF-alarm-ignore-signalG192ff2.9INCHInch-input-signalF002#0ff11.4INCMDAG072#5ffINCMDBIncremental c...

  • Page 1435

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1414Group Reference itemM seriesTseriesAddress Signal nameSymbolMCFNAG071#3ffMCFNBPower line switch completion signal (serial spindle)G075#3ff9.2, 9.15MCFNCG205#3ffMD1,MD2,MD4Mode selection signalG043#0 to #2ff2.6MD1OSoftware operator's panel sign...

  • Page 1436

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1415Group Reference itemM seriesTseriesAddress Signal nameSymbolMMLKAll-axis-machine-lock-check-signalF004#1ff5.3.1MORA1AF046#6ffMORA1BSignal for completion of spindle orientation with amagnetic sensor (serial spindle)F050#6ff9.2, 9.15MORA1Cmagnet...

  • Page 1437

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1416Group Reference itemM seriesTseriesAddress Signal nameSymbolOFN0 to OFN5,OFN6Tool offset number select signalG039#0 to#5,G040#0f-14.4.2OPAutomatic operation signalF000#7ff5.1ORARAF045#7ffORARBOrientation completion signal (serial spindle)F049#...

  • Page 1438

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1417Group Reference itemM seriesTseriesAddress Signal nameSymbolPSE1Master axis not arrival signalF063#0f-6.10.2PSE2Polygon synchronous axis not arrival signalF063#1f-6.10.2PPSW01 to PSW10Position switch signalF070#0 toF071#1ff1.2.9PSYNPolygon syn...

  • Page 1439

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1418Group Reference itemM seriesTseriesAddress Signal nameSymbolROV1E,ROV2ERapid traverse override signal(PMC axis control)G150#0,#1ff15.1ROV1OSoftware operator's panel signal(ROV1)F076#4ff12.1.15ROV2OSoftware operator's panel signal(ROV2)F076#5ff...

  • Page 1440

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1419Group Reference itemM seriesTseriesAddress Signal nameSymbolSFSpindle speed strobe signalF007#2ff8.1SFINSpindle function completion signalG005#2ff8.4SFRAG070#5ffSFRBCW command signal (serial spindle)G074#5ff9.2, 9.15SFRCG204#5ffSGNG033#5ffSGN2...

  • Page 1441

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1420Group Reference itemM seriesTseriesAddress Signal nameSymbolSPOSoftware operator's panel signal(*SP)F075#7ff12.1.15SPPHSSpindle phase synchronous control signalG038#3ff9.12SPSLAG071#2ffSPSLBSpindle select signal (serial spindle)G075#2ff9.2, 9....

  • Page 1442

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1421Group Reference itemM seriesTseriesAddress Signal nameSymbolSYN1O to SYN7OSynchronous/composite/superimposed controlunder way signalsF118#0 to #6F-1.9SYNC1 to SYNC8Simple synchronous axis select signalG138ff1.6SSYNC to SYNC8Synchronous control...

  • Page 1443

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1422Group Reference itemM seriesTseriesAddress Signal nameSymbolUI000 to UI015Input signal for custom macroG054,G055ff11.6.1UUINTInterrupt signal for custom macroG053#3ff11.6.2UUO000 to UO015Output signal for custom macroF054,F055ff1161UO100 to UO...

  • Page 1444

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1423f :AvailableF :Available only with2–path control–:UnavailableAddress Signal nameSymbolTseriesMseries ReferenceItemX004#0XAEffX004#1Measuring position reached signalYAE-f14 2X004#1Measuring position reached signalZAEf-14.2X004#2ZAE-fX004#2,...

  • Page 1445

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1424Address ReferenceItemMseriesTseriesSymbol Signal nameG006#6Skip signalSKIPPf-14.3.1G007#0Retrace signalRVS-f11.15G007#1Start lock signalSTLKf-2.5G007#2Cycle start signalSTff5.1G007#4Stroke check 3 release signalRLSOT3ff2.3.3G007#5Follow-up sig...

  • Page 1446

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1425Address ReferenceItemMseriesTseriesSymbol Signal nameG028#4Spindle unclamp completion signal*SUCPFf-9.8G028#5Spindle clamp completion signal*SCPFf-9.8G028#6Spindle stop complete signalSPSTPf-9.8G028#72nd position coder selection signalPC2SLCf-...

  • Page 1447

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1426Address ReferenceItemMseriesTseriesSymbol Signal nameG043#5DNC operation select signalDNCIff5.11G043#7Manual reference position return selection signalZRNff4.1G044#0,G045Optional block skip signalBDT1, BDT2 toBDT9ff5.5G044#1All-axis machine lo...

  • Page 1448

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1427Address ReferenceItemMseriesTseriesSymbol Signal nameG064#0Retry start signalRTNCY–f5.13G064#1Retry point selection signalSLCSEQ–f5.13G064#2,#3Spindle feedback select signalSLPCA,SLPCBF-9.4G064#6Simple spindle synchronous control signalESR...

  • Page 1449

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1428Address ReferenceItemMseriesTseriesSymbol Signal nameG074#1Torque limit command HIGH signal (serial spindle)TLMHBff9.2G074#3,#2Clutch/gear signal (serial spindle)CTH1B,CTH2Bff9.2G074#4CCW command signal (serial spindle)SRVBff9.2G074#5CW comman...

  • Page 1450

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1429Address ReferenceItemMseriesTseriesSymbol Signal nameG092#2Power Mate read/write inprogress signalBGIONff13.8G092#3Power Mate read/write alarm signalBGIALMff13.8G092#4Power Mate background busy signalBGENff13.8G096#0 to #61% step rapid travers...

  • Page 1451

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1430Address ReferenceItemMseriesTseriesSymbol Signal nameG143#0 to #6Axis control command signal (PMC axis control)EC0A to EC6Aff15.1G143#7Block stop disable signal (PMC axis control)EMSBKAff15.1G144,G145Axis control feedrate signal (PMC axis cont...

  • Page 1452

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1431Address ReferenceItemMseriesTseriesSymbol Signal nameG179#0 to #6Axis control command signal (PMC axis control)EC0D to EC6Dff15.1G179#7Block stop disable signal (PMC axis control)EMSBKDff15.1G180,G181Axis control feedrate signal (PMC axis cont...

  • Page 1453

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1432Address ReferenceItemMseriesTseriesSymbol Signal nameF000#4Feed hold lamp signalSPLff5.1F000#5Cycle start lamp signalSTLff5.1F000#6Servo ready completion signalSAff2.2F000#7Automatic operation signalOPff5.1F001#0Alarm signalALff2.4F001#1Resett...

  • Page 1454

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1433Address ReferenceItemMseriesTseriesSymbol Signal nameF008#0External operation signalEF-f11.8F008#42nd M function strobe signalMF2ff8.3F008#53rd M function strobe signalMF3ff8.3F009#4DM30ffF009#5Decode M signalDM02ff81F009#6Decode M signalDM01f...

  • Page 1455

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1434Address ReferenceItemMseriesTseriesSymbol Signal nameF046#2Output switch signal (serial spindle)RCHPAff9.2F046#3Output switch completion signal (serial spindle)RCFNAff9.2F046#4Slave operation status signal (serial spindle)SLVSAff9.2F046#5Signa...

  • Page 1456

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1435Address ReferenceItemMseriesTseriesSymbol Signal nameF054,F055Output signal for custom macroUO000 to UO015ff1161F056 to F059Output signalfor custom macroUO100 to UO131ff11.6.1F060#0Read completion signal for external data inputERENDff15.2F060#...

  • Page 1457

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1436Address ReferenceItemMseriesTseriesSymbol Signal nameF075#4Software operator's panel signal (MLK)MLKOff12.1.15F075#5Software operator's panel signal (DRN)DRNOff12.1.15F075#6Software operator's panel signal (KEY1 to KEY4)KEYOff12.1.15F075#7Soft...

  • Page 1458

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1437Address ReferenceItemMseriesTseriesSymbol Signal nameF116Floating reference position return end signalFRP1 to FRP8ff4.6F118Synchronous control under way signalsSYN1O to SYN8Of-1.8F118#0 to #6Synchronous/composite/superimposed control under way...

  • Page 1459

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1438Address ReferenceItemMseriesTseriesSymbol Signal nameF136#7Axis control command read completion signal (PMC axiscontrol)EBSYCff15.1F137#0Auxiliary function strobe signal (PMC axis control)EMFCff15.1F137#1Buffer full signal (PMC axis control)EA...

  • Page 1460

    B–63003EN–1/02A. INTERFACE BETWEEN CNC AND PMC1439Address ReferenceItemMseriesTseriesSymbol Signal nameF177#2Slave read/write stop signalESTPIOff13.8F177#3Slave external write start signalEWTIOff13.8F177#4Slave program selection signalEPRGff13.8F177#5Slave macro variable selection signalEVARf...

  • Page 1461

    IndexB–63003EN–1/02NoteVolume 1 : Up to Page 696 / Volume 2 : Page 697 and lateri–1Numbers¡2nd reference position return/3rd, 4th reference position return,384A¡Abnormal load detection, 278Absolute position detection, 50Acceleration/deceleration control, 638Actual spindle speed output (T...

  • Page 1462

    INDEXB–63003EN–1/02NoteVolume 1 : Up to Page 696 / Volume 2 : Page 697 and lateri–2Emergency stop, 223Entering compensation values, 1185Erase screen display/automatic erase screen display, 1073Error compensation, 30Error detect (T series), 663Exact stop/exact stop mode/tapping mode/cutting...

  • Page 1463

    INDEXB–63003EN–1/02NoteVolume 1 : Up to Page 696 / Volume 2 : Page 697 and lateri–3Linear interpolation, 455Linear scale with absolute addressing reference marks, 397List of addresses, 1296List of signals, 1387List of signals (in order of addresses), 1423List of signals (in order of functi...

  • Page 1464

    INDEXB–63003EN–1/02NoteVolume 1 : Up to Page 696 / Volume 2 : Page 697 and lateri–4Reference position establishment, 357Reference position return, 381Reference position return and its check during synchronouscontrol, 121Reference position return during composite control, 126Reference posit...

  • Page 1465

    INDEXB–63003EN–1/02NoteVolume 1 : Up to Page 696 / Volume 2 : Page 697 and lateri–5Thread cutting, 465Thread cutting cycle retract (T series), 472Three–dimensional coordinate conversion (M series), 1004Three–spindle serial output, 881Timing charts for rigid tapping specification, 835Ti...

  • Page 1466

    Revision RecordFANUCSeries16i/18i/21i/20i/160i/180i/210i/160is/180is/210is–MODELACONNECTION MANUAL (FUNCTION) (B–63003EN–1)02Sep., ’99Addition of Series 20i–A01Apr., ’97EditionDateContentsEditionDateContents

  • Page 1467

    · No part of this manual may bereproduced in any form.· All specifications and designsare subject to change withoutnotice.

  • Abstract

    11. PROGRAM COMMANDB–63003EN–1/029881290Distance between two turrets in mirror image[Data type] Two–wordIncrement systemÁÁÁÁÁÁÁÁIS–AÁÁÁÁÁÁÁIS–BÁÁÁÁÁÁÁIS–CÁÁÁÁÁÁÁUnitÁÁÁÁÁÁÁÁMillimeter machineÁÁÁÁÁÁÁÁ0.01ÁÁÁÁÁÁÁ0.001ÁÁÁÁÁÁÁ0.0001ÁÁÁÁÁÁÁmmÁÁÁÁÁÁÁÁInch inputÁÁÁÁÁÁÁÁÁÁÁÁÁÁ0.001ÁÁÁÁÁÁÁÁÁÁÁÁ0.0001ÁÁÁÁÁÁÁÁÁÁÁÁ0.00001ÁÁÁÁÁÁÁÁÁÁÁÁinchÁÁÁÁÁÁÁÁÁÁÁÁ[Valid data range] 0 to 999999999Set the distance between two turrets in mirror image.Series16i/160i/18i/180iÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Lathe) (B–63004EN)ÁÁÁÁÁÁÁÁÁÁÁÁII.13.6ÁÁÁÁÁÁMirror image for double turretsÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSeries 21i/210iÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPERATOR’S MANUAL(For Lathe) (B–63084EN)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁII.13.5ÁÁÁÁÁÁÁÁÁMirror image for double turretsÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁParameterD Distance between twoturrets[Unit of data]Reference Item

x