Navigation

  • Page 1

    FANUC Series 30+-MODEL BFANUC Series 31+-MODEL BFANUC Series 32+-MODEL BCONNECTION MANUAL (FUNCTION)B-64483EN-1/03

  • Page 2

    • No part of this manual may be reproduced in any form. • All specifications and designs are subject to change without notice. The products in this manual are controlled based on Japan’s “Foreign Exchange and Foreign Trade Law”. The export of Series 30i-B, Series 31i-B...

  • Page 3

    B-64483EN-1/03 DEFINITION OF WARNING, CAUTION, AND NOTE s-1 DEFINITION OF WARNING, CAUTION, AND NOTE This manual includes safety precautions for protecting the user and preventing damage to the machine. Precautions are classified into Warning and Caution according to their bearing on safety. Also...

  • Page 4

  • Page 5

    B-64483EN-1/03 PREFACE p-1 PREFACE Organization of this manual This manual describes all the NC functions required to enable machine tool builders to design their CNC machine tools. The following items are explained for each function. 1. Overview Describes feature of the function. Refer to Oper...

  • Page 6

    PREFACE B-64483EN-1/03 p-2 Description of symbols The following symbols are used in this manual. These symbols are described below. - M Indicates a description that is valid only for the machine center system set as system control type (in parameter No. 0983). In a general description of the ...

  • Page 7

    B-64483EN-1/03 PREFACE p-3 [Example of controlling multipath CNC using PMC system] G0000~F0000~X000~ Y000~ CNC PMCI/O device for first machine Path 1 G1000~F1000~G2000~F2000~G3000~F3000~G4000~F4000~First PMCG0000~F0000~G1000~F1000~G2000~F2000~G3000~F3000~G0000~F0000~Second PMC Third PMCG0000~F0...

  • Page 8

    PREFACE B-64483EN-1/03 p-4 #7 #6 #5 #4 #3 #2 #1 #0 Gn053 *CDZ ROVLP UINT TMRON [Example 1] The figure above indicates *CDZ is provided only for the lathe system while the other signals for both the lathe system and machining system. #7 #6 #5 #4 #3 #2 #1 #0 Gn040 OFN9 OFN8 OFN7 OFN...

  • Page 9

    B-64483EN-1/03 PREFACE p-5 Description of parameters Parameters are classified by data type as follows: Data type Valid data range Remarks Bit Bit machine group Bit path Bit axis Bit spindle 0 or 1 Byte Byte machine group Byte path Byte axis Byte spindle -128 to 127 0 to 255 Some parameters han...

  • Page 10

    PREFACE B-64483EN-1/03 p-6 - Standard parameter setting tables This section defines the standard minimum data units and valid data ranges of the CNC parameters of the real type, real machine group type, real path type, real axis type, and real spindle type. The data type and unit of data of eac...

  • Page 11

    B-64483EN-1/03 PREFACE p-7 If bit 7 (IESP) of parameter No. 1013 is set to 1, the valid data ranges for IS-C, IS-D, and IS-E are extended as follows: Unit of data Increment system Minimum data unitValid data range IS-C 0.001 0.000 to +999000.000 IS-D 0.0001 0.0000 to +99999.9999 m...

  • Page 12

    PREFACE B-64483EN-1/03 p-8 - Parameters of the bit type, bit machine group type, bit path type, bit axis type, and bit spindle type Data No. Data (Data #0 to #7 are bit positions.) #7 #6 #5 #4 #3 #2 #1 #0 0000 SEQ INI ISO TVC - Parameters other than the bit-type parameters above Data ...

  • Page 13

    B-64483EN-1/03 PREFACE p-9 Related manuals of Series 30i- MODEL B Series 31i- MODEL B Series 32i- MODEL B The following table lists the manuals related to Series 30i-B, Series 31i-B, Series 32i-B. This manual is indicated by an asterisk(*). Table 1 Related manuals Manual name Specification nu...

  • Page 14

    PREFACE B-64483EN-1/03 p-10 Related manuals of SERVO MOTOR αi/βi series The following table lists the manuals related to SERVO MOTOR αi/βi series Table 2 Related manuals Manual name Specification number FANUC AC SERVO MOTOR αi series DESCRIPTIONS B-65262EN FANUC AC SERVO MOTOR αi series ...

  • Page 15

    B-64483EN-1/03 TABLE OF CONTENTS c-1 TABLE OF CONTENTS DEFINITION OF WARNING, CAUTION, AND NOTE .................................s-1 PREFACE ....................................................................................................p-1 1 AXIS CONTROL........................................

  • Page 16

    TABLE OF CONTENTS B-64483EN-1/03 c-2 1.4.4 FSSB Setting ........................................................................................................157 1.4.4.1 FSSB setting screen ...................................................................................... 165 1.4.4.2 FSSB ...

  • Page 17

    B-64483EN-1/03 TABLE OF CONTENTS c-3 1.10.5.4 Retract function............................................................................................. 360 1.10.6 U-axis Control ......................................................................................................374 1.10.7 U...

  • Page 18

    TABLE OF CONTENTS B-64483EN-1/03 c-4 3.2 MANUAL HANDLE FEED.......................................................................... 738 3.3 MANUAL HANDLE INTERRUPT............................................................... 749 3.3.1 Manual Interruption of 3-dimensional Coordinate System Co...

  • Page 19

    B-64483EN-1/03 TABLE OF CONTENTS c-5 5.3.4 High-speed Program Check Function ..................................................................910 5.3.5 Manual Handle Retrace ........................................................................................922 5.3.6 Auxiliary Function Outp...

  • Page 20

    TABLE OF CONTENTS B-64483EN-1/03 c-6 6.10 POLYGON TURNING.............................................................................. 1106 6.10.1 Polygon Turning.................................................................................................1106 6.10.2 Polygon Turning with Two...

  • Page 21

    B-64483EN-1/03 TABLE OF CONTENTS c-7 7.2.2 Rapid Traverse Bell-shaped Acceleration/Deceleration.....................................1252 7.2.3 Linear Acceleration/Deceleration after Cutting Feed Interpolation ...................1254 7.2.4 Bell-Shaped Acceleration/Deceleration after Cutting Feed ...

  • Page 22

    TABLE OF CONTENTS B-64483EN-1/03 c-8 9.4 TOOL POSTURE CONTROL .................................................................. 1510 9.5 CUTTING POINT COMMAND ................................................................. 1519 9.6 3-DIMENSIONAL MANUAL FEED ......................................

  • Page 23

    B-64483EN-1/03 TABLE OF CONTENTS c-9 9.9.4.3 Restriction on machine configurations having table rotation axes (table rotation type and composite type) ............................................................... 1650 9.9.5 Parameters .............................................................

  • Page 24

    TABLE OF CONTENTS B-64483EN-1/03 c-10 11.12.14 Signal..................................................................................................................1889 11.12.14.1 Signals for the rigid tapping function ......................................................... 1889 11.12.14.2 ...

  • Page 25

    B-64483EN-1/03 TABLE OF CONTENTS c-11 11.22 SERVO/SPINDLE SYNCHRONOUS CONTROL .................................... 2064 11.23 THREAD START POSITION COMPENSATION IN CHANGING SPINDLE SPEED .................................................................................... 2076 11.24 HIGH-PRECISI...

  • Page 26

    TABLE OF CONTENTS B-64483EN-1/03 c-12 13.6.1 Custom Macro ....................................................................................................2260 13.6.2 Indirect Axis Address Command .......................................................................2286 13.6.3 Interruption ...

  • Page 27

    B-64483EN-1/03 TABLE OF CONTENTS c-13 14.1.16 Screen Erasure Function and Automatic Screen Erasure Function ....................2558 14.1.17 Screen Hard Copy Function ...............................................................................2560 14.1.18 Actual Speed Display Axis Selection S...

  • Page 28

    TABLE OF CONTENTS B-64483EN-1/03 c-14 17.8 PMC WINDOW PARAMETER WRITE .................................................... 2830 17.8.1 Parameter Write..................................................................................................2830 17.8.2 Parameter (No. 2092, Bit 0 of No. 81...

  • Page 29

    B-64483EN-1/03 TABLE OF CONTENTS c-15 A.1 LIST OF ADDRESSES ............................................................................ 2937 A.2 LIST OF SIGNALS................................................................................... 2977 A.2.1 List of Signals (In Order of Functions) ...

  • Page 30

  • Page 31

    B-64483EN-1/03 1.AXIS CONTROL - 1 - 1 AXIS CONTROL Chapter 1, “AXIS CONTROL”, consists of the following sections: 1.1 CONTROLLED AXIS........................................................................................................................1 1.2 SETTING EACH AXIS..................

  • Page 32

    1.AXIS CONTROL B-64483EN-1/03 - 2 - Number Message Description DS0050 TOO MANY SIMULTANEOUS AXES A movement was performed along more axes than can be controlled by simultaneous axis control. Check whether a command in the program is specified for more axes than can be controlled by simultaneous ...

  • Page 33

    B-64483EN-1/03 1.AXIS CONTROL - 3 - NOTE 5 If at least one axis in a path uses an extended axis name when bit 2 (EAS) of parameter No. 11308 is set to 0, subscripts (parameter No. 3131) cannot be used for axis names in the path. 6 When G code system A is used for a lathe system, X, Y, Z, or C ma...

  • Page 34

    1.AXIS CONTROL B-64483EN-1/03 - 4 - For axis names 2 and 3, a character from '0' to '9' and 'A' to 'Z' of ASCII code can be arbitrarily selected. However, the setting of axis name 3 for each axis is invalid if axis name 2 is not set. Moreover, if a character from '0' to '9' is set as axis name 2...

  • Page 35

    B-64483EN-1/03 1.AXIS CONTROL - 5 - Setting value Meaning 0 Each axis is set as an axis other than a parallel axis, synchronization control axis, and tandem control axis. 1 to 9 A set value is used as a subscript. 65 to 90 A set letter (ASCII code) is used as a subscript. [Example] When the a...

  • Page 36

    1.AXIS CONTROL B-64483EN-1/03 - 6 - • Relationship between the axis names and their settings Axis name Setting Axis nameSettingAxis nameSetting Axis name Setting0 48 9 57 I 73 R 82 1 49 A 65 J 74 S 83 2 50 B 66 K 75 T 84 3 51 C 67 L 76 U 85 4 52 D 68 M 77 V 86 5 53 E 69 N 78 W 87 6 54 F 70 O ...

  • Page 37

    B-64483EN-1/03 1.AXIS CONTROL - 7 - Name of an increment system Least input incrementLeast command increment Maximum stroke 0.0001 mm 0.0001 mm ±9999.9999 mm 0.00001 inch 0.00001 inch ±999.99999 inch IS-C 0.0001 deg 0.0001 deg ±9999.9999 deg 0.00001 mm 0.00001 mm ±9999.99999 mm 0.000001 inch...

  • Page 38

    1.AXIS CONTROL B-64483EN-1/03 - 8 - #0 INM Least command increment on the linear axis 0: In mm (metric system machine) 1: In inches (inch system machine) #7 #6 #5 #4 #3 #2 #1 #0 1004 IPR [Input type] Parameter input [Data type] Bit path #7 IPR When a number with no decimal poi...

  • Page 39

    B-64483EN-1/03 1.AXIS CONTROL - 9 - 1.2.3 Diameter and Radius Setting Switching Function Overview Usually, whether to use diameter specification or radius specification to specify a travel distance on each axis is uniquely determined by the setting of bit 3 (DIAx) of parameter No. 1006. However...

  • Page 40

    1.AXIS CONTROL B-64483EN-1/03 - 10 - Format G10.9 IP_ ; IP_ : Address and command value of an specified axis subject to diameter/radius specification switching Specify 0 or 1 as the command value. 0: Radius specification 1: Diameter specification NOTE 1 Specify G10.9 in a single block speci...

  • Page 41

    B-64483EN-1/03 1.AXIS CONTROL - 11 - [Output cond.] A diameter/radius specification switching in-progress signal is set to 1 in the following case: - When the diameter/radius specification of the corresponding axis has been switched (when the specification method set by parameter DIAx is rever...

  • Page 42

    1.AXIS CONTROL B-64483EN-1/03 - 12 - #7 PDM When switching between diameter and radius specification is made with the function for dynamic switching of diameter/radius specification, coordinates in the machine coordinate system select command (G53) are: 0: Switched between diameter and radius ...

  • Page 43

    B-64483EN-1/03 1.AXIS CONTROL - 13 - Reference item Manual name Item name OPERATOR’S MANUAL (B-64484EN) Diameter and radius setting switching 1.2.4 Specifying the Rotation Axis Overview Bit 0 (ROTx) of parameter No.1006 can be used to set each axis to a linear axis or rotary axis. Bit 1 (ROS...

  • Page 44

    1.AXIS CONTROL B-64483EN-1/03 - 14 - ROSx ROTx Meaning 0 1 Rotary axis (A type) (1) Inch/metric conversion is not done. (2) Machine coordinate values are rounded in 0 to 360°. Absolute coordinate values are rounded or not rounded by bits 0 (ROAx) and 2 (RRLx) of parameter No.1008. (3) Stored pi...

  • Page 45

    B-64483EN-1/03 1.AXIS CONTROL - 15 - 1260 The shift amount per one rotation of a rotary axis NOTE When this parameter is set, the power must be turned off before operation is continued. [Input type] Parameter input [Data type] Real axis [Unit of data] Degree [Min. unit of data] Depend on...

  • Page 46

    1.AXIS CONTROL B-64483EN-1/03 - 16 - DTCHx x : 1 ..... The 1st axis is detached. 2 ..... The 2nd axis is detached. 3 ..... The 3rd axis is detached. : : [Operation] When the signals are 1, the control unit operates as follows: <1> Position control is not executed at all. Servo mo...

  • Page 47

    B-64483EN-1/03 1.AXIS CONTROL - 17 - #7 #6 #5 #4 #3 #2 #1 #0 1005 RMBx MCCx [Input type] Parameter input [Data type] Bit axis #6 MCCx If a multi-axis amplifier is used, and another axis of the same amplifier is placed in the control axis detach state, the MCC signal of the servo a...

  • Page 48

    1.AXIS CONTROL B-64483EN-1/03 - 18 - Note NOTE 1 Controlled axis detach signals DTCH1 <G124.0>, DTCH2 <G124.1>, DTCH3 <G124.2>, 0 can be changed from 1 to 0 or from 0 to 1 when the power is first turned on or when no movement is being executed along the corresponding axis. If t...

  • Page 49

    B-64483EN-1/03 1.AXIS CONTROL - 19 - [Function] These signals indicate the movement direction of control axis. They are provided for each control axis, and the number in the signal name corresponds to the control axis number. MVDx x : 1 ..... The moving direction of the 1st axis is minus. 2 .....

  • Page 50

    1.AXIS CONTROL B-64483EN-1/03 - 20 - Signal Mirror image signals MI1 to MI8<Gn106> [Classification] Input signal [Function] Apply mirror image to the specified axes. [Operation] Apply mirror image to those axes for which the signals are 1. These signals are provided for the controlled ...

  • Page 51

    B-64483EN-1/03 1.AXIS CONTROL - 21 - Warning WARNING 1 When programmable mirror image (machining center system) and ordinary mirror image are specified at the same time, programmable mirror image is applied first. 2 No programmable mirror image (machining center system) affects mirror image ch...

  • Page 52

    1.AXIS CONTROL B-64483EN-1/03 - 22 - [Operation] 0: Performs follow-up. 1: Does not perform follow-up. Signal address #7 #6 #5 #4 #3 #2 #1 #0 Gn007 *FLWU Parameter #7 #6 #5 #4 #3 #2 #1 #0 1819 FUPx [Input type] Parameter input [Data type] Bit axis #0 FUPx To perform...

  • Page 53

    B-64483EN-1/03 1.AXIS CONTROL - 23 - [Operation] These signals put the axes for which the signals are 1 in the servo off state (the current to the servo motor is stopped). This disables position control. However, the position detection feature continues to function, so the current position is n...

  • Page 54

    1.AXIS CONTROL B-64483EN-1/03 - 24 - CAUTION 4 If a servo off signal is issued with the setting that does not cause follow-up to be performed (*FLWU<Gn007.5> = 1), even if the machine is moved with external force or other means, the machine will be retracted by the travel distance in the ...

  • Page 55

    B-64483EN-1/03 1.AXIS CONTROL - 25 - Signal address #7 #6 #5 #4 #3 #2 #1 #0 Fn070 PSW08 PSW07 PSW06 PSW05 PSW04 PSW03 PSW02 PSW01 Fn071 PSW16 PSW15 PSW14 PSW13 PSW12 PSW11 PSW10 PSW09 Parameter #7 #6 #5 #4 #3 #2 #1 #0 6901 PSA EPW [Input type] Parameter input [Data typ...

  • Page 56

    1.AXIS CONTROL B-64483EN-1/03 - 26 - NOTE 2 The position switch function is enabled upon completion of reference position return. 6950 Minimum value of the operating range of the 1-st position switch (PSW201) to to 6965 Minimum value of the operating range of the 16-th position switch (PSW21...

  • Page 57

    B-64483EN-1/03 1.AXIS CONTROL - 27 - [Function] Indicates that the machine coordinates along the controlled axes specified by parameters Nos. 8570 to 8579 and 12201 to 12206 are within the ranges specified by parameters Nos. 8580 to 8579, 12221 to 12226, 8590 to 8599, and 12241 to 12246. The po...

  • Page 58

    1.AXIS CONTROL B-64483EN-1/03 - 28 - #7 #6 #5 #4 #3 #2 #1 #0 8504 E08 E07 E06 E05 E04 E03 E02 E01 8505 E16 E15 E14 E13 E12 E11 E10 E09 [Input type] Parameter input [Data type] Bit path E01 to E16 These parameters specify whether to enable or disable each corresponding high-speed pos...

  • Page 59

    B-64483EN-1/03 1.AXIS CONTROL - 29 - WARNING 2 If you want to use high-speed position switches for multiple paths, use a different Y signal output address for each path. CAUTION 1 Specifying a nonexistent signal address causes the high-speed position switch function to be disabled. 2 Y signal...

  • Page 60

    1.AXIS CONTROL B-64483EN-1/03 - 30 - 8590 Minimum value of the operation range of the first high-speed position switch to to 8599 Minimum value of the operation range of the tenth high-speed position switch 12241 Minimum value of the operation range of the eleventh high-speed position swit...

  • Page 61

    B-64483EN-1/03 1.AXIS CONTROL - 31 - Explanation P1P2CurrentpositionTimeabcdefgOutputsignal124356 Fig. 1.2.12 (a) Relationships between a direction-sensitive high-speed position switch signal and current position Fig. 1.2.12 (a) shows the output status of a direction-sensitive high-speed posit...

  • Page 62

    1.AXIS CONTROL B-64483EN-1/03 - 32 - [Function] These signals are output if the current position along an axis corresponding to each high-speed position switch satisfies a condition. Up to 16 high-speed position switch signals can be output. This number is the total of ordinary and direction-se...

  • Page 63

    B-64483EN-1/03 1.AXIS CONTROL - 33 - #2 HPD When a high-speed position switch of direction decision type has reached (not passed) a set coordinate in a specified direction, the switch: 0: Does not operate. 1: Operates. #7 #6 #5 #4 #3 #2 #1 #0 8508 D08 D07 D06 D05 D04 D03 D02 D01 8509 D16...

  • Page 64

    1.AXIS CONTROL B-64483EN-1/03 - 34 - #7 #6 #5 #4 #3 #2 #1 #0 8516 B08 B07 B06 B05 B04 B03 B02 B01 8517 B16 B15 B14 B13 B12 B11 B10 B09 [Input type] Parameter input [Data type] Bit path B01 to B16 These parameters set the passing direction in which each corresponding high-speed posit...

  • Page 65

    B-64483EN-1/03 1.AXIS CONTROL - 35 - 1.3 ERROR COMPENSATION 1.3.1 Stored Pitch Error Compensation Overview If pitch error compensation data is specified, pitch errors of each axis can be compensated in detection units per axis. Pitch error compensation data is set for each compensation position ...

  • Page 66

    1.AXIS CONTROL B-64483EN-1/03 - 36 - The number of the compensation position at the reference position (parameter No.3620), number of the compensation position having the smallest value (parameter No.3621), and number of the compensation position having the largest value (parameter No.3622) must...

  • Page 67

    B-64483EN-1/03 1.AXIS CONTROL - 37 - The compensation amount is output at the compensation position No. corresponding to each section between the coordinates. The Fig. 1.3.1 (c) is an example of the compensation amounts. 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 +2 +1 +1 -2 0 -1 0 -1 +...

  • Page 68

    1.AXIS CONTROL B-64483EN-1/03 - 38 - Parameter Setting value 3623 : Compensation magnification 1 3624 : Interval between pitch error compensation positions 45000 3625 : Movement value per rotation 360000 If the sum of the compensation values for positions 61 to 68 is not 0, pitch error compensa...

  • Page 69

    B-64483EN-1/03 1.AXIS CONTROL - 39 - 3 When the display unit is 10.4-inch, press the continuous menu key , then press chapter selection soft key [PITCH ERROR]. The following screen is displayed: Fig. 1.3.1 (a) PITCH ERROR COMPENSATION screen (10.4-inch display unit) 3 When the display unit is...

  • Page 70

    1.AXIS CONTROL B-64483EN-1/03 - 40 - If bit 5 (PAD) of parameter No. 11350 is 1, an axis name is displayed next to the compensation point number set in parameter No. 3621 for determining the most negative pitch error compensation point number. Also, if the bi-directional pitch error compensation...

  • Page 71

    B-64483EN-1/03 1.AXIS CONTROL - 41 - 3623 Magnification for pitch error compensation for each axis NOTE When this parameter is set, the power must be turned off before operation is continued. [Input type] Parameter input [Data type] Byte axis [Valid data range] 0 to 100 Set the magnificati...

  • Page 72

    1.AXIS CONTROL B-64483EN-1/03 - 42 - The compensation at each compensation point must be set so that the total compensation per revolution equals 0. NOTE If 0 is set, the travel distance per revolution becomes 360 degrees. Warning WARNING • Compensation value range Compensation values can...

  • Page 73

    B-64483EN-1/03 1.AXIS CONTROL - 43 - - Backlash compensation for each rapid traverse and cutting feed More precise machining can be performed by changing the backlash compensating value depending on the feedrate, the rapid traverse or the cutting feed. Let the measured backlash at cutting feed ...

  • Page 74

    1.AXIS CONTROL B-64483EN-1/03 - 44 - 1851 Backlash compensating value for each axis [Input type] Parameter input [Data type] Word axis [Unit of data] Detection unit [Valid data range] -9999 to 9999 Set the backlash compensating value for each axis. When the machine moves in a direction oppo...

  • Page 75

    B-64483EN-1/03 1.AXIS CONTROL - 45 - 1.3.3 Smooth Backlash Explanation With normal backlash compensation, all backlash compensation pulses are output at the location where the direction of axis moving reverses. (Fig. 1.3.3 (a)) Direction of axis moving (Direction reverse) Total amount of backla...

  • Page 76

    1.AXIS CONTROL B-64483EN-1/03 - 46 - 1L2L1B1851No.sec−−=ParameterionoutputhcompensatondbacklaseaseofRateofincr (1) The following shows an example in which the tool is changed from cutting feed to rapid traverse feed and the direction reverses. (Fig. 1.3.3 (c)) Direction of axis moving (D...

  • Page 77

    B-64483EN-1/03 1.AXIS CONTROL - 47 - [Data type] 2-word axis [Unit of data] Detection unit [Valid data range] 0 to 999999999 For each axis, set the distance from the point where the axis movement direction is reversed to the point where the second stage of smooth backlash compensation is ended...

  • Page 78

    1.AXIS CONTROL B-64483EN-1/03 - 48 - - Machine coordinates for moving axis . .. . .abcdαβγεa, b, c, d : Compensation position numbers of the moving axis (This number is originally a pitch error compensationposition number.)α, β, γ, ε : Compensation amount for the compensation position ...

  • Page 79

    B-64483EN-1/03 1.AXIS CONTROL - 49 - 5714 Straightness compensation : Axis number of moving axis 4 5715 Straightness compensation : Axis number of moving axis 5 5716 Straightness compensation : Axis number of moving axis 6 NOTE When these parameters are set, the power must be turned off b...

  • Page 80

    1.AXIS CONTROL B-64483EN-1/03 - 50 - 13321 Straightness compensation : Compensation point number a of moving axis 6 to to 13324 Straightness compensation : Compensation point number d of moving axis 6 NOTE When these parameters are set, the power must be turned off before operation is conti...

  • Page 81

    B-64483EN-1/03 1.AXIS CONTROL - 51 - Note NOTE 1 This function is an optional function. 2 To use this function, the stored pitch error compensation option is required. 3 The straightness compensation function can be used after a moving axis and its compensation axis have returned to the referen...

  • Page 82

    1.AXIS CONTROL B-64483EN-1/03 - 52 - • The method of setting data, as well as the timing of compensation, is the same as that of pitch error compensation. • To use this function, the number of pitch error compensation points on the moving axis must not exceed 128. • The number of straightn...

  • Page 83

    B-64483EN-1/03 1.AXIS CONTROL - 53 - Input/output of the compensation data for straightness compensation at 128 points is performed at the same time as that of stored pitch error compensation data. If straightness compensation at 128 points is used, a straightness compensation point number plus...

  • Page 84

    1.AXIS CONTROL B-64483EN-1/03 - 54 - 1.3.6 Interpolated Straightness Compensation Overview This function divides the compensation data established using the compensation data for straightness compensation at 128 points among compensation points and outputs the resulting data. Explanation - Com...

  • Page 85

    B-64483EN-1/03 1.AXIS CONTROL - 55 - #2 IPC Interpolated straightness compensation function is: 0: Not used. 1: Used. #7 #6 #5 #4 #3 #2 #1 #0 5700 SM2 [Input type] Parameter input [Data type] Bit path #2 SM2 In the straightness compensation function, magnification parameters (...

  • Page 86

    1.AXIS CONTROL B-64483EN-1/03 - 56 - [Valid data range] 0 to Number of controlled axes 13381 Number of the straightness compensation point at the extremely negative position of moving axis 1 13382 Number of the straightness compensation point at the extremely negative position of moving axis...

  • Page 87

    B-64483EN-1/03 1.AXIS CONTROL - 57 - Alarm and message Number Message Description PS5046 ILLEGAL PARAMETER (S-COMP) The setting of a parameter related to straightness compensation contains an error. Possible causes include: • A non-existent axis number is set in a moving or compensation axis p...

  • Page 88

    1.AXIS CONTROL B-64483EN-1/03 - 58 - Explanation Table 1.3.7 (a) lists the number of compensation points which can be used for interpolated straightness compensation. Table 1.3.7 (a) Interpolated straightness compensation When interpolated straightness compensation 3072 points are added to int...

  • Page 89

    B-64483EN-1/03 1.AXIS CONTROL - 59 - 1.3.8 Gradient Compensation Overview By compensating for those errors in tools such as feed screws that depend on the position of the machine system in detection units, machining precision can be improved and mechanical life can be prolonged. Compensation is ...

  • Page 90

    1.AXIS CONTROL B-64483EN-1/03 - 60 - 5864 Inclination compensation : Compensation point number d for each axis NOTE When these parameters are set, the power must be turned off before operation is continued. [Input type] Parameter input [Data type] Word axis [Valid data range] 0 to 1023 The...

  • Page 91

    B-64483EN-1/03 1.AXIS CONTROL - 61 - NOTE 4 When setting parameters Nos. 5861 to 5864 (compensation point numbers a to d for individual axes), turn off the power to the NC and then back ON for the settings to take effect. 5 During automatic operation, it is possible to overwrite parameters Nos. ...

  • Page 92

    1.AXIS CONTROL B-64483EN-1/03 - 62 - Specification - Relationships between linear inclination compensation parameters and compensation amount ⊿CMPx Error deviation X axis Approximate error line DST0 ⊿CMPX β -X +X DSTXCMP0 Fig. 1.3.9 (a) Linear inclination compensation amount ⊿CMPX is c...

  • Page 93

    B-64483EN-1/03 1.AXIS CONTROL - 63 - NOTE 3 When there is no component of CMP0, set 0 in parameter No.11211. 4 When there is no component of slope a/b, set 0 in parameters No.11208 and No.11209. 5 When parameter No.11208 or No.11209 is 0, the component of slope a/b is assumed to be 0. 6 When the...

  • Page 94

    1.AXIS CONTROL B-64483EN-1/03 - 64 - Signal Linear inclination compensation parameter change demand signal TCHG <G0531.2> [Classification] Input signal [Function] Requests to change a linear inclination compensation parameter to the current set value. [Operation] Reversing this signal ...

  • Page 95

    B-64483EN-1/03 1.AXIS CONTROL - 65 - Parameter 11208 Numerator for determining the trend of the approximation error line of linear inclination compensation a 11209 Denominator for determining the trend of the approximation error line of linear inclination compensation b [Input type] Parame...

  • Page 96

    1.AXIS CONTROL B-64483EN-1/03 - 66 - Table 1.3.10 (a) Parameter number Description 3605#0 Bidirectional pitch error compensation, 1: Enabled / 0: Disabled 3620 Number of the pitch error compensation point of the reference position 3621 Number of the most distant pitch error compensation point on...

  • Page 97

    B-64483EN-1/03 1.AXIS CONTROL - 67 - Pitch error compensation amount (absolute value)Positive- direction error amount Machine coordinates Negative- direction error amount -40.0-30.0 -20.0 -10.00.0 10.020.030.040.0+3+2+1-1-2-3-4 Fig. 1.3.10 (b) Table 1.3.10 (b) Positive-direction pitch error d...

  • Page 98

    1.AXIS CONTROL B-64483EN-1/03 - 68 - - Compensation example If, in the setting example given in the previous section, the machine moves 0.0 to 40.0, 40.0 to -40.0, and -40.0 to 0.0 for a manual reference position return, pitch error compensation pulses are output as follows: Machine coordi...

  • Page 99

    B-64483EN-1/03 1.AXIS CONTROL - 69 - Output format : The output format is as follows: N20000 P.... ; N21023 P.... ; N23000 P.... ; N24023 P.... ; N : Pitch error compensation point No. + 20000 P : Pitch error compensation data Parameter #7 #6 #5 #4 #3 #2 #1 #0 3605 BDPx [Input...

  • Page 100

    1.AXIS CONTROL B-64483EN-1/03 - 70 - 3622 Number of the pitch error compensation position at extremely positive position for each axis NOTE When this parameter is set, the power must be turned off before operation is continued. [Input type] Parameter input [Data type] Word axis [Valid data...

  • Page 101

    B-64483EN-1/03 1.AXIS CONTROL - 71 - [Input type] Parameter input [Data type] Real axis [Unit of data] mm, inch, degree (machine unit) [Min. unit of data] Depend on the increment system of the applied axis [Valid data range] See the description below. If the pitch error compensation of rotary...

  • Page 102

    1.AXIS CONTROL B-64483EN-1/03 - 72 - Set the absolute value of pitch error compensation at reference position when a movement to the reference position is made from the negative direction if the direction of reference position return (bit 5 (ZMI) of parameter No. 1006) is positive or from the po...

  • Page 103

    B-64483EN-1/03 1.AXIS CONTROL - 73 - Parameter In the case that this function is available, the valid ranges of the following parameters are extended. 3620 Number of the pitch error compensation position for the reference position for each axis NOTE When this parameter is set, the power must...

  • Page 104

    1.AXIS CONTROL B-64483EN-1/03 - 74 - When using both-direction pitch error compensation, set the number of compensation point at the farthest end in the negative direction for a movement in the negative direction. NOTE 1 For a movement in the positive direction, set the compensation point numbe...

  • Page 105

    B-64483EN-1/03 1.AXIS CONTROL - 75 - • Pitch error compensation point interval on each axis: Parameter No.3624 - Minimum pitch error compensation point interval If the feedrate is high, multiple compensation pulses may be output at the same time. The minimum interval in which multiple compen...

  • Page 106

    1.AXIS CONTROL B-64483EN-1/03 - 76 - Note NOTE 1 This function is an optional function. 2 To use this function, the stored pitch error compensation option is required. 3 This function is available in bi-directional pitch error compensation. 1.3.13 About Differences among Pitch Error Compensati...

  • Page 107

    B-64483EN-1/03 1.AXIS CONTROL - 77 - - Straightness compensation In straightness compensation, similarly to gradient compensation, four typical pitch error compensation points (a, b, c, and d) are selected from pitch error compensation points and specified as straightness compensation points, ...

  • Page 108

    1.AXIS CONTROL B-64483EN-1/03 - 78 - Fig. 1.3.14 (a) Cyclic Second Pitch Error Compensation for a Single-Stage Gear Fig. 1.3.14 (b) Cyclic Second Pitch Error Compensation for a Multiple-Stage Gear Although a rotary table is used as an example here, cyclic second pitch error compensation can ...

  • Page 109

    B-64483EN-1/03 1.AXIS CONTROL - 79 - 0° 2°20° Fig. 1.3.14 (d) - Pitch error with a 360° cycle 0° 20° 360° 180°Aε Fig. 1.3.14 (e) - Pitch error after superimposition in portion A Pitch error with the cycle ofthe rotation of the gear ε Aε : Pitch error in portion A Fig. 1.3.14 (f) S...

  • Page 110

    1.AXIS CONTROL B-64483EN-1/03 - 80 - Parameter 14985 Number of the farthest second cyclical pitch error compensation point in the negative direction for each axis NOTE When this parameter is set, the power must be turned off before operation is continued. [Input type] Parameter input [Data...

  • Page 111

    B-64483EN-1/03 1.AXIS CONTROL - 81 - When 1 is set as the magnification for second cyclical pitch error compensation, the unit of compensation data is the same as the detection unit. Caution CAUTION 1 This function is an optional function. 2 To use this function, the stored pitch error compens...

  • Page 112

    1.AXIS CONTROL B-64483EN-1/03 - 82 - Fig. 1.3.15 (b) Pitch error compensation screen (when the bi-directional pitch error compensation function and axis name extension are enabled) 1.3.15.1 Setting of axis name display The axis name is displayed to the left of the compensation point number se...

  • Page 113

    B-64483EN-1/03 1.AXIS CONTROL - 83 - 1020 Program axis name for each axis [Input type] Parameter input [Data type] Byte axis Set a program axis name for each axis. NOTE When this parameter is not set, the axis name displayed on the pitch error compensation screen is “(X)”. 3621 Numb...

  • Page 114

    1.AXIS CONTROL B-64483EN-1/03 - 84 - 1.3.16 3-dimensional Error Compensation Overview In ordinary pitch error compensation, compensation is applied to a specified compensation axis (single axis) by using its position information. For example, pitch error compensation is applied to X-axis by usin...

  • Page 115

    B-64483EN-1/03 1.AXIS CONTROL - 85 - The actual compensation amounts are the calculated compensation amounts multiplied by the compensation magnifications (Parameter No.10809 to 10811). - Number of compensation points Up to 15625 compensation points (up to 25 points per axis) can be set. The n...

  • Page 116

    1.AXIS CONTROL B-64483EN-1/03 - 86 - • Compensation point number of the reference position for 3-dimensional error compensation (second compensation axis) : Parameter No. 10807• Compensation point number of the reference position for 3-dimensional error compensation (third compensation axis)...

  • Page 117

    B-64483EN-1/03 1.AXIS CONTROL - 87 - 3 Press vertical soft key [NEXT PAGE] several times, then press vertical soft key [3D ERR COMP]. The following screen appears: Fig.1.3.16 (d) 3-DIMENSIONAL ERROR COMPENSATION screen (15-inch display unit) 4 Move the cursor to the position of the compensat...

  • Page 118

    1.AXIS CONTROL B-64483EN-1/03 - 88 - NOTE When these parameters are set, the power must be turned off before operation is continued. [Input type] Parameter input [Data type] Byte path [Valid data range] 2 to 25 These parameters set the number of compensation points for each axis for 3-dimens...

  • Page 119

    B-64483EN-1/03 1.AXIS CONTROL - 89 - [Data type] Real path [Unit of data] mm, inch (machine unit) [Min. unit of data] Depend on the increment system of the reference axis [Valid data range] 9 digit of minimum unit of data (refer to standard parameter setting table (A)) (When the increment sys...

  • Page 120

    1.AXIS CONTROL B-64483EN-1/03 - 90 - • Compensation amount related to each compensation point Set absolute values as indicated by arrows shown in Fig. 1.3.17 (a) in parameters Nos. 10864 to 10893. This value can also be set from a dedicated registration screen. When reference position retur...

  • Page 121

    B-64483EN-1/03 1.AXIS CONTROL - 91 - For example, when the machine coordinate of machine position α is 12.000: β = -3 × 12.000 +55=19 Compensation amount β is 19. Since only compensation points 1 and 2 are set, when machine position α is smaller than compensation point 1, compensation amoun...

  • Page 122

    1.AXIS CONTROL B-64483EN-1/03 - 92 - Fig. 1.3.17 (c) 5 Move the cursor to the field corresponding to the compensation point number and compensation axis for which to set the compensation amount using cursor keys, , , , and . 6 Select the MDI mode and enter the compensation amount with an absol...

  • Page 123

    B-64483EN-1/03 1.AXIS CONTROL - 93 - Parameter #7 #6 #5 #4 #3 #2 #1 #0 8304 SMCx [Input type] Parameter input [Data type] Bit axis #1 SMCx When a value for 3-dimensional machine position compensation is set for the master axis under axis synchronous control, the same value is: 0:...

  • Page 124

    1.AXIS CONTROL B-64483EN-1/03 - 94 - 10834 Machine coordinates of compensation point 1 for compensation axis 1 subject to 3-dimensional machine position compensation to to 10843 Machine coordinates of compensation point 10 for compensation axis 1 subject to 3-dimensional machine position comp...

  • Page 125

    B-64483EN-1/03 1.AXIS CONTROL - 95 - 10864 Compensation value 1 of compensation point 1 for compensation axis 1 subject to 3-dimensional machine position compensation to to 10873 Compensation value 10 of compensation point 10 for compensation axis 1 subject to 3-dimensional machine position c...

  • Page 126

    1.AXIS CONTROL B-64483EN-1/03 - 96 - 1.3.18 Stored Pitch Error Compensation Total Value Input function General The stored pitch error compensation data can be input as a total value. In the conventional specification, it is necessary to calculate the difference between two consecutive compensati...

  • Page 127

    B-64483EN-1/03 1.AXIS CONTROL - 97 - The compensation data is input by a total value whose origin is the reference position. Please set 0 to the compensation data at the reference position. The range of the value is –32768 to +32767. If the input value exceeds this range, the warning massage ...

  • Page 128

    1.AXIS CONTROL B-64483EN-1/03 - 98 - Parameter No. Setting value No.3605#0 (1st-axis) 1 No.3605#2 (1st-axis) 1 No.3621 (1st-axis) 100 No.3622 (1st-axis) 200 No.3623 (1st-axis) 1 No.3624 (1st-axis) 10.0 No.3626 (1st-axis) 3100 No.5711 1 No.5721 2 No.13381 6000 Example2) When only stored pitch er...

  • Page 129

    B-64483EN-1/03 1.AXIS CONTROL - 99 - N20001 Q0 L1 P995 N20002 Q0 L1 P990 N20003 Q0 L1 P995 This data can be input on the pitch error compensation screen when bit 0 (APE) of parameter No. 3602 is set to 1. If the data with L1 is input when bit 0 (APE) of parameter No. 3602 is set to 0, or the...

  • Page 130

    1.AXIS CONTROL B-64483EN-1/03 - 100 - Table1.3.18 (d) Parameter setting of bi-directional pitch error compensation Parameter number Setting of Input by Incremental value Setting of Input by Total value Description 3602#0 0 1 The input type of stored pitch error compensation data is, 0: An incr...

  • Page 131

    B-64483EN-1/03 1.AXIS CONTROL - 101 - Compensation point number Input by Incremental value Input by Total value 36 -1 -1 37 -2 -2 38 - -4 Example of total value input in case of rotary axis - Amount of movement per rotation: 360° - Interval between pitch error compensation positions: 45° - Nu...

  • Page 132

    1.AXIS CONTROL B-64483EN-1/03 - 102 - When incremental value input is enabled, if the sum of the compensation values for positions 61 to 68 is not 0, pitch error compensation values are accumulated for each rotation, causing positional deviation. When total value input is enabled, set the value ...

  • Page 133

    B-64483EN-1/03 1.AXIS CONTROL - 103 - This function is effective to the following functions. - Stored Pitch Error Compensation - Bi-directional Pitch Error Compensation - Interpolation Type Pitch Error Compensation - Periodical Secondary Pitch Error Compensation - Interpolation Type Straightness...

  • Page 134

    1.AXIS CONTROL B-64483EN-1/03 - 104 - Translational error-[ΔX2, ΔY2, ΔZ2]Z-axisYt Xt Zt Rotary error (-ΔJ1) - 5-axis machine Xt’ Zt’Yt’Z-axis Xt” Zt”Yt” Translational error[ΔX1 ΔY1 ΔZ1]Rotary error (-ΔI2) Rotary error (-ΔK2) Rotary error (-ΔJ2)Three-dimensional rotary err...

  • Page 135

    B-64483EN-1/03 1.AXIS CONTROL - 105 - In accordance with the current machine position Pm(Pmx, Pmy, Pmz, Pmb, Pmc) (hereafter, linear axes machine position is described as Pml(Pmx, Pmy, Pmz), and rotary axes machine position is described as Pmr(Pmb,Pmc).), CNC calculates the translational error [...

  • Page 136

    1.AXIS CONTROL B-64483EN-1/03 - 106 - Compensation data Translational error Rotary error Compensation point number X Y Z α β γ 00001 2 10 1 0 1 2 00002 3 1 2 2 2 0 ・・・ L+1 1 1 2 3 2 1 ・・・ 07812 1 2 3 1 5 1 Summ...

  • Page 137

    B-64483EN-1/03 1.AXIS CONTROL - 107 - L+Max1’×Max2’ L+Max1’×(Max2’-1)+1 L+Max1’+1 L+Max1’×2 L+1 L+2 L+3 …… L+Max1’ Compensation point number continues from the last number on thecompensation space for linear axes. (1st rotary axis) Compensation space ...

  • Page 138

    1.AXIS CONTROL B-64483EN-1/03 - 108 - Pml(Pmx, Pmy, Pmz)P2 [C2x, C2y, C2z] [C2α, C2β, C2γ] x yzP1 [C1x, C1y, C1z] [C1α, C1β, C1γ] P3 [C3x, C3y, C3z] [C3α, C3β, C3γ] P4 [C4x, C4y, C4z] [C4α, C4β, C4γ] P5 [C5x, C5y, C5z] [C5α, C5β, C5γ] P6 [C6x, C6y, C6z] [C6α, C6β, C6γ] ...

  • Page 139

    B-64483EN-1/03 1.AXIS CONTROL - 109 - P1 [C1x, C1y, C1z] [C1α, C1β, C1γ] b cPmR(Pmb, Pmc)P2 [C2x, C2y, C2z] [C2α, C2β, C2γ] P3 [C3x, C3y, C3z] [C3α, C3β, C3γ] P4 [C4x, C4y, C4z] [C4α, C4β, C4γ] Fig.1.3.19.1 (f) Calculation for Error compensation value of Rotary axes Here, the 2 c...

  • Page 140

    1.AXIS CONTROL B-64483EN-1/03 - 110 - ・Tool head rotation type 1. Calculation of the compensated Tool length offset vector VTL’ The compensated Tool length offset vector VTL’, in which the translational error and the rotary error are added to the standard tool length offset vector VTL[VTLx...

  • Page 141

    B-64483EN-1/03 1.AXIS CONTROL - 111 - Parameter No. Contents 19681 Controlled-axis number for the first rotation axis 19682 Axis direction for the first rotation axis 19684 Rotation direction for the first rotation axis 19685 Rotation angle when the first rotation axis is a hypothetical axis 196...

  • Page 142

    1.AXIS CONTROL B-64483EN-1/03 - 112 - NOTE 4 In the standard tool length offset vector VTL[VTLx, VTLy, VTLz], the control point shift (No.19665#4 SPR) is not considered. - Table rotation type The compensated TCP vector VT-TCP’ from the table center to the tool center point (TCP) is calculated...

  • Page 143

    B-64483EN-1/03 1.AXIS CONTROL - 113 - Translational error[ΔX2, ΔY2, ΔZ2] Y X Z Zt Rotary error (ΔJ1) Rotary error (ΔK1) Rotary error(ΔI1) Xt Yt Yt’ Yt” Zt’ Xt’ Rotary error(ΔJ2) Rotary error(ΔK2) Zt” Xt” Compensated TCP vector VT-TCP’[ VT-TCPx’,VT-TCPy’,VT-TCPz’ ]3-d...

  • Page 144

    1.AXIS CONTROL B-64483EN-1/03 - 114 - Tool holder offset value (Parameter No.19666) Tool length offset TCP (Tool center point) Standard tool length offset vector VTL[VTLx, VTLy, VTLz] X Z Machine position Pml(Pmx,Pmy,Pmz) Y Machine coordinate system origin First rotary axis center Rm(Rx,Ry,Rz) ...

  • Page 145

    B-64483EN-1/03 1.AXIS CONTROL - 115 - 1.3.19.2 5-axis machine (Mixed type) Number of compensation point and Compensation point number In case of Mixed type machine, it is defined that the compensation space is 1st compensation space to compensate the error by linear movement and the rotation mov...

  • Page 146

    1.AXIS CONTROL B-64483EN-1/03 - 116 - Compensation data Translational errorRotary error Compensation point number X Y Z α β γ 00001 2 10 1 0 1 2 00002 3 1 2 2 2 0 ・・・ L+1 -1 -2 -1 -10 1 2 ・・・ L+M+1 1 1 2 3 2 1 ・・・ ...

  • Page 147

    B-64483EN-1/03 1.AXIS CONTROL - 117 - Structure type 1st cmpensation space 2nd compensation space Space for linear axis Space for rotary axis Space for linear axis Space for rotary axis (5) Comp. point first num. 1 L+1 L+M+1 L+M+N+1 Dimension comp. space 2 1 1 1 Comp. data num. L=Max2×Max3 ...

  • Page 148

    1.AXIS CONTROL B-64483EN-1/03 - 118 - (1st linear axis) (2nd linear axis) (3rd linear axis) S+Max1×Max2+Max1Max1×Max2×(Max3-1)+1 S+Max1×Max2+1 Compensation point number Case of (1) : S=0 Case of (8) : S=Max1’ S+1 S+2 S+3 …… S+Max1(machine coordinate system) S+Max1...

  • Page 149

    B-64483EN-1/03 1.AXIS CONTROL - 119 - The compensation space and compensation point number of underlined axes in above table are as Fig.1.3.19.2 (c). S+MAX1×MAX2S+MAX1×(MAX2-1)+1 S+MAX1+1 S+MAX1×2 S+1 S+2 S+3 …… S+MAX1 Case of (2) : S=0, MAX1=Max1, MAX2=Max2 Case of...

  • Page 150

    1.AXIS CONTROL B-64483EN-1/03 - 120 - S+1 S+2 S+3 …… S+MAX1 (linear axis) Case of (2) : S=L+M, MAX1=Max3Case of (3) : S=L+M, MAX1=Max2Case of (4) : S=0, MAX1=Max1 Case of (5) : S=L+M, MAX1=Max1Case of (6) : S=0, MAX1=Max2 Case of (7) : S=0, MAX1=Max3 (mach...

  • Page 151

    B-64483EN-1/03 1.AXIS CONTROL - 121 - S+1 S+2 S+3 …… S+MAX1(rotary axis) Case of 1st rotary axis (B) in 1st compensation space : S=L, MAX1=Max1’ Case of 2nd rotary axis (C) in 2ndt compensation space : S=L+M+N, MAX1=Max2’ (machine coordinate syste...

  • Page 152

    1.AXIS CONTROL B-64483EN-1/03 - 122 - P1x and P2x are X-axis positions at P1 and P2. The proportional ratio of Y-axis and Z-axis are calculated similarly. Then, the translational error compensation value ΔX1 at Pm is calculated as follows : zyxxCzyxxCzyxxCzyxxCzyxxCzyxxCzyxxCzyxxCX××−×+×...

  • Page 153

    B-64483EN-1/03 1.AXIS CONTROL - 123 - Calculation for Translational/Rotary error compensation value of Linear axis (Compensation space for linear axis is 1-dimension) In accordance with the proportional ratio in the compensation area including the current machine position PmL(PmL1) of linear axe...

  • Page 154

    1.AXIS CONTROL B-64483EN-1/03 - 124 - Compensation calculation In case of Mixed type machine, with the current machine position Pm(Pmx,Pmy,Pmz,Pmb,Pmc) and structure type, the following compensation data gotten from setting compensation data of each 1st and 2nd compensation space are applied to ...

  • Page 155

    B-64483EN-1/03 1.AXIS CONTROL - 125 - Case of structure type (1) : machine position PmLl=(Pmx, Pmy, Pmz) , PmR1=(Pmb) Case of structure type (2) : machine position PmLl=(Pmx, Pmy) , PmR1=(Pmb) Case of structure type (3) : machine position PmLl=(Pmx, Pmz) , PmR1=(Pmb) Case of structure type (4) ...

  • Page 156

    1.AXIS CONTROL B-64483EN-1/03 - 126 - 33--dd rroottaarryy eerrrroorr ccoommppeennssaattiioonn ddaattaa ooff 11sstt ccoommppeennssaattiioonnssppaaccee Translational error-[ΔX2b,ΔY2b,ΔZ2b]Y X Z Machine position PmL1,PmR1 Zb Xb Yb Zb’ Xb’ Yb’ Translational error -[ΔX11,ΔY11,Δ...

  • Page 157

    B-64483EN-1/03 1.AXIS CONTROL - 127 - Y X Z Machine position PmL2, PmR2 Zt Rotary error (ΔJ21) Rotary error (ΔK21)Rotary error (ΔI21) Xt Yt Yt’ Yt” Translational error [ΔX21,ΔY21,ΔZ21] Zt’ Xt’ Rotary error (ΔJ2c) Rotary error (ΔK2c) Zt” Xt” compensated TCP vector VT-TCP...

  • Page 158

    1.AXIS CONTROL B-64483EN-1/03 - 128 - Work- piece on table 33--dd rroottaarryy eerrrroorr ccoommppeennssaattiioonn ddaattaa Tool center point position after compensation Compensation by 1st compensation space Compensation by 2nd compensation space Fig.1.3.19.2 (l) Three-dimensional rotar...

  • Page 159

    B-64483EN-1/03 1.AXIS CONTROL - 129 - Table1.3.19.3 (a) The machine structure type patterns (4-axis machine) Relation between tool axis and work-piece axis Structure type Hypothetical rotary axis Tool side Table side parameter N0.10796#2/1/0 setting value (1) Linear 3-axis (XYZ) +1st rotary a...

  • Page 160

    1.AXIS CONTROL B-64483EN-1/03 - 130 - (c) The three-dimensional rotary error compensation data Δ3D that is the addition of the compensation data Δ3DTL of 1st compensation space and the compensation data Δ3DT-TCP of 2ndt compensation space Fig.1.3.19.3 (a) is a structure type (9). A minute er...

  • Page 161

    B-64483EN-1/03 1.AXIS CONTROL - 131 - Table1.3.19.3 (b) Example of setting the parameter of structure type (9) (4-axis machine) Parameter No. Setting value Content 10770 to 10772 10775 to 10776 10780 to 10782 10785, 10786 10790 to 10792 Linear axis setting is arbitrary as usual 10778 0 Number o...

  • Page 162

    1.AXIS CONTROL B-64483EN-1/03 - 132 - Compensation data Translational errorRotary error Compensation point number X Y Z α β γ 00001 2 10 1 0 1 2 00002 3 1 2 2 2 0 ・・・ L+1 -1 -2 -1 -10 1 2 ・・・ ・・・ 07812 1 1 2 3 2 1 Number L (X×Y×Z)...

  • Page 163

    B-64483EN-1/03 1.AXIS CONTROL - 133 - (a-3) The three-dimensional rotary error compensation data Δ3DTL in 1st compensation space that is the difference between the above two vectors. (b-1) The standard TCP vector VT-TCP from the machine origin to Tool center point (b-2) The compensated TCP vec...

  • Page 164

    1.AXIS CONTROL B-64483EN-1/03 - 134 - Parameter No. Setting value Content 10778,10779 0 Number of compensation points for three-dimensional rotary error compensation (1st and 2nd rotary compensation axis) 10783,10784 0 Compensation point number at reference point for three-dimensional rotary err...

  • Page 165

    B-64483EN-1/03 1.AXIS CONTROL - 135 - Yt XtZt Rotary error (-ΔJ)Rotary error (-ΔK) Translational error -[ΔX,ΔY,ΔZ] 3-d rotary error compensation dataΔ3D[Δ3Dx, Δ3Dy, Δ3Dz] Rotary error (-ΔI)Z Zt Yt Xt Tool side (1st compensation space) 3-d rotary error compensation data Δ3DTL in 1st c...

  • Page 166

    1.AXIS CONTROL B-64483EN-1/03 - 136 - Compensation data Translational errorRotary error Compensation point number X Y Z α β γ 00001 2 10 1 0 1 2 00002 3 1 2 2 2 0 ・・・ L+1 -1 -2 -1 -10 1 2 ・・・ ・・・ 07812 1 1 2 3 2 1 Number L (Z) of co...

  • Page 167

    B-64483EN-1/03 1.AXIS CONTROL - 137 - Fig.1.3.19.5 (b) THREE-DIMENSIONAL ROTARY ERROR COMPENSATION screen (15-inch display unit) 5 Move the cursor to the position of the compensation point number you want to set using either of the following methods: - Enter a compensation point number and pr...

  • Page 168

    1.AXIS CONTROL B-64483EN-1/03 - 138 - 10772 3rd linear compensation axis for three-dimensional rotary error compensation NOTE When these parameters are set, Power must be turned off/on. [Input type] Parameter input [Data type] Byte path [Valid data range] 1 to Number of controlled axes The...

  • Page 169

    B-64483EN-1/03 1.AXIS CONTROL - 139 - 10783 Number of compensation point at reference point of 1st rotary axis for three-dimensional rotary error compensation 10784 Number of compensation point at reference point of 2nd rotary axis for three-dimensional rotary error compensation NOTE When t...

  • Page 170

    1.AXIS CONTROL B-64483EN-1/03 - 140 - [Valid data range] 9 digit of minimum unit of data (refer to standard parameter setting (A)) (When the increment system is IS-B, +0.001 to +999999.999) Compensation intervals for three-dimensional rotary error compensation are set. The two rotary axes for th...

  • Page 171

    B-64483EN-1/03 1.AXIS CONTROL - 141 - NOTE 1 The controlled axis on which three-dimensional rotary error compensation is to be applied must be linear 3-axis and rotary 2-axis for 5-axis machining. 2 Until compensation axes are referenced, three-dimensional rotary error compensation does not beco...

  • Page 172

    1.AXIS CONTROL B-64483EN-1/03 - 142 - 1.4 SETTINGS RELATED TO SERVO-CONTROLLED AXES The servo interface of the Series 16 features the following: • Digitally controlled AC servo motor • Motor feedback with serial Pulsecoders (1) Absolute Pulsecoder with a resolution of 1,000,000 pulses/rev (2...

  • Page 173

    B-64483EN-1/03 1.AXIS CONTROL - 143 - NOTE When at least one of these parameters is set, the power must be turned off before operation is continued. #1 OPTx Position detector 0: A separate Pulsecoder is not used. 1: A separate Pulsecoder is used. #4 APZx Machine position and position on a...

  • Page 174

    1.AXIS CONTROL B-64483EN-1/03 - 144 - [Input type] Parameter input [Data type] Byte axis [Valid data range] See below : Set a command multiplier indicating the ratio of the least command increment to the detection unit for each axis. Least command increment = detection unit × command multipli...

  • Page 175

    B-64483EN-1/03 1.AXIS CONTROL - 145 - Least input increment Least command increment 0.000001 mm (diameter specification) 0.0000005 mm Millimeter input 0.000001 mm (radius specification) 0.000001 mm 0.0000001 inch (diameter specification) 0.0000005 mm Millimeter machine Inch input0.0000001 inch ...

  • Page 176

    1.AXIS CONTROL B-64483EN-1/03 - 146 - (2) When command multiply is 0.5 to 48 Set value = 2 × command multiplier Valid data range : 1 to 96 NOTE If a feedrate exceeding the feedrate found by the expression below is used, an incorrect travel amount may result or a servo alarm may be issued. B...

  • Page 177

    B-64483EN-1/03 1.AXIS CONTROL - 147 - If the positioning deviation exceeds the positioning deviation limit during movement, a servo alarm SV0411 is generated, and operation is stopped immediately (as in emergency stop). Generally, set the positioning deviation for rapid traverse plus some margin...

  • Page 178

    1.AXIS CONTROL B-64483EN-1/03 - 148 - 1.4.2 Optional Command Multiplication Overview If the detection unit becomes a special value, an optional command multiplication can be set with an n:m ratio. The valid data range is between 1/9999 to 9999/1. Explanation - Optional command multiplication I...

  • Page 179

    B-64483EN-1/03 1.AXIS CONTROL - 149 - When the machine position has been brought into correspondence with the absolute position detector, the current position is read from the absolute counter at CNC power on and the machine and workpiece coordinate systems are automatically set using the value....

  • Page 180

    1.AXIS CONTROL B-64483EN-1/03 - 150 - CAUTION If setting the zero point using MDI operation causes the reference position to be lost for some reason, any FANUC service personnel and end user cannot restore the reference position accurately. In this case, you should ask the machine tool builder...

  • Page 181

    B-64483EN-1/03 1.AXIS CONTROL - 151 - • In this status, when emergency stop is canceled or the reset key is pressed, only alarm DS0306 is released. Signal PBATZ remains set to 1. • Follow the procedure below to set the zero point of the absolute position detector. 1 Replace the batteries wi...

  • Page 182

    1.AXIS CONTROL B-64483EN-1/03 - 152 - Zero point setting method Overview Advantages Disadvantages Reference point setting with mechanical stopper by grid method Butts the tool against the mechanical stopper along an axis and makes the tool withdraw to the grid position created by the detector to...

  • Page 183

    B-64483EN-1/03 1.AXIS CONTROL - 153 - Absolute position detector battery voltage zero alarm signal PBATZ<Fn172.6> [Classification] Output signal [Function] Notifies that the life of the absolute position detector battery has expired. [Operation] These signals are 1 in the following case...

  • Page 184

    1.AXIS CONTROL B-64483EN-1/03 - 154 - If a battery low alarm is issued, the cause of the issuance can be checked with diagnosis display No. 3019. #7 #6 #5 #4 #3 #2 #1 #0 3019 EXP INP ABP [Data type] Axis ABP Battery low in the phase A/B ANP Battery low in the serial Pulsecoder (buil...

  • Page 185

    B-64483EN-1/03 1.AXIS CONTROL - 155 - #5 APCx Position detector 0: Other than absolute position detector 1: Absolute position detector (absolute Pulsecoder) #6 RONx With a rotary axis, a rotary encoder for detecting an absolute position within one revolution is: 0: Not used. 1: Used. NOTE ...

  • Page 186

    1.AXIS CONTROL B-64483EN-1/03 - 156 - Alarm and message Number Message Description PS0090 REFERENCE RETURN INCOMPLETE 1. The reference position return cannot be performed normally because the reference position return start point is too close to the reference position or the speed is too slow. S...

  • Page 187

    B-64483EN-1/03 1.AXIS CONTROL - 157 - Number Message Description SV0307 APC ALARM: MOVEMENT EXCESS ERROR Since the machine moved excessively, the correct machine position could not be obtained. Caution CAUTION For an absolute position detector, batteries are used because the absolute position...

  • Page 188

    1.AXIS CONTROL B-64483EN-1/03 - 158 - 1. Manual setting 1 Parameters are defaulted according to the setting of parameters Nos. 1023 and 3717. There is no need to specify parameters Nos. 24000 to 24095 and 24096 to 24103. No automatic setting is used. Note that some functions are unusable. 2. Au...

  • Page 189

    B-64483EN-1/03 1.AXIS CONTROL - 159 - X A Y Z B C SV(2 axes) SV(1 axis) SV(1 axis) SV(2 axes)1 X12 Y33 Z44 A25 B56 C6Servo axis numberNo.1023CNCControlled axis number Program axis nameNo.1020SP SV : Servo amplifier SP : Spindle amplifier S1 SP S2 Spindle amplifier number No.3717 1 2 Spindle nu...

  • Page 190

    1.AXIS CONTROL B-64483EN-1/03 - 160 - NOTE 1 Set the following items before executing FSSB automatic setting: - Set parameter No. 1020 (program axis name for each axis). - If you want to use the electronic gear box (EGB) function, set bit 0 (SYN) of parameter No. 2011 to 1 for the EGB slave axis...

  • Page 191

    B-64483EN-1/03 1.AXIS CONTROL - 161 - Table 1.4.4 (b) Setting example (separate detector interface unit) No. 1902#0 FMD 1 No. 3717 S1 1 S2 2 No. 1023 24096 24097 24098 to 24103 X 1 1 0 - Y 3 0 2 - Z 4 0 1 - A 2 0 0 - B 5 2 0 - C 6 0 3 - No. 24000 24001 24002 24003 24004 24005 24006 24007 10...

  • Page 192

    1.AXIS CONTROL B-64483EN-1/03 - 162 - No. 24006 to 24031 1000 - For servo HRV3 control When servo HRV3 control is used, specify 1 + 8n, 2 + 8n, 3 + 8n, 4 + 8n (n = 0, 1, 2, ..., 9) like 1, 2, 3, 4, 9, 10, ..., 75, and 76 in parameter No. 1023 as servo axis numbers. X Y B C SV(2 axes)SV(2 axe...

  • Page 193

    B-64483EN-1/03 1.AXIS CONTROL - 163 - Table 1.4.4 (e) Setting example (servo HRV4 control) No. 1902#0 FMD 1 No. 24000 24001 24002 24003 24004 24005 1001 1009 1017 1025 1033 1041 No. 24006 to 24031 1000 NOTE When servo HRV3 or HRV4 control is used, the number of units connected to each FSS...

  • Page 194

    1.AXIS CONTROL B-64483EN-1/03 - 164 - No. 3717 S1 1 No. 24000 2400124002 240032400424005240062400724008 2400924010 1001 1002 1003 1004 1009 1010 1011 1012 1017 1018 1019No. 24011 2401224013 240142401524016240172401824019 2402024021 1020 2001 3001 3002 1000 1000 1000 1000 1000 1000 1000No. 24022...

  • Page 195

    B-64483EN-1/03 1.AXIS CONTROL - 165 - 24064 2406524066 240672406824069240702407124072 2407324074 1049 1050 1051 2003 2004 1052 1057 1058 1059 1060 2005No. 24075 2407624077 240782407924080240812408224083 2408424085 2006 3009 3010 1000 1000 1000 1000 1000 1000 1000 1000No. 24086 2408724088 240892...

  • Page 196

    1.AXIS CONTROL B-64483EN-1/03 - 166 - (1) Connection status screen The connection status screen displays the connection status of slaves connected to the FSSB at power-on. Fig. 1.4.4.1 (b) Connection status screen The connection status screen displays the following items: <1> FSSB1,FS...

  • Page 197

    B-64483EN-1/03 1.AXIS CONTROL - 167 - (2) Servo amplifier setting screen The servo amplifier setting screen displays servo amplifier information. Fig. 1.4.4.1 (c) Servo amplifier setting screen The servo amplifier setting screen consists of the following items: • HRV ...........................

  • Page 198

    1.AXIS CONTROL B-64483EN-1/03 - 168 - (3) Spindle amplifier setting screen The spindle amplifier setting screen displays spindle amplifier information. Fig. 1.4.4.1 (d) Spindle amplifier setting screen The spindle amplifier setting screen consists of the following items: • NO..................

  • Page 199

    B-64483EN-1/03 1.AXIS CONTROL - 169 - (4) Separate detector interface unit screen The separate detector interface unit screen displays information on separate detector interface units. Fig. 1.4.4.1 (e) Separate detector interface unit screen The separate detector interface unit screen displays...

  • Page 200

    1.AXIS CONTROL B-64483EN-1/03 - 170 - (5) Axis setting screen The axis setting screen displays the information of axis. Fig. 1.4.4.1 (f) Axis setting screen The axis setting screen displays the following items. Any item that cannot be set is not displayed. (When the first and fifth separate d...

  • Page 201

    B-64483EN-1/03 1.AXIS CONTROL - 171 - (6) Servo amplifier maintenance screen The servo amplifier maintenance screen displays maintenance information for servo amplifiers. This screen consists of the following two pages, either of which can be selected by pressing the cursor keys and . Fig. ...

  • Page 202

    1.AXIS CONTROL B-64483EN-1/03 - 172 - • EDIT ................... Version number of a servo amplifier connected to each axis • SPEC NUMBER. Amplifier drawing number of the servo amplifier connected to each axis • SERIAL NUMB.. Serial number of the servo amplifier connected to each axis (7)...

  • Page 203

    B-64483EN-1/03 1.AXIS CONTROL - 173 - • SERIES ............... Type and series of the spindle amplifier connected to each axis • AXES .................. Maximum number of axes controlled by a spindle amplifier connected to each axis • PWR.................... Rated output of the spindle amp...

  • Page 204

    1.AXIS CONTROL B-64483EN-1/03 - 174 - (2) Spindle amplifier setting screen Fig. 1.4.4.2 (b) Spindle amplifier setting The spindle amplifier setting screen displays the following items: • SP NUM.............. Spindle number For this item, enter a value of between 0 and the maximum number of...

  • Page 205

    B-64483EN-1/03 1.AXIS CONTROL - 175 - • M5............. Connector number of the fifth (first unit for the second FSSB line) separate detector interface unit • M6............. Connector number of the sixth separate detector interface unit • M7............. Connector number of the seventh se...

  • Page 206

    1.AXIS CONTROL B-64483EN-1/03 - 176 - FSSB automatic setting warning messages If an invalid setting is detected at FSSB automatic setting, a warning message listed below is displayed. EGB dummy axis setting means setting an even number for M/S on the axis setting screen for an axis for which bi...

  • Page 207

    B-64483EN-1/03 1.AXIS CONTROL - 177 - Examples of FSSB automatic setting Examples of FSSB automatic setting for the listed functions are shown below: • Example 1 Servo HRV2 control (Servo HRV3 control) • Example 2 Servo HRV4 control • Example 3 Separate detector interface unit • Example ...

  • Page 208

    1.AXIS CONTROL B-64483EN-1/03 - 178 - <2> On the spindle amplifier setting screen, enter 1 and 2 for SP NUM. <3> Press the soft key [SETTING] to perform FSSB automatic setting. - Example 2 Servo HRV4 control X Y Z ABC1 X 2 Y 3 Z 4 A 5 B 6 C CNC SV(3 axes) SV: Servo amplifier...

  • Page 209

    B-64483EN-1/03 1.AXIS CONTROL - 179 - <1> On the servo amplifier setting screen, enter 4 for HRV and 1, 2, 3, 4, 5, and 6 for AXIS. <2> On the spindle amplifier setting screen, enter 1 and 2 for SP NUM. <3> Press the soft key [SETTING] to perform FSSB automatic setting.

  • Page 210

    1.AXIS CONTROL B-64483EN-1/03 - 180 - - Example 3 Separate detector interface unit XYZABCAxis1 X1st JF1012 Y2nd JF1023 Z2nd JF1014 A-5 B1st JF1026 C2nd JF103Separate detector interface unit connectorCNCSV(2 axes)M1SV(2 axes)M2SV: Servo amplifier SP: Spindle amplifier M1/M2: First/second separa...

  • Page 211

    B-64483EN-1/03 1.AXIS CONTROL - 181 - - Example 4 Cs contour control XYZBAxis1 X 2 Y 3 Z 4 A (Cs contour controlled axis) 5 B CNCSV(2 axes)SV(2 axes)SV: Servo amplifier SP: Spindle amplifier Controlled axis number Program axis nameNo.1020SPSPS1S2Spindle number 1 2 Spindle name S1 (Cs contour ...

  • Page 212

    1.AXIS CONTROL B-64483EN-1/03 - 182 - <2> On the spindle amplifier setting screen, enter 1 and 2 for SP NUM. <3> On the axis setting screen, enter 1 in Cs for the A-axis. <4> Press the soft key [SETTING] to perform FSSB automatic setting.

  • Page 213

    B-64483EN-1/03 1.AXIS CONTROL - 183 - - Example 5 Tandem control XAYBZCAxis1 X (tandem master) 2 Y 3 Z 4 A (tandem slave)5 B 6 C CNCSV(2 axes)SV(2 axes)Controlled axis number Program axis nameNo.1020SV(2 axes)SV: Servo amplifier Fig. 1.4.4.2 (i) Setting example (tandem control) <1> O...

  • Page 214

    1.AXIS CONTROL B-64483EN-1/03 - 184 - <2> On the axis setting screen, enter 1 in M/S for the X-axis and 2 in M/S for the A-axis. <3> Press the soft key [SETTING] to perform FSSB automatic setting. - Example 6 Electronic gear box XYZAAxis1 X (EGB slave)2 Y 3 Z 4 A 5 B (EGB dum...

  • Page 215

    B-64483EN-1/03 1.AXIS CONTROL - 185 - <2> On the servo amplifier setting screen, enter 1, 2, 3, and 4 for AXIS. <3> On the axis setting screen, enter 1 in M/S for the X-axis and 2 in M/S for the B-axis. <4> Press the soft key [SETTING] to perform FSSB automatic setting. ...

  • Page 216

    1.AXIS CONTROL B-64483EN-1/03 - 186 - This parameter associates each control axis with a specific servo axis. Usually, set the same number as a controlled axis number and its corresponding servo axis number. The control axis number is the order number that is used for setting the axis-type param...

  • Page 217

    B-64483EN-1/03 1.AXIS CONTROL - 187 - NOTE When at least one of these parameters is set, the power must be turned off before operation is continued. #0 FMD The FSSB setting mode is: 0: Automatic setting mode. (When the relationship between an axis and amplifier is defined on the FSSB setting...

  • Page 218

    1.AXIS CONTROL B-64483EN-1/03 - 188 - The slave is a generic term for servo amplifiers, spindle amplifiers and separate detector interface units connected via an FSSB optical cable to the CNC. Numbers 1 to 32 are assigned to slaves, with younger numbers sequentially assigned to slaves closer to ...

  • Page 219

    B-64483EN-1/03 1.AXIS CONTROL - 189 - Example of axis configuration and parameter settings - Example 1 Typical setting Spindle number 110012100231003410045100573001810069300211 to 321000Slave numberATRNo.24000 -24031X A Y Z B (M1) C (M2) (None) Axis 1 X 1 2 Y 3 3 Z 4 4 A 2 5 B 5 6 C 6 Control...

  • Page 220

    1.AXIS CONTROL B-64483EN-1/03 - 190 - - Example 2 Setting with a dummy axis in use Example of axis configuration and parameter settings when the electronic gear box (EGB) function is used (EGB slave axis: A-axis, EGB dummy axis: B-axis) 11001210023100341005510066300173002810041000Slave numberA...

  • Page 221

    B-64483EN-1/03 1.AXIS CONTROL - 191 - 24064 ATR value corresponding to slave 01 on third FSSB line 24065 ATR value corresponding to slave 02 on third FSSB line to to 24095 ATR value corresponding to slave 32 on third FSSB line NOTE When these parameters are set, the power must be turned o...

  • Page 222

    1.AXIS CONTROL B-64483EN-1/03 - 192 - Correspondence between connectors and connector numbers Connector Connector number JF104 4 JF105 5 JF106 6 JF107 7 JF108 8 (Setting example) Connector to which each separate detector interface unit is attached Parameter setting Controlled axis 1st connector...

  • Page 223

    B-64483EN-1/03 1.AXIS CONTROL - 193 - 24136 ATR value corresponding to connector 1 on the fifth separate detector interface unit to to 24143 ATR value corresponding to connector 8 on the fifth separate detector interface unit 24144 ATR value corresponding to connector 1 on the sixth separat...

  • Page 224

    1.AXIS CONTROL B-64483EN-1/03 - 194 - 24192 ATR value corresponding to connector 1 on the twelfth separate detector interface unit to to 24199 ATR value corresponding to connector 8 on the twelfth separate detector interface unit NOTE When these parameters are set, the power must be turned ...

  • Page 225

    B-64483EN-1/03 1.AXIS CONTROL - 195 - Alarm and message Number Message Description SV0456 ILLEGAL CURRENT LOOP An attempt was made to set the current loop that could not be set. The amplifier pulse module in use does not comply with HIGH SPEED HRV. Or, requirements to control are not satisfied ...

  • Page 226

    1.AXIS CONTROL B-64483EN-1/03 - 196 - Detail alarm No. Parameter number Cause Action 120 451 452 - The FSSB internal status did not change to open. Check the connection between the CNC and each amplifier. Alternatively, the servo card may be faulty. 140 450 24000 to 24095 The ATR value is incons...

  • Page 227

    B-64483EN-1/03 1.AXIS CONTROL - 197 - 3511 FSSB alarm number [Data type] Word axis Information is output for identifying the location (parameter) and cause of an FSSB-related alarm which has been issued. For the displayed detail numbers and corresponding causes and actions, see the table belo...

  • Page 228

    1.AXIS CONTROL B-64483EN-1/03 - 198 - Detail alarm No. Parameter number Cause Action 382 1023 An attempt was made to perform manual setting 1 though the maximum number of controlled axes per FSSB line is exceeded. Reduce the number of connected servo axes to the maximum number of controlled axes...

  • Page 229

    B-64483EN-1/03 1.AXIS CONTROL - 199 - 1.4.5 Temporary Absolute Coordinate Setting Overview In the full closed system with an inner absolute position Pulsecoder (serial Pulsecoder) and an incremental scale, the position is set by using absolute position data from the inner absolute position Pulse...

  • Page 230

    1.AXIS CONTROL B-64483EN-1/03 - 200 - When manual reference position return by the scale of the full closed system is completed, the accurate coordinate system is established. At this time, the reference position establishment signals <Fn120> are set to 1, which indicates that the referenc...

  • Page 231

    B-64483EN-1/03 1.AXIS CONTROL - 201 - 1874 Numerator of the flexible feed gear for the built-in position detector 1875 Denominator of the flexible feed gear for the built-in position detector NOTE When these parameters are set, the power must be turned off before operation is continued. [...

  • Page 232

    1.AXIS CONTROL B-64483EN-1/03 - 202 - 1.5 SETTINGS RELATED WITH COORDINATE SYSTEMS 1.5.1 Machine Coordinate System Overview The point that is specific to a machine and serves as the reference of the machine is referred to as the machine zero point. A machine tool builder sets a machine zero poin...

  • Page 233

    B-64483EN-1/03 1.AXIS CONTROL - 203 - - Selecting a machine coordinate system with feedrate (G53.2) Positioning of machine coordinate system at a feed rate is available with the command of G53.2. The feed rate can be used in the modal of G01. This function is optional. G53.2 is one shot G code....

  • Page 234

    1.AXIS CONTROL B-64483EN-1/03 - 204 - βReference positionMachine coordinate systemMachine zero pointα Fig. 1.5.1 (a) Example (selecting a machine coordinate system with feedrate) N1 G90 G01 ; N2 G53.2 X50.0 Y100.0 F1000 ; Absolute command with feedrate F1000 N3 G53.2 X150.0 F500 ; Absolute c...

  • Page 235

    B-64483EN-1/03 1.AXIS CONTROL - 205 - Reference item Manual name Item name OPERATOR’S MANUAL (B-64484EN) Machine coordinate system 1.5.2 Workpiece Coordinate System/Addition of Workpiece Coordinate System Pair Overview A coordinate system used for machining a workpiece is referred to as a wor...

  • Page 236

    1.AXIS CONTROL B-64483EN-1/03 - 206 - When bit 2 (G92) of parameter No. 1202 is set to 1, executing the G code command for coordinate system setting (G92 <M series>, G50 <Tseries> (G92 with G code system B/C for T series)) results in the issue of alarm (PS0010). This is designed to p...

  • Page 237

    B-64483EN-1/03 1.AXIS CONTROL - 207 - Explanation - Changing by inputting programmable data By specifying a programmable data input G code, the workpiece zero point offset value can be changed for each workpiece coordinate system. - Changing by setting a workpiece coordinate system By specify...

  • Page 238

    1.AXIS CONTROL B-64483EN-1/03 - 208 - (a) Manual intervention performed when the manual absolute signal is off (b) Move command executed in the machine lock state (c) Movement by handle interrupt (d) Operation using the mirror image function (e) Shifting the workpiece coordinate system by setti...

  • Page 239

    B-64483EN-1/03 1.AXIS CONTROL - 209 - 1.5.2.3 Adding workpiece coordinate systems (G54.1 or G54) Besides the six workpiece coordinate systems (standard workpiece coordinate systems) selectable with G54 to G59, 48 or 300 additional workpiece coordinate systems (additional workpiece coordinate sys...

  • Page 240

    1.AXIS CONTROL B-64483EN-1/03 - 210 - M G92 Xα Yβ Zγ ; T G50 Xα Zγ ; When the setting of a workpiece coordinate system shift amount is other than 0, a workpiece coordinate system shifted by the amount is set. 1.5.2.5 Workpiece coordinate system shift Explanation When the coord...

  • Page 241

    B-64483EN-1/03 1.AXIS CONTROL - 211 - - Shift amount and coordinate system setting After a shift amount is set, when automatic coordinate system setting is performed upon manual reference position return, the set coordinate system is immediately shifted by the set amount. - Diameter and radiu...

  • Page 242

    1.AXIS CONTROL B-64483EN-1/03 - 212 - NOTE When the workpiece coordinate shift amount setting screen is not displayed, a workpiece coordinate system shift amount modification using G10P0 cannot be made. #7 WZR If the CNC is reset by the reset key on the MDI unit, external reset signal, reset...

  • Page 243

    B-64483EN-1/03 1.AXIS CONTROL - 213 - #2 G92 When the CNC has commands G52 to G59 specifying workpiece coordinate systems (optional function), if the G command for setting a coordinate system (G92 for M series, G50 for T series (or the G92 command in G command system B or C)) is specified, 0:...

  • Page 244

    1.AXIS CONTROL B-64483EN-1/03 - 214 - #7 #6 #5 #4 #3 #2 #1 #0 3104 PPD [Input type] Parameter input [Data type] Bit path #3 PPD Relative position display when a coordinate system is set 0: Not preset 1: Preset NOTE If any of the following is executed when PPD is set to 1, the r...

  • Page 245

    B-64483EN-1/03 1.AXIS CONTROL - 215 - [Operation] By changing the signal for the axis for which to perform a workpiece coordinate system preset from 0 to 1, the workpiece coordinate system preset is performed. This cancels the shift amount for the workpiece coordinate system that is due to any ...

  • Page 246

    1.AXIS CONTROL B-64483EN-1/03 - 216 - - Timing chart M code command (M***) Code signal (M00 to M31) Strobe signal (MF) Each axis workpiece coordinate system preset signal (WPRSTn) Each axis workpiece coordinate system preset completion signal (WPSFn) Each axis workpiece coordinate systempreset...

  • Page 247

    B-64483EN-1/03 1.AXIS CONTROL - 217 - Machine zero point Amount of movement during manual intervention PoWZo Pn WZn G54 workpiece coordinateSystem before manual intervention G54 workpiece coordinate system after manual intervention Tool length offset value Tool length offset value Fig. 1.5....

  • Page 248

    1.AXIS CONTROL B-64483EN-1/03 - 218 - [Data type] Word path [Valid data range] 1 to 999 Specify the number of M code for turning 1 each axis workpiece coordinate system preset signal <Gn358.*> during automatic operation. For example, when parameter No.11275 = 100 and parameter No.11276 =...

  • Page 249

    B-64483EN-1/03 1.AXIS CONTROL - 219 - Notes NOTE The limitations are the same as those for the workpiece coordinate system preset using a program command (G92.1 or G50.3 (for G code system A (T series) or using MDI operation. Thus, before performing preset with this function, cancel each compen...

  • Page 250

    1.AXIS CONTROL B-64483EN-1/03 - 220 - CAUTION 1 When bit 2 (ZCL) of parameter No. 1201 is set to 1 and an axis returns to the reference point by the manual reference point return function, the zero point of the local coordinate system of the axis matches that of the work coordinate system. Th...

  • Page 251

    B-64483EN-1/03 1.AXIS CONTROL - 221 - CAUTION 1 When bit 6 (CLR) of parameter No. 3402 is set to 0, and bit 7 (WZR) of parameter No. 1201 is set to 1, the local coordinate system is cancelled, regardless of the setting of this parameter. 2 When bit 6 (CLR) of parameter No. 3402 is set to 1, and...

  • Page 252

    1.AXIS CONTROL B-64483EN-1/03 - 222 - #0 ROTx #1 ROSx Setting linear or rotary axis. ROSx ROTx Meaning 0 0 Linear axis (1) Inch/metric conversion is done. (2) All coordinate values are linear axis type. (Is not rounded in 0 to 360°) (3) Stored pitch error compensation is linear axis type (R...

  • Page 253

    B-64483EN-1/03 1.AXIS CONTROL - 223 - #2 RRLx Relative coordinates are 0: Not rounded by the amount of the shift per one rotation 1: Rounded by the amount of the shift per one rotation NOTE 1 RRLx is valid only when ROAx is 1. 2 Assign the amount of the shift per one rotation in parameter No....

  • Page 254

    1.AXIS CONTROL B-64483EN-1/03 - 224 - 1.5.5 Plane Conversion Function Outline This function converts a machining program created on the G17 plane in the right-hand Cartesian coordinate system to programs for other planes specified by G17.1Px commands, so that the same figure appears on each plan...

  • Page 255

    B-64483EN-1/03 1.AXIS CONTROL - 225 - XYZG17 plane Fig.1.5.5 (c) G17.1P1 XZYG18 plane Fig.1.5.5 (d) G17.1P2 The cross at the origin indicates that the negative direction of the axis perpendicular to this page is the direction coming out the page (in this case, the Y-axis is perpendicul...

  • Page 256

    1.AXIS CONTROL B-64483EN-1/03 - 226 - X ZYG18 plane Fig.1.5.5 (f) G17.1P4 Y ZXG19 plane Fig.1.5.5 (g) G17.1P5 Program commands on the G17 plane are converted to the following commands by plane conversion: Table1.5.5 (a) Program commands converted by plane conversion Plane conversi...

  • Page 257

    B-64483EN-1/03 1.AXIS CONTROL - 227 - Command Displayed modal G17.1P2 G17.1 G17.1P3 G17.1 G17.1P4 G17.1 G17.1P5 G17.1 Example The machining program created on the G17 plane in the right-hand Cartesian coordinate system is converted to appear the same figure when viewed from the direction indica...

  • Page 258

    1.AXIS CONTROL B-64483EN-1/03 - 228 - Limitations 1 Plane conversion can be performed only for commands for the X-, Y-, or Z-axis. 2 Plane conversion cannot be performed for manual operation. 3 Plane conversion cannot be performed for the following commands for moving the tool to a specified pos...

  • Page 259

    B-64483EN-1/03 1.AXIS CONTROL - 229 - 1.6 AXIS SYNCHRONOUS CONTROL Overview When a movement is made along one axis by using multiple servo motors as in the case of a large gantry machine, a command for one axis can drive the multiple motors by synchronizing one motor with the other. An axis used...

  • Page 260

    1.AXIS CONTROL B-64483EN-1/03 - 230 - Workpiece Ball screw X1 Z1 Z2Synchronize Z2 in path 2 with Z1 in path1Synchronous Control Turret Tandem control XM XS Table Drive one axis by two motors of XM and XS Fig.1.6.1 (a) Application example - Axis synchronous control The axis synchronous contr...

  • Page 261

    B-64483EN-1/03 1.AXIS CONTROL - 231 - - Use with other functions There are the functions to drive multiple axes by command of one axis, and the axis synchronous control can be used together with the following functions. Table1.6.1 (c) Use with other functions Function name Use with axis synch...

  • Page 262

    1.AXIS CONTROL B-64483EN-1/03 - 232 - - Example of using axis synchronous control Synchronous axes are far. Synchronous axes are near. Tandem control and Axis synchronous control Servo motorBall screw Fig.1.6.1 (c) Example of using axis synchronous control If there is the torque difference...

  • Page 263

    B-64483EN-1/03 1.AXIS CONTROL - 233 - 1.6.3 Setting of Synchronous Axes Explanation - Master axis and slave axis for axis synchronous control An axis used as the reference for axis synchronous control is called a master axis (M-axis), and an axis along which a movement is made in synchronism wi...

  • Page 264

    1.AXIS CONTROL B-64483EN-1/03 - 234 - CAUTION To switch between synchronous operation and normal operation, command the relevant M code (set to the parameter No. 8337 or 8338). The synchronous operation and the normal operation can be changed by setting each signal SYNC / SYNCJ by each opera...

  • Page 265

    B-64483EN-1/03 1.AXIS CONTROL - 235 - - Slave axis mirror image By setting parameter No. 8312, a mirror image can be applied to a slave axis placed in synchronous operation. When the mirror image function is enabled, the direction in which the absolute and relative coordinates change is the same...

  • Page 266

    1.AXIS CONTROL B-64483EN-1/03 - 236 - - Distance coded linear scale interface, Linear scale with distance-coded reference marks (serial) If the distance coded linear scale interface or the linear scale with distance-coded reference marks (serial) is used, see Subsection 1.6.4.7 “Distance coded...

  • Page 267

    B-64483EN-1/03 1.AXIS CONTROL - 237 - If the grid position difference of the master axis and the slave axis is set to the parameter by either of the following methods, the master axis and the slave axis can be stopped at the grid position of the master axis. • Automatic setting for grid positi...

  • Page 268

    1.AXIS CONTROL B-64483EN-1/03 - 238 - 3. Turn off the power then turn on the power. 4. Perform the manual reference position return. - Reference position return operation of low-speed type When bit 4 (SLR) of parameter No. 8305 is set to 1, if G28 is specified for an axis under axis synchronous...

  • Page 269

    B-64483EN-1/03 1.AXIS CONTROL - 239 - Measuring position 2X (Master axis) A (Slave axis) Measuring position 3 Measuring position 1 Fig.1.6.4.4 (a) Measuring position Master axisSlave axis Coordinate value A Position of slave axis when balance adjustment starts Coordinate value B Position t...

  • Page 270

    1.AXIS CONTROL B-64483EN-1/03 - 240 - 1.6.4.5 Maintenance When motor is exchanged, perform the recovery operation from setting of grid position. When the parameter is lost by an unexpected situation, restore the backup data of the parameter and perform only reference position establishment again...

  • Page 271

    B-64483EN-1/03 1.AXIS CONTROL - 241 - If a compensation value is larger than the value set in this parameter, an alarm SV0001 is issued, and synchronization establishment is not performed. Moreover, when parameter No. 8325 is set to 0, synchronization establishment is not performed. The result o...

  • Page 272

    1.AXIS CONTROL B-64483EN-1/03 - 242 - • No.1401#1 :Positioning (G00) is performed with non-linear or linear interpolation • No.1603#4 :Acceleration/deceleration used for positioning of linear interpolation type is acceleration fixed or time fixed type WARNING 1 Do not execute automatic or m...

  • Page 273

    B-64483EN-1/03 1.AXIS CONTROL - 243 - - Synchronization error check based on a positional deviation value When the value other than 0 is set in parameter No.8323, a synchronization error check based on a positional deviation value is enabled. The servo positional deviation value of the master a...

  • Page 274

    1.AXIS CONTROL B-64483EN-1/03 - 244 - 1.6.7 Axis Synchronous Control Torque Difference Alarm Explanation If a movement made along the master axis differs from a movement made along the slave axis during axis synchronous control, the machine can be damaged. To prevent such damage, the torque comm...

  • Page 275

    B-64483EN-1/03 1.AXIS CONTROL - 245 - NOTE The servo axis number combination of the master axis and slave axis synchronized with each other must be such that an odd servo axis number is assigned to the master axis and the next servo axis number is assigned to the slave axis like (1,2) or (3,4)....

  • Page 276

    1.AXIS CONTROL B-64483EN-1/03 - 246 - • The value other than 0 is set in parameter No.8334 NOTE If the positional deviation corresponding to the load were generated like a past analog servo, this function was effective for decreasing the synchronization error. When a current digital servo is...

  • Page 277

    B-64483EN-1/03 1.AXIS CONTROL - 247 - - Synchronization error check When synchronization error compensation is performed, the synchronization error check is performed the check considering a positional deviation. The actual machine position shift considering a servo positional deviation as well ...

  • Page 278

    1.AXIS CONTROL B-64483EN-1/03 - 248 - Parameter number Description 1005#0 Whether reference position return has been performed 1005#1 Enabling setting the reference position without dogs 1005#4 Enabling the external deceleration signal for the positive direction in cutting feed for each axis 100...

  • Page 279

    B-64483EN-1/03 1.AXIS CONTROL - 249 - Parameter number Description 1819#1 Reference position establishment state at the time of a servo alarm 1819#7 Enabling advanced preview feed forward 1821 Reference counter capacity 1825 Servo loop gain 1881 Group number when an unexpected disturbance torque...

  • Page 280

    1.AXIS CONTROL B-64483EN-1/03 - 250 - Parameter number Description 1737 Permissible acceleration for each axis in the deceleration function with the acceleration in AI contour control 1783 Permissible speed difference in speed determination with the speed difference at a corner 1788 Permissible ...

  • Page 281

    B-64483EN-1/03 1.AXIS CONTROL - 251 - Parameter number Description 3627 Pitch error compensation at reference position when a movement to the reference position is made from the direction opposite to the direction of reference position return 5861 to 5864 Inclination compensation : Compensation ...

  • Page 282

    1.AXIS CONTROL B-64483EN-1/03 - 252 - Address Bit SymbolSignal name Master and slave axes Master axis only Gn102 0 -Jx Feed axis direction select signals O Gn104 0 +EXLx Stored stroke limit 1 switching signals in axis direction O Gn105 0 -EXLx Stored stroke limit 1 switching signals in axis di...

  • Page 283

    B-64483EN-1/03 1.AXIS CONTROL - 253 - If an operation mode is switched between synchronous operation and normal operation with signals, the same data need not be set for the master axis and slave axis, but data (1 to the number of controlled axes) must be set for both the master axis and slave a...

  • Page 284

    1.AXIS CONTROL B-64483EN-1/03 - 254 - See the following timing charts about the sequence that changes the synchronous operation and the normal operation. Signals for selecting the manual feed axis for axis synchronous control SYNCJ1 to SYNCJ8<Gn140> [Classification] Input signal [Fun...

  • Page 285

    B-64483EN-1/03 1.AXIS CONTROL - 255 - Signal for indicating a positional deviation error alarm for axis synchronous control SYNER<Fn403.0> [Classification] Output signal [Function] When the positional deviation check function is used for axis synchronous control, this signal notifies an...

  • Page 286

    1.AXIS CONTROL B-64483EN-1/03 - 256 - Change from synchronous operation to normal operation M code for turning off synchronization of parameter No.8337 Code signals (M00~M31) Strobesignal (MF) Signal for selecting axis synchronous control(SYNC/SYNCJ) End signal (FIN) Axis synchronous control...

  • Page 287

    B-64483EN-1/03 1.AXIS CONTROL - 257 - #4 SFDx In reference position return based on the grid method, the reference position shift function is: 0: Disabled 1: Enabled 1025 Program axis name 2 for each axis 1026 Program axis name 3 for each axis [Input type] Parameter input [Data type] By...

  • Page 288

    1.AXIS CONTROL B-64483EN-1/03 - 258 - NOTE 1 If 0 is set, the rate set in parameter No. 1420 (rapid traverse rate for each axis) is assumed. 2 When manual rapid traverse is selected (bit 0 (RPD) of parameter No. 1401 is set to 1), manual feed is performed at the feedrate set in this parameter, r...

  • Page 289

    B-64483EN-1/03 1.AXIS CONTROL - 259 - (However, T1 ≥ T2 must be satisfied.) Total acceleration (deceleration) time : T1 + T2 Time for linear portion : T1‐T2 Time for curve portion : T2 × 2 1621 Time constant T2 used for bell-shaped acceleration/deceleration in rapid traverse for each axi...

  • Page 290

    1.AXIS CONTROL B-64483EN-1/03 - 260 - NOTE 2 When a reference position return is made by grid shift with a setting not to use reference position setting without dogs (when bit 4 (SFDx) of parameter No. 1008 is set to 0, and bit 1 (DLZx) of parameter No. 1005 is set to 0) When a manual reference ...

  • Page 291

    B-64483EN-1/03 1.AXIS CONTROL - 261 - #0 NDPx The current position is: 0: Displayed. 1: Not displayed. #1 NDAx The current position and the amount of the movement to be made in absolute and relative coordinates are: 0: Displayed. 1: Not displayed. 3130 Axis display order for current posit...

  • Page 292

    1.AXIS CONTROL B-64483EN-1/03 - 262 - #4 SYA In the servo-off state in axis synchronous control, the limit of the difference between the positioning deviation of the master axis and that of the slave axis is: 0: Checked. 1: Not checked. #7 #6 #5 #4 #3 #2 #1 #0 8302 SMA [Input type...

  • Page 293

    B-64483EN-1/03 1.AXIS CONTROL - 263 - #4 SYPx In axis synchronous control, some parameters must be set to the same value for the master and slave axes. When a value is set in such a parameter for the master axis: 0: The same value is not automatically set in the parameter for the slave axis. 1...

  • Page 294

    1.AXIS CONTROL B-64483EN-1/03 - 264 - #4 MVBx In the correction mode, a move command in a direction that increases a synchronization error is: 0: Ignored. 1: Valid. When there are multiple slave axes for one master axis, an attempt to reduce the synchronous error of a slave axis by a movement...

  • Page 295

    B-64483EN-1/03 1.AXIS CONTROL - 265 - #7 #6 #5 #4 #3 #2 #1 #0 8306 SJR [Input type] Parameter input [Data type] Bit path #0 SJR In synchronization establishment, 0: A machine coordinate difference between the master axis and slave axis is output at a time as command pulses (axi...

  • Page 296

    1.AXIS CONTROL B-64483EN-1/03 - 266 - Example 3) When the multiple slave axes of axis synchronous control are used in each path: When the master axes are the first axis of the each path, and the slave axes are the fourth axis and fifth axis of the each path, set parameter No. 8311 as follows: ...

  • Page 297

    B-64483EN-1/03 1.AXIS CONTROL - 267 - 8323 Limit in positional deviation check in axis synchronous control [Input type] Parameter input [Data type] 2-word axis [Unit of data] Detection unit [Valid data range] 0 to 999999999 This parameter sets the maximum allowable difference between the ma...

  • Page 298

    1.AXIS CONTROL B-64483EN-1/03 - 268 - 8330 Multiplier for a maximum allowable synchronization error immediately after power-up NOTE When this parameter is set, the power must be turned off before operation is continued. [Input type] Parameter input [Data type] Word path [Valid data range] ...

  • Page 299

    B-64483EN-1/03 1.AXIS CONTROL - 269 - This parameter sets a synchronization error compensation gain. Compensation pulses found by the following expression are output for the slave axis: Compensation pulses = Synchronization error × (Ci/1024) Ci: Compensation gain The setting for the slav...

  • Page 300

    1.AXIS CONTROL B-64483EN-1/03 - 270 - [Description] The difference between the positions of the master and slave axes (synchronization error) is displayed. It is displayed for the axis number of the slave axis. 3501 Synchronization error compensation for each axis [Unit of data] Detection u...

  • Page 301

    B-64483EN-1/03 1.AXIS CONTROL - 271 - 1.6.15 Caution Caution CAUTION 1 When making a synchronization error check, ensure that the reference position on the master axis and the reference position on the slave axis must be at the same position. 2 In manual reference position return operation, the...

  • Page 302

    1.AXIS CONTROL B-64483EN-1/03 - 272 - NOTE 8 When bit 4 (SYPx) of parameter No. 8303 is changed from 0 to 1 to use automatic slave axis parameter setting, those slave axis parameters that have already been set are not automatically set. Automatic slave axis parameter setting is enabled after par...

  • Page 303

    B-64483EN-1/03 1.AXIS CONTROL - 273 - 1.7 TANDEM CONTROL Overview If a single motor cannot produce sufficient torque to move a large table, for example, this function allows two motors to be used. By means of this function, two motors can be used to perform movement along a single axis. Position...

  • Page 304

    1.AXIS CONTROL B-64483EN-1/03 - 274 - Specified pulse Position loop Velocity loop +- - Built-in detector Separate detector Scale Average?Reverse? Bit 1 (OPT) of parameter No. 1815 Parameter VFA(No.2008#2)Parameter No. 2022 Parameter No. 2087 Preload (L) Speed FBCurrent loop Rotor position Servo ...

  • Page 305

    B-64483EN-1/03 1.AXIS CONTROL - 275 - Explanation - Axis configuration in tandem control To specify the axis configuration in tandem control, follow the procedure below: (1) Tandem control can be performed for up to sixteen pairs of axes. It can be performed for up to twelve pairs of axes for ...

  • Page 306

    1.AXIS CONTROL B-64483EN-1/03 - 276 - Master axis Slave axis X -X Fig. 1.7 (c) CAUTION 1 Specify as low a preload as possible. Avoid specifying a preload higher than the rated torque. Too high a preload will trigger an overload alarm because the specified torques continue to be applied, even...

  • Page 307

    B-64483EN-1/03 1.AXIS CONTROL - 277 - Axis control JF1 JF2 JF21 Feedback cable for motor of master axis Feedback cable for motor of slave axis Adapter for separate detector Feedback cable for separate detector Fig. 1.7 (d) - Servo alarms Motor overload and other servo alarms are displayed sep...

  • Page 308

    1.AXIS CONTROL B-64483EN-1/03 - 278 - If, for example, a motor with serial Pulsecoder A is used with a linear scale capable of detecting a position in 1-μm units, and if a single rotation of the motor produces a movement of 4 mm, specify the parameters as shown below: Master axis Slave axis ...

  • Page 309

    B-64483EN-1/03 1.AXIS CONTROL - 279 - Parameter No. Meaning of parameters 1321 1st stroke limit I of minus side 1322 2nd stroke limit of plus side 1323 2nd stroke limit of minus side 1324 3rd stroke limit of plus side 1325 3rd stroke limit of minus side 1326 1st stroke limit II of plus side 1327...

  • Page 310

    1.AXIS CONTROL B-64483EN-1/03 - 280 - #6 TANx Tandem control 0: Not used 1: Used NOTE Set this parameter to both master axis and slave axis. #7 #6 #5 #4 #3 #2 #1 #0 2008 VFA [Input type] Parameter input [Data type] Bit axis #2 VFA In tandem control, the speed feedback averag...

  • Page 311

    B-64483EN-1/03 1.AXIS CONTROL - 281 - If the motor turns clockwise when viewed from the Pulsecoder side, set 111. If the motor turns counterclockwise when viewed from the Pulsecoder side, set -111. When the master axis and slave axis rotate in opposite directions each other, this parameter is us...

  • Page 312

    1.AXIS CONTROL B-64483EN-1/03 - 282 - θ +Y'(Hypothetical axis) +Y'(Angular axis) θ: Inclination angle +X(Perpendicular axis)Program coordinate system (Cartesian coordinates) Machine coordinate system (Slanted coordinates) +Y'+X +X +Y Fig. 1.8 (a) Explanation When the amounts of travel along ...

  • Page 313

    B-64483EN-1/03 1.AXIS CONTROL - 283 - - Machine position display A machine position indication is provided in the machine coordinate system where an actual movement is taking place according to an inclination angle. Method of use The angular and perpendicular axes for which arbitrary angular ...

  • Page 314

    1.AXIS CONTROL B-64483EN-1/03 - 284 - (2) If the perpendicular axis is first specified then the angular axis is specified, or if the perpendicular axis and the angular axis are specified at the same time, alarm PS0372 is issued when a movement is made along the perpendicular axis. ⎧G28X_; or ...

  • Page 315

    B-64483EN-1/03 1.AXIS CONTROL - 285 - 30° P1P0(0,0) P2200115.470 +X (Perpendicular axis) +Y’ (Hypothetical axis) +Y (Angular axis) Fig. 1.8 (d) - Reference position return operation of high-speed type When a reference position is already established and a reference position return operatio...

  • Page 316

    1.AXIS CONTROL B-64483EN-1/03 - 286 - (G90)G01X_Y_F_; (when the Y-axis is an angular axis, the X-axis is a perpendicular axis, and the inclination angle is -30°) Example) Examples of positioning <1> Move command for movement from point P0 to point P1 >G90G00Y100.0 <2> Move co...

  • Page 317

    B-64483EN-1/03 1.AXIS CONTROL - 287 - - Stored stroke limit Stored stroke limits under arbitrary angular axis control can be set not in a slanted coordinate system but in the Cartesian coordinate system by setting bits 0, 1, and 2 (AOT, AO2, and AO3) of parameter No. 8201. XY Y' XYY' ...

  • Page 318

    1.AXIS CONTROL B-64483EN-1/03 - 288 - Table 1.8 (b) Input signal Signal name Address ClassificationRemarks Axis-by-axis interlock *ITx G130 Cartesian When a movement is made along the angular axis only, interlocking the perpendicular axis does not interlock a movement along the perpendicular axi...

  • Page 319

    B-64483EN-1/03 1.AXIS CONTROL - 289 - Output signal Signal name Address ClassificationRemarks 3rd reference position return completion signal ZP3x F098 Cartesian Applied to each axis independently. 4th reference position return completion signal ZP4x F100 Cartesian Applied to each axis independe...

  • Page 320

    1.AXIS CONTROL B-64483EN-1/03 - 290 - Signal Signal for disabling arbitrary angular axis control for the perpendicular axis NOZAGC<Gn063.5> [Classification] Input signal [Function] Disables arbitrary angular axis control for the perpendicular axis. [Operation] When this signal is set to...

  • Page 321

    B-64483EN-1/03 1.AXIS CONTROL - 291 - #2 AO3 Stored stroke limit 3 under angular axis control is handled as: 0: Value in the slanted coordinate system. 1: Value in the Cartesian coordinate system. #6 A53 So far, if a slanted axis is singly specified by a machine coordinate command (G53) in...

  • Page 322

    1.AXIS CONTROL B-64483EN-1/03 - 292 - NOTE When this parameter bit is set, the power must be turned off before operation is continued. #0 ARF In angular axis control, a movement from an intermediate point to the reference position in the G28/G30 command is: 0: Made in the angular coordinate...

  • Page 323

    B-64483EN-1/03 1.AXIS CONTROL - 293 - Number Message Description PS0375 CAN NOT ANGULAR CONTROL(SYNC:MIX:OVL) Arbitrary angular axis control is disabled for this axis configuration. 1) When some related axes under arbitrary angular axis control are not in synchronous control mode or when one ang...

  • Page 324

    1.AXIS CONTROL B-64483EN-1/03 - 294 - Format G81.1 Z_ Q_ R_ F_ ; Z : Upper dead point (For an axis other than the Z-axis, specify the axis address.) Q : Distance between the upper dead point and lower dead point (Specify the distance as an incremental value, relative to the upper dead point.) R...

  • Page 325

    B-64483EN-1/03 1.AXIS CONTROL - 295 - When the chopping feedrate is overridden, settings between 110% and 150% are clamped to 100%. - Chopping feedrate (feedrate of movement from point R) Between point R, reached after the start of chopping, and the point where the chopping is canceled, the to...

  • Page 326

    1.AXIS CONTROL B-64483EN-1/03 - 296 - (2) When the lower dead point is changed during movement from the upper dead point to the lower dead point Previous upper dead pointNew lower dead pointPrevious lower dead point Fig. 1.9 (b) The tool first moves to the previous lower dead point, then to t...

  • Page 327

    B-64483EN-1/03 1.AXIS CONTROL - 297 - - Servo delay compensation function When high-speed chopping is performed with the grinding axis, a servo delay and acceleration/deceleration delay occur. These delays prevent the tool from actually reaching the specified position. The control unit measures...

  • Page 328

    1.AXIS CONTROL B-64483EN-1/03 - 298 - When the chopping feedrate is clamped to the maximum chopping feedrate, the specified amount of travel stops increasing simultaneously. - Acceleration For the acceleration/declaration along the chopping axis, linear acceleration/deceleration after cutting ...

  • Page 329

    B-64483EN-1/03 1.AXIS CONTROL - 299 - - Program restart When a program contains G codes for starting chopping (G81.1) and stopping chopping (G80), an attempt to restart that program results in an alarm PS5050 being output. When a program that does not include the chopping axis is restarted dur...

  • Page 330

    1.AXIS CONTROL B-64483EN-1/03 - 300 - Point R Upper dead pointLower dead point Time (Z75. ) (Z100. )(Z110. ) Fig. 1.9 (f) To cancel chopping, specify the following command: G80 ; • The tool stops at point R. Signal Chopping hold signal *CHLD<Gn051.7> [Classification] Input sign...

  • Page 331

    B-64483EN-1/03 1.AXIS CONTROL - 301 - *CHP8 *CHP4 *CHP2 *CHP1 Override value 0 0 1 0 130% 0 0 1 1 120% 0 1 0 0 110% 0 1 0 1 100% 0 1 1 0 90% 0 1 1 1 80% 1 0 0 0 70% 1 0 0 1 60% 1 0 1 0 50% 1 0 1 1 40% 1 1 0 0 30% 1 1 0 1 20% 1 1 1 0 10% 1 1 1 1 0% Chopping-in-progress signal CHPMD<Fn039.2>...

  • Page 332

    1.AXIS CONTROL B-64483EN-1/03 - 302 - #2 CVC The feedrate along the chopping axis is changed: 0: At the upper or lower dead point immediately after the feedrate change command is issued. 1: At the upper dead point immediately after the feedrate change command is issued. #7 CHF On the choppi...

  • Page 333

    B-64483EN-1/03 1.AXIS CONTROL - 303 - 8375 Maximum chopping feedrate [Input type] Parameter input [Data type] Real axis [Unit of data] mm/min, inch/min, deg/min (machine unit) [Min. unit of data] Depend on the increment system of the applied axis [Valid data range] Refer to the standard pa...

  • Page 334

    1.AXIS CONTROL B-64483EN-1/03 - 304 - 1.10 ELECTRONIC GEAR BOX 1.10.1 Electronic Gear Box Overview This function enables fabrication of high-precision gears, screws, and other components by rotating the workpiece in synchronization with a rotating tool or by moving the tool in synchronization wi...

  • Page 335

    B-64483EN-1/03 1.AXIS CONTROL - 305 - Format Bit 0 (EFX) of parameter No.7731=1 Bit 0 (EFX) of parameter No.7731=0Bit 5 (HBR) of parameter No.7731=1 Bit 5 (HBR) of parameter No.7731=0 Start of synchronization G81 T_ ( L_ ) ( Q_ P_ ) ; G81.4 R_ ( L_ ) ( Q_ P_ ) ; G81.4 T_ ( L...

  • Page 336

    1.AXIS CONTROL B-64483EN-1/03 - 306 - - Synchronous control (1) Start of synchronization If G81 is issued so that the machine enters synchronization mode, the synch switch of the EGB function is closed, and the synchronization of the tool and workpiece axes is started. At this time, the EGB mod...

  • Page 337

    B-64483EN-1/03 1.AXIS CONTROL - 307 - CAUTION 2 Even if an OT alarm is issued for a slave axis in EGB synchronization, synchronization will not be canceled. 3 During synchronization, it is possible to execute a move command for a slave axis and other axes, using a program. The move command for ...

  • Page 338

    1.AXIS CONTROL B-64483EN-1/03 - 308 - - Synchronization start/cancellation timing chart example Synchronization start command (G81) Synchronization mode EGB mode confirmation signal SYNMOD<Fn065.6> Tool axis rotation command (S_M03) Tool axis stop command (M05) Tool axis rotation speed Wo...

  • Page 339

    B-64483EN-1/03 1.AXIS CONTROL - 309 - Please refer to the chapter of “Feed-forward Function” in FANUC AC SERVO MOTOR αi series FANUC AC SERVO MOTOR βi series FANUC LINEAR MOTOR LiS series FANUC SYNCHRONOUS BUILT-IN SERVO MOTOR DiS series Parameter manual (B-65270EN) about the detail of Fee...

  • Page 340

    1.AXIS CONTROL B-64483EN-1/03 - 310 - - Direction of helical gear compensation The direction depends on bit 2 (HDR) of parameter No. 7700. When HDR = 1 +C C : +, Z : +, P : + Compensation direction:+ (a) -Z +Z +CC : +, Z : +, P : - Compensation direction:-(b)+CC : +, Z : -, P : + Compensation d...

  • Page 341

    B-64483EN-1/03 1.AXIS CONTROL - 311 - No movement is performed along an axis for which 0 is set as the retract amount. After the end of retraction, the retract completion signal, RTRCTF, is output. (2) Retract function with an alarm If, during EGB synchronization or automatic operation, a CNC ...

  • Page 342

    1.AXIS CONTROL B-64483EN-1/03 - 312 - <3> Interruption of retraction due to an emergency stop RTRCT RTRCTF Movement Interruption of retract operation *ESP Turn off the RTRCT signal simultaneously with turning off of the *ESP signal. CAUTION 1 Retraction is performed at the ...

  • Page 343

    B-64483EN-1/03 1.AXIS CONTROL - 313 - NOTE 8 If, during a retract operation, a reset or an emergency stop is made, the operation is interrupted. At this time, the retract completion signal does not become 1. 9 To enable the retract function with an alarm, bit 3 (ART) of parameter No.7702 must be...

  • Page 344

    1.AXIS CONTROL B-64483EN-1/03 - 314 - - When a move command is issued for any retract axis after the end of a retract operation. NOTE The retract signal is not accepted while the retract completion signal is set to 1. EGB mode signal SYNMOD <Fn065.6> [Classification] Output signal [F...

  • Page 345

    B-64483EN-1/03 1.AXIS CONTROL - 315 - Parameter number Description 7731#5 In EGB synchronization start command G81.4, the number of teeth is specified in T (0)/specified in R (1). 7740 Feedrate during retraction 7741 Retract amount 7772 Number of position detector pulses per rotation about tool ...

  • Page 346

    1.AXIS CONTROL B-64483EN-1/03 - 316 - #7 #6 #5 #4 #3 #2 #1 #0 2011 SYNx [Input type] Parameter input [Data type] Bit axis #0 SYNx When the electronic gear box function (EGB) is used, this bit sets the axis to be synchronized. 0: Axis not synchronized by EGB 1: Axis synchronized ...

  • Page 347

    B-64483EN-1/03 1.AXIS CONTROL - 317 - When HDR = 1 +C C : +, Z : +, P : + Compensation direction:+ (a) -Z +Z +CC : +, Z : +, P : - Compensation direction:-(b)+CC : +, Z : -, P : + Compensation direction:-(c)+C C : +, Z : -, P : - Compensation direction:+ (d) -Z +Z C : -, Z : +, P : + C : Compens...

  • Page 348

    1.AXIS CONTROL B-64483EN-1/03 - 318 - NOTE In either case, a value from 1 to 1000 can be specified. #3 ART The retract function executed when an alarm is issued is: 0: Disabled. 1: Enabled. When an alarm is issued, a retract operation is performed with a set feedrate and travel distance (par...

  • Page 349

    B-64483EN-1/03 1.AXIS CONTROL - 319 - [Valid data range] 0 to Number of controlled axes This parameter sets the number of the axial feed axis for a helical gear. NOTE When this parameter is set to 0 or a value outside the valid setting range, the Z-axis becomes the axial feed axis. When there ...

  • Page 350

    1.AXIS CONTROL B-64483EN-1/03 - 320 - [Valid data range] 9 digit of minimum unit of data (refer to standard parameter setting table (A)) (When the increment system is IS-B, -999999.999 to +999999.999) This parameter sets the retract amount for each axis. 7772 Number of position detector pulses...

  • Page 351

    B-64483EN-1/03 1.AXIS CONTROL - 321 - In this case, the number of pulses per spindle rotation is: 80000 × 1/1 = 80000 Therefore, set 80000 for parameter No. 7772. The number of pulses per C-axis rotation in the detection unit is: 1000000 ÷ 1/36 × 1/100 = 360000 Therefore, set 360000 for p...

  • Page 352

    1.AXIS CONTROL B-64483EN-1/03 - 322 - The synchronization coefficient is subject to the following restriction: Synchronization coefficient αβ=×TL where word1word2TL≤×αβ : Condition <1> where L: Number of hob threads T: Number of teeth α : Number of pulses of the position detect...

  • Page 353

    B-64483EN-1/03 1.AXIS CONTROL - 323 - Master axis conditions: The separate detector must be 12000 p/rev. The master axis and the separate detector must have a 1-to-1 connection. Slave axis conditions: The motor Pulsecoder must be 1 million p/rev. FFG must be 1/100. Determine FFG so that con...

  • Page 354

    1.AXIS CONTROL B-64483EN-1/03 - 324 - If using a serial detector, set the number of post-FFG pulses. If the exponent specification is used, α × 2γ means the "number of pulses of the position detector per rotation about the master axis". If a serial type detector is used as the ma...

  • Page 355

    B-64483EN-1/03 1.AXIS CONTROL - 325 - Alarm and message Number Message Description PS1593 EGB PARAMETER SETTING ERRORError in setting a parameter related to the EGB (1) The setting of bit 0 (SYNx) of parameter No. 2011, is not correct. (2) The slave axis specified with G81 is not set as a rotati...

  • Page 356

    1.AXIS CONTROL B-64483EN-1/03 - 326 - (5) During EGB synchronization, the synchronization relationship is maintained regardless of whether the operation is automatic or manual. (6) Spindle amplifier SPM type B is required for both the master and slave axes. In addition, the spindle amplifiers ca...

  • Page 357

    B-64483EN-1/03 1.AXIS CONTROL - 327 - Format Bit 0 (EFX) of parameter No.7731=1 Bit 0 (EFX) of parameter No.7731=0Bit 5 (HBR) of parameter No.7731=1 Bit 5 (HBR) of parameter No.7731=0 Start of synchronization G81 T_ ( L_ ) ( Q_ P_ ) ; G81.4 R_ ( L_ ) ( Q_ P_ ) ; G81.4 T_ ( L...

  • Page 358

    1.AXIS CONTROL B-64483EN-1/03 - 328 - When rotation about the tool axis is stopped, rotation about the workpiece axis is also stopped. At this time, specifying G80 cancels EGB synchronization. When EGB synchronization is canceled, the EGB mode signal SYNMOD <Fn065.6> becomes 0. Specify P a...

  • Page 359

    B-64483EN-1/03 1.AXIS CONTROL - 329 - NOTE 2 Start and cancel EGB synchronization when rotation about the master and slave axes stops. It means that rotation about the master axis should be started while the EGB mode signal SYNMOD is 1 (see Fig. 1.10.2 (b), "Synchronization start/cancellati...

  • Page 360

    1.AXIS CONTROL B-64483EN-1/03 - 330 - NOTE 18 For an EGB slave axis, synchronous and composite control cannot be executed. 19 The G81 command cannot be specified to use the servo EGB and spindle EGB together. To use them together, specify the G81 command for the spindle EGB and the G81.5 command...

  • Page 361

    B-64483EN-1/03 1.AXIS CONTROL - 331 - - Direction of helical gear compensation The direction depends on bit 2 (HDR) of parameter No. 7700. When HDR = 1 +C C : +, Z : +, P : + Compensation direction:+ (a) -Z +Z +CC : +, Z : +, P : - Compensation direction:-(b)+CC : +, Z : -, P : + Compensation d...

  • Page 362

    1.AXIS CONTROL B-64483EN-1/03 - 332 - Example) When the number of pulses that correspond to one rotation (360000) is specified for the tool axis (master axis) under the following conditions, the position command pulses are distributed as shown in Fig. 1.10.2 (d). Number of hob threads L: 10 ...

  • Page 363

    B-64483EN-1/03 1.AXIS CONTROL - 333 - Retract completion signal RTRCTF <Fn065.4> [Classification] Output signal [Function] Posts notification of the completion of retraction. [Operation] This signal is set to 1 in the following case: - Upon the completion of retraction (at the end of...

  • Page 364

    1.AXIS CONTROL B-64483EN-1/03 - 334 - Parameter number Description 7710 The controlled axis number for the spindle EGB slave axis 7731#0 The EGB command is G80 and G81(0)/G80.4 and G81.4(1). 7731#5 In EGB synchronization start command G81.4, the number of teeth is specified in T (0)/specified in...

  • Page 365

    B-64483EN-1/03 1.AXIS CONTROL - 335 - 4387 Numerator of synchronization coefficient [Input type] Parameter input [Data type] Word spindle [Valid data range] -32767 to 32767 The numerator of the synchronization coefficient is set in this parameter automatically when G81 is specified. 4388 D...

  • Page 366

    1.AXIS CONTROL B-64483EN-1/03 - 336 - When HDR = 1 +C C : +, Z : +, P : + Compensation direction:+ (a) -Z +Z +CC : +, Z : +, P : - Compensation direction:-(b)+CC : +, Z : -, P : + Compensation direction:-(c)+C C : +, Z : -, P : - Compensation direction:+ (d) -Z +Z C : -, Z : +, P : + C : Compens...

  • Page 367

    B-64483EN-1/03 1.AXIS CONTROL - 337 - #3 ART The retract function executed when an alarm is issued is: 0: Disabled. 1: Enabled. When an alarm is issued, a retract operation is performed with a set feedrate and travel distance (parameters Nos. 7740 and 7741). NOTE If a servo alarm is issued ...

  • Page 368

    1.AXIS CONTROL B-64483EN-1/03 - 338 - This parameter sets the number of the axial feed axis for a helical gear. NOTE When this parameter is set to 0 or a value outside the valid setting range, the Z-axis becomes the axial feed axis. When there are two or more Z-axes in parallel, use this param...

  • Page 369

    B-64483EN-1/03 1.AXIS CONTROL - 339 - 7740 Feedrate during retraction [Input type] Parameter input [Data type] Real axis [Unit of data] mm/min, inch/min, degree/min (machine unit) [Min. unit of data] Depend on the increment system of the applied axis [Valid data range] Refer to the standard...

  • Page 370

    1.AXIS CONTROL B-64483EN-1/03 - 340 - Number Message Description PS1594 EGB FORMAT ERROR Error in the format of the block of an EGB command (1) T (number of teeth) is not specified in the G81 block. (2) In the G81 block, the data specified for one of T, L, P, and Q is out of its valid range. (3)...

  • Page 371

    B-64483EN-1/03 1.AXIS CONTROL - 341 - - Acceleration/deceleration plus automatic phase synchronization type G81 T _ L _ R2 ; Synchronization start G80 R1 ; Synchronization cancellation T : Number of teeth (range of valid settings: 1-5000) L : Number of hob threads (range of valid setting...

  • Page 372

    1.AXIS CONTROL B-64483EN-1/03 - 342 - G81R1 command execution G80R1 command execution Acceleration EGB mode signal Deceleration Fig. 1.10.3 (b) 1. Specify G81R1 to start synchronization. When G81R1 is specified, the workpiece axis (slave axis) is subject to acceleration at the acceleration rat...

  • Page 373

    B-64483EN-1/03 1.AXIS CONTROL - 343 - G80R2 command execution EGB mode signal DecelerationG81R2 command execution Acceleration Automatic phase synchronization Fig. 1.10.3 (d) 1. Move the workpiece axis to the position that corresponds to that of the one-rotation signal of the spindle. 2. Speci...

  • Page 374

    1.AXIS CONTROL B-64483EN-1/03 - 344 - NOTE 2 With the use of parameter No.7777, the position at which the phase of the workpiece axis is matched can be shifted from the position corresponding to the one-rotation signal in automatic phase matching. 3 Setting bit 6 (EPA) of parameter No. 7731 to 1...

  • Page 375

    B-64483EN-1/03 1.AXIS CONTROL - 345 - Direction of rotation (for the spindle EGB) The EGB automatic phase synchronization function assumes that the direction of rotation about the slave axis is the same as that of rotation about the master axis. + Command Kp/SSensor MotorSpindle Sensor MotorSpi...

  • Page 376

    1.AXIS CONTROL B-64483EN-1/03 - 346 - [Data type] Bit path #6 PHS When the G81/G80 block contains no R command: 0: Acceleration/deceleration is not performed at the start or cancellation of EGB synchronization. 1: Acceleration/deceleration is performed at the start or cancellation of EGB syn...

  • Page 377

    B-64483EN-1/03 1.AXIS CONTROL - 347 - 7777 Angle shifted from the spindle position (one-rotation signal position) the workpiece axis uses as the reference of phase synchronization [Input type] Parameter input [Data type] Real path [Unit of data] deg [Minimum unit of data] Depend on the inc...

  • Page 378

    1.AXIS CONTROL B-64483EN-1/03 - 348 - 1 If a skip signal is input while an EGB axis skip command block is being executed, this block does not terminate until the specified number of skip signals have been input. 2 If a skip signal is input while an EGB axis skip command block is being executed, ...

  • Page 379

    B-64483EN-1/03 1.AXIS CONTROL - 349 - Also, the number of input skip signals is stored in custom macro variable #1. NOTE 1 When specifying this function, specify only a single EGB slave axis. If no axis is specified for two or more axes are specified, alarm PS1152 is generated. 2 If P is not sp...

  • Page 380

    1.AXIS CONTROL B-64483EN-1/03 - 350 - NOTE The skip signals (SKIP and SKIP2 to SKIP8) are valid regardless of the setting of this parameter. They can also be disabled using bit 4 (IGX) of parameter No. 6201. If you want to use high-speed skip signals when the multi-step skip function option is...

  • Page 381

    B-64483EN-1/03 1.AXIS CONTROL - 351 - 9S1 to 9S8 Specify which high-speed skip signal is enabled for the continuous high-speed skip command G31P90 or the EGB skip command G31.8. The settings of each bit have the following meaning: 0: The high-speed skip signal corresponding to the bit is disab...

  • Page 382

    1.AXIS CONTROL B-64483EN-1/03 - 352 - Number Message Description PS1152 G31.9/G31.8 FORMAT ERROR There is a format error in the G31.9 or G31.8 block as described below.- No axis address is specified in the G31.9 or G31.8 block. - More than axis address is specified in the G31.9 or G31.8 block. -...

  • Page 383

    B-64483EN-1/03 1.AXIS CONTROL - 353 - Specify the slave-axis travel in either of the following ways. 1 Slave-axis travel βj : Slave-axis address j : Slave-axis travel indicated in units of the minimum travel increments(the range of valid settings for usual axis movement applies) When j = 0, the...

  • Page 384

    1.AXIS CONTROL B-64483EN-1/03 - 354 - Please refer to the chapter of “Feed-forward Function” in FANUC AC SERVO MOTOR αi series FANUC AC SERVO MOTOR βi series FANUC LINEAR MOTOR LiS series FANUC SYNCHRONOUS BUILT-IN SERVO MOTOR DiS series Parameter manual (B-65270EN) about the detail of Fe...

  • Page 385

    B-64483EN-1/03 1.AXIS CONTROL - 355 - NOTE 8 Actual cutting feedrate display does not take synchronization pulses into consideration. 9 For an EGB slave axis, synchronous and composite control cannot be executed. 10 In EGB synchronization mode, AI contour control mode is temporarily canceled. 1...

  • Page 386

    1.AXIS CONTROL B-64483EN-1/03 - 356 - Explanation - Synchronization start Specify P and Q to use helical gear compensation. In this case, if only one of P and Q is specified, alarm PS1594 is generated. When G81 is issued so that the machine enters synchronization mode, the synchronization of th...

  • Page 387

    B-64483EN-1/03 1.AXIS CONTROL - 357 - NOTE 9 If, at the start of EGB synchronization (G81), L is specified as 0, synchronization starts with L assumed to be 1 if bit 3 (LZR) of parameter No.7701 is 0; if bit 3 (LZR) of parameter No.7701 is 1, synchronization is not started with L assumed to be 0...

  • Page 388

    1.AXIS CONTROL B-64483EN-1/03 - 358 - - Direction of helical gear compensation The direction depends on bit 2 (HDR) of parameter No. 7700. When HDR = 1 +C C : +, Z : +, P : + Compensation direction:+ (a) -Z +Z +CC : +, Z : +, P : - Compensation direction:-(b)+CC : +, Z : -, P : + Compensation d...

  • Page 389

    B-64483EN-1/03 1.AXIS CONTROL - 359 - Spindle amp.Motor Spindle (master axis) 1st axis X (omitted) 2nd axis Y (omitted) Tool axis 3rd axis C slave axis 4th axis dummy axis EGB - + + - K1: Sync coefficientK1 Error counter Sync switch Motor Detector Velocity/current controlServo amp.Position cont...

  • Page 390

    1.AXIS CONTROL B-64483EN-1/03 - 360 - N03 M04 S100 ; The M04 command causes the PMC to rotate the whetstone in the negative direction. In accordance with this, the tool moves along the V-axis in the - direction. When the tool reaches the position of limit switch 1 on the V-axis, the PMC stops t...

  • Page 391

    B-64483EN-1/03 1.AXIS CONTROL - 361 - NOTE When the retraction completion signal is "1," the retract signal is not accepted. EGB mode signal SYNMOD< Fn065.6> [Classification] Output signal [Function] Reports that synchronization with the EGB is in progress. [Operation] Th...

  • Page 392

    1.AXIS CONTROL B-64483EN-1/03 - 362 - Parameter number Description 7701#3 At the start of synchronization (G81), synchronization is started (0)/not started (1) if the number of hob threads L is specified as 0. 7702#0 The specifiable number of teeth, T, at the start of synchronization (G81) is no...

  • Page 393

    B-64483EN-1/03 1.AXIS CONTROL - 363 - 1023 Number of the servo axis for each axis NOTE When this parameter is set, the power must be turned off before operation is continued. [Input type] Parameter input [Data type] Byte axis [Valid data range] 0 to 80 This parameter associates each contro...

  • Page 394

    1.AXIS CONTROL B-64483EN-1/03 - 364 - [Data type] Bit path #0 HBR When the electronic gear box (EGB) function is used, performing a reset: 0: Cancels the synchronization mode (G81 or G81.5). 1: Does not cancel the synchronization mode. The mode is canceled only by the G80 or G80.5 command. ...

  • Page 395

    B-64483EN-1/03 1.AXIS CONTROL - 365 - #3 LZR When L (number of hob threads) = 0 is specified at the start of EGB synchronization (G81): 0: Synchronization is started, assuming that L = 1 is specified. 1: Synchronization is not started, assuming that L = 0 is specified. However, helical gear co...

  • Page 396

    1.AXIS CONTROL B-64483EN-1/03 - 366 - ARE ARO Operation 1 0 During EGB synchronization 1 1 During EGB synchronization and automatic operation 0 0 0 1 During EGB synchronization or automatic operation NOTE Parameters ARE and ARO are valid when bit 3 (ART) of parameter No. 7702 is set to 1 (whe...

  • Page 397

    B-64483EN-1/03 1.AXIS CONTROL - 367 - NOTE 1 Set this parameter when there are two or more groups of servo and spindle EGBs in the same path. Set 0 when there is one group of EGBs in the same path. 2 When there are two or more groups of servo and spindle EGBs in the same path, setting a value ou...

  • Page 398

    1.AXIS CONTROL B-64483EN-1/03 - 368 - 7741 Retract amount [Input type] Parameter input [Data type] Real axis [Unit of data] mm, inch, degree (machine unit) [Min. unit of data] Depend on the increment system of the applied axis [Valid data range] 9 digit of minimum unit of data (refer to sta...

  • Page 399

    B-64483EN-1/03 1.AXIS CONTROL - 369 - C-axis CMR: 1 C-axis FFG n/m: 1/100 In this case, the number of pulses per spindle rotation is: 80000 × 1/1 = 80000 Therefore, set 80000 for parameter No. 7772. The number of pulses per C-axis rotation in the detection unit is: 1000000 ÷ 1/36 × 1/100...

  • Page 400

    1.AXIS CONTROL B-64483EN-1/03 - 370 - The ratio of the number of pulses for the master slave to that of pulses for the slave axis may be valid, but the settings of the parameters may not indicate the actual number of pulses. For example, the number of pulses may not be able to be divided without...

  • Page 401

    B-64483EN-1/03 1.AXIS CONTROL - 371 - If this condition, <1>, cannot be satisfied, set this parameter bit to 1. With this setting, FFG is considered in the synchronization coefficient, and by selecting FFG appropriately, it is possible to set α and β in such a way that condition <1&g...

  • Page 402

    1.AXIS CONTROL B-64483EN-1/03 - 372 - As the number of pulses of the position detector per rotation about the master axis, set 12000 x FFG (1/10) = 1200. As the number of pulses of the position detector per rotation about the slave axis, set 10000. 2372 Serial EGB exponent specification (γ) ...

  • Page 403

    B-64483EN-1/03 1.AXIS CONTROL - 373 - Number of pulses of the position detector per rotation about the slave axis = 360,000 [pulse/rev] Slave axis Detection unit1/1000 [deg] Then, from 1,000,000 = 15,625 x 26, the settings are α = 15,625, β = 360,000, γ = 6, FFG = N/M = 1/1 #7 #6 #5 #4...

  • Page 404

    1.AXIS CONTROL B-64483EN-1/03 - 374 - Number Message Description PS1594 EGB FORMAT ERROR Error in the format of the block of an EGB command (1) T (number of teeth) is not specified in the G81 block. (2) In the G81 block, the data specified for one of T, L, P, and Q is out of its valid range. (3)...

  • Page 405

    B-64483EN-1/03 1.AXIS CONTROL - 375 - Synchronization coefficient DetectorSpindle Motor Spindle amplifier Spindle control DetectorMotor Servo amplifierVelocity/current controlPositional control + - Synchronization switch U-axis CNC Separate Detector Fig. 1.10.6 (a) Block diagram of U-axis c...

  • Page 406

    1.AXIS CONTROL B-64483EN-1/03 - 376 - U-axis Spindle motorU-axis motor Spindle Fig. 1.10.6 (c) Example of the structure of a machine having the U-axis In the example of the above structure, the tool moves along the U-axis when the spindle rotates. This movement is canceled out by rotating ...

  • Page 407

    B-64483EN-1/03 1.AXIS CONTROL - 377 - (6) Set the values related to the flexible feed gear ratio for the dummy axis (parameters Nos. 2084 and 2085) to 1. (7) The dummy axis occupies one servo axis interface. Set servo axis numbers consecutively for the dummy axis and U-axis so that an odd number...

  • Page 408

    1.AXIS CONTROL B-64483EN-1/03 - 378 - ・ Notes related to alarms (1) Servo alarm, spindle alarm, and emergency stop All axis motors are de-energized, U-axis synchronization is canceled, and the EGB synchronization mode confirmation signal becomes 0. If the spindle is rotating, the cancellation ...

  • Page 409

    B-64483EN-1/03 1.AXIS CONTROL - 379 - • PS alarm (4) Synchronization pulses do not cause the machine, absolute, or relative coordinate of the U-axis to be updated. And the absolute coordinate of the U-axis is not updated when synchronization is canceled. (5) EGB synchronization requires axis c...

  • Page 410

    1.AXIS CONTROL B-64483EN-1/03 - 380 - For electronic gear box (EGB) controlled axes, two axes need to be specified as one pair. So, make a setting as described below. For a slave axis, set an odd (1, 3, 5, 7, 9, ...) servo axis number. For a dummy axis to be paired, set a value obtained by addin...

  • Page 411

    B-64483EN-1/03 1.AXIS CONTROL - 381 - [Data type] Bit path #1 UAX U-axis control is: 0: Not performed. 1: Performed. #7 #6 #5 #4 #3 #2 #1 #0 7704 UOC [Input type] Parameter input [Data type] Bit path #3 UOC When the U-axis control mode is released, the tool is: 0: Not moved ...

  • Page 412

    1.AXIS CONTROL B-64483EN-1/03 - 382 - NOTE When this parameter is set, the power must be turned off before operation is continued. #1 UFF During U-axis synchronization, a interpolation command to between the U-axis and the other axes is 0: not available. 1: available. NOTE Set this paramet...

  • Page 413

    B-64483EN-1/03 1.AXIS CONTROL - 383 - Spindle amplifier Motor Spindle1(master axis) 1st axis (omitted) 2nd axis (omitted) Tool axis3rd axis U1 slave axis 4th axis U1’ dummy axis EGB - + + - K1:Sync coefficientK1 Error counter Synchronization switch Motor Detector Velocity / current control ...

  • Page 414

    1.AXIS CONTROL B-64483EN-1/03 - 384 - U1-axis Spindle 1 motorU1-axis motor Spindle 1 U2-axisSpindle 2 motor U2-axis motor Spindle 2 Fig. 1.10.7 (c) Example of the mechanism of a machine having two U-axis pairs In the above mechanism example, when spindles 1 and 2 rotate, the U1 and U2 axes ...

  • Page 415

    B-64483EN-1/03 1.AXIS CONTROL - 385 - - Example of a synchronization start/cancel timing chart EGB synchronization start signal EGBS1 to EGBS8 Synchronization mode EGB mode confirmation signal EGBM1 to EGBM8 Spindle rotation command (S_M03) Spindle stop command (M05) Spindle rotation velocity ...

  • Page 416

    1.AXIS CONTROL B-64483EN-1/03 - 386 - 110012100231003410055300161004710068 to 321000Slave numberATRNo.24000 to 24031A B U1 U2 (M1) U1’ (Dummy) U2’ (Dummy) (None) Axis 1 A 12 B 23 U1 34 U1’ 45 U2 56 U2’ 6Controlled axis numberProgram axis name No.1020 Servo axis numberNo.1023CNC 2-axis a...

  • Page 417

    B-64483EN-1/03 1.AXIS CONTROL - 387 - No. 241042410524106241072410824109 24110 24111 100410061000100010001000 1000 1000 For FSSB settings, see “FSSB Setting”. - Caution (1) Observe the cautions stated for U-axis control. (2) No U-axis control signal (such as EGB synchronous mode select si...

  • Page 418

    1.AXIS CONTROL B-64483EN-1/03 - 388 - [Data type] Byte axis [Valid data range] 0 to 80 This parameter associates each control axis with a specific servo axis. Specify values 1+8n, 2+8n, 3+8n, 4+8n, 5+8n, and 6+8n (n = 0, 1, 2, …, 9) like 1, 2, 3, 4, 5, …, 77, and 78. The control axis number...

  • Page 419

    B-64483EN-1/03 1.AXIS CONTROL - 389 - Number Message Description PS1596 EGB OVERFLOW An overflow occurred in the calculation of the synchronization coefficient. 1.10.8 Signal-based Servo EGB Synchronous Control Overview This function can use input signals to make the spindle (master axis) synch...

  • Page 420

    1.AXIS CONTROL B-64483EN-1/03 - 390 - Explanation - Start of synchronization Setting the EGB synchronization start signal to “1” starts synchronization. - Cancellation of synchronization Setting the EGB synchronization start signal to “0” cancels synchronization. NOTE Each of the fo...

  • Page 421

    B-64483EN-1/03 1.AXIS CONTROL - 391 - [Setting parameters] Bit 3 (PIEN) of parameter No. 2003 = 1 (Slave axis) Use PI control in velocity control Bit 1 (FEED) of parameter No. 2005 = 1 (Slave axis) Use Feed-forward function Bit 1 (FFAL) of parameter No. 2011 = 1 (Slave axis) Use Feed-forward ...

  • Page 422

    1.AXIS CONTROL B-64483EN-1/03 - 392 - Signal EGB synchronization start signals EGBS1<Gn530.0>, EGBS2<Gn530.1>, … [Classification] Input signal [Function] Performs servo EGB synchronous control with the axis of interest used as a salve axis. [Operation] When this signal becomes ...

  • Page 423

    B-64483EN-1/03 1.AXIS CONTROL - 393 - Parameter number Description 3115#0 The current position is not indicated for an axis for which this parameter is set to 1.Since the current position for an EGB dummy axis has no meaning, set this parameter to 1 to delete the current position indication for ...

  • Page 424

    1.AXIS CONTROL B-64483EN-1/03 - 394 - FFG N/M of the EGB dummy axis : 1/1 Gear ratio of the A-axis A : 1/36 (One rotation about the A-axis to 36 motor rotations) Number of detector pulses per A-axis rotation α : 1,000,000 pulses/rev A-axis CMR : 1 A-axis FFG n/m : 1/100 In this case, the numb...

  • Page 425

    B-64483EN-1/03 1.AXIS CONTROL - 395 - [Data type] Bit axis #1 FEEDx Feed-forward function is: 0: Invalid. 1: Valid. Set 1 for the EGB slave axis. #7 #6 #5 #4 #3 #2 #1 #0 2011 SYN [Input type] Parameter input [Data type] Bit axis #0 SYN When the electronic gear box function ...

  • Page 426

    1.AXIS CONTROL B-64483EN-1/03 - 396 - [Valid data range] 1 to 999999999 For a slave axis, set the number of pulses generated from the position detector per EGB slave axis rotation. Set the number of pulses output by the detection unit. 7784 Numerator of a signal-based servo EGB synchronization...

  • Page 427

    B-64483EN-1/03 1.AXIS CONTROL - 397 - 1.11 ROTARY AXIS CONTROL Overview A rotary axis is specified with bit 3 (RAAx) of parameter No. 1007. When an incremental command is specified for a rotary axis, the specified value itself sets a travel distance. When an absolute command is specified, the di...

  • Page 428

    1.AXIS CONTROL B-64483EN-1/03 - 398 - NOTE RAAx is valid when bit 0 (ROAx) of parameter No. 1008 is set to 1. To use this function, the option for rotary axis control is required. #5 G90x A command for a rotary axis control is: 0: Regarded as an absolute/incremental command according to th...

  • Page 429

    B-64483EN-1/03 1.AXIS CONTROL - 399 - Reference item Manual name Item name OPERATOR’S MANUAL (B-64484EN) Rotary axis control 1.12 DUAL POSITION FEEDBACK TURNING MODE / COMPENSATION CLAMP Overview To the axis to be controlled with the dual position feedback function, add the turning mode and a...

  • Page 430

    1.AXIS CONTROL B-64483EN-1/03 - 400 - [Operation] When set to 0, this signal cancels the compensation operation of dual position feedback. This signal is valid only if bit 1 (CDPx) of parameter No. 11803 is 1. Signal address #7 #6 #5 #4 #3 #2 #1 #0 Gn531 HBTRN Gn548 *CL8 *...

  • Page 431

    B-64483EN-1/03 1.AXIS CONTROL - 401 - 1.13 FUNCTION OF DECELERATION STOP IN CASE OF POWER FAILURE Overview If a power failure occurs during an axial movement, this function stops the movement by decreasing the speed on each axis at a rate specified in parameter No. 1791. This function prevents t...

  • Page 432

    1.AXIS CONTROL B-64483EN-1/03 - 402 - Caution If an acceleration lower than the normal acceleration is set by this function, the braking distance at a power failure becomes longer than usual. Accordingly, a collision with a stroke end can occur, depending on the acceleration start position at a...

  • Page 433

    B-64483EN-1/03 1.AXIS CONTROL - 403 - 1.14 FLEXIBLE SYNCHRONIZATION CONTROL 1.14.1 Flexible Synchronization Control Overview This function is provided for those machines like hobbing machines that require the synchronization of various multiple gear ratios. Synchronization with this function ena...

  • Page 434

    1.AXIS CONTROL B-64483EN-1/03 - 404 - (8) Parameters related to the update of machine coordinates (bits 0 (ACA) to 3 (ACD) of parameter No.5668) Start of synchronization Synchronization is started by setting one of the flexible synchronous control mode selection signals MTA, MTB, MTC, and MTD&l...

  • Page 435

    B-64483EN-1/03 1.AXIS CONTROL - 405 - G00 V200.0 ;.............................................. V-axis escape M57 ; .............................................. End of B - U synchronization Notes 1) Synchronization is not canceled with a reset. 2) Synchronization is executed even if t...

  • Page 436

    1.AXIS CONTROL B-64483EN-1/03 - 406 - 14) For a synchronization group for which a PMC axis is a master axis, be sure to turn on the synchronization mode first. Also, for a synchronization group for which a PMC axis is a master axis, be sure to turn off the synchronization mode last. 15) If an at...

  • Page 437

    B-64483EN-1/03 1.AXIS CONTROL - 407 - Parameter 5660 Master axis number (group A) 5661 Slave axis number (group A) 5662 Master axis number (group B) 5663 Slave axis number (group B) 5664 Master axis number (group C) 5665 Slave axis number (group C) 5666 Master axis number (group D) ...

  • Page 438

    1.AXIS CONTROL B-64483EN-1/03 - 408 - #3 ACD Update of the machine coordinates of flexible synchronous control group D is: 0 : Executed. 1 : Not executed. NOTE The machine coordinates update is not done though the slave axis operates on the motor. In this case, if an automatic reference pos...

  • Page 439

    B-64483EN-1/03 1.AXIS CONTROL - 409 - 5690 Index to gear ratio denominator for flexible synchronization(group A) 5691 Index to gear ratio denominator for flexible synchronization(group B) 5692 Index to gear ratio denominator for flexible synchronization(group C) 5693 Index to gear ratio d...

  • Page 440

    1.AXIS CONTROL B-64483EN-1/03 - 410 - MTA: Synchronization of group A is selected. MTB: Synchronization of group B is selected. MTC: Synchronization of group C is selected. MTD: Synchronization of group D is selected. Flexible synchronous control mode status signals MFSYNA, MFSYNB, MFSYNC,...

  • Page 441

    B-64483EN-1/03 1.AXIS CONTROL - 411 - Number Message Description PS5245 OTHERAXIS ARE COMMANDED - For a flexible synchronous control group for which a PMC axis was a master axis, an attempt was made to turn on the synchronization mode during time other than automatic operation. - An attempt was ...

  • Page 442

    1.AXIS CONTROL B-64483EN-1/03 - 412 - Synchronization cancellation commandSynchronization start commandSlave axis speed Synchronization state AccelerationDecelerationMaster axis speed Fig. 1.14 (a) Synchronization start Command sequence Synchronization start M command Flexible synchronous con...

  • Page 443

    B-64483EN-1/03 1.AXIS CONTROL - 413 - Synchronization cancellation Command sequence Synchronization cancellation M command Deceleration (movement) Flexible synchronous control mode signal MFSYNA End signal FIN Strobe signal MF Flexible synchronous control mode select signal MTA Fig. 1.14 (c) ...

  • Page 444

    1.AXIS CONTROL B-64483EN-1/03 - 414 - Synchronization cancellation command Synchronization start commandSlave axis speed Synchroniza- tion state AccelerationDeceleration Automatic phase synchronizationMaster axis speed Fig. 1.14 (d) Command sequence Synchronization start M command Acceleratio...

  • Page 445

    B-64483EN-1/03 1.AXIS CONTROL - 415 - NOTE 1 Set the feedrate in automatic phase synchronization in parameter No. 13429 to 13432. 2 Specify the movement direction for automatic phase synchronization in bit 0 (DIA) to 3 (DID) of parameter No. 13420. (Rotation axis only) 3 Linear acceleration/dece...

  • Page 446

    1.AXIS CONTROL B-64483EN-1/03 - 416 - Signal Flexible synchronous control mode selection signals MTA, MTB, MTC, MTD <Gn197.0 to Gn197.3> [Classification] Input signal [Function] These signals select flexible synchronous control. [Operation] 1) Synchronization starts when these signals ...

  • Page 447

    B-64483EN-1/03 1.AXIS CONTROL - 417 - [Operation] These signals become "1" when: • Automatic phase synchronization is completed. These signals become "0" when: • The flexible synchronous control mode status signal becomes "0". PHFINA: Notifies that automatic p...

  • Page 448

    1.AXIS CONTROL B-64483EN-1/03 - 418 - #0 DIA The movement direction of the automatic phase synchronization of group A is: 0: + direction. 1: - direction. #1 DIB The movement direction of the automatic phase synchronization of group B is: 0: + direction. 1: - direction. #2 DIC The moveme...

  • Page 449

    B-64483EN-1/03 1.AXIS CONTROL - 419 - 13433 Machine coordinates of the master axis used as the reference for phase synchronization (group A) 13434 Machine coordinates of the master axis used as the reference for phase synchronization (group B) 13435 Machine coordinates of the master axis us...

  • Page 450

    1.AXIS CONTROL B-64483EN-1/03 - 420 - 1.14.3 Synchronization Positional Difference Detection Diagnosis Display and Signal Output in Flexible Synchronization Overview This function displays the diagnosis data and outputs DO signal for confirming error of between master axis and slave axis after e...

  • Page 451

    B-64483EN-1/03 1.AXIS CONTROL - 421 - If error between master axis and slave axis after executing automatic phase synchronization for flexible synchronous control, automatic phase synchronization error detection signal PHERA, PHERB, PHERC, PHERD is turned "1". Please set this parameter...

  • Page 452

    1.AXIS CONTROL B-64483EN-1/03 - 422 - 1.14.4 Inter-path Flexible Synchronous Control Overview Inter-path flexible synchronous control enables flexible synchronous control between axes in different paths in a multi-path system. Up to four slave axes can be specified in one path. An axis in anothe...

  • Page 453

    B-64483EN-1/03 1.AXIS CONTROL - 423 - Parameter No. 5661 (path 2) = 201 A slave axis in a synchronization group can be set as the master axis in another group. Example) The following synchronization is be applied: X1 X2 X1 (master) → X2 (slave) X2 (master) → Y2 (slave) Y (master) ...

  • Page 454

    1.AXIS CONTROL B-64483EN-1/03 - 424 - NOTE 1 Specify the waiting M code after the M code for turning the inter-path flexible synchronous mode on and before the M code for turning the inter-path flexible synchronous mode off during automatic operation. 2 The M code for turning the inter-path flex...

  • Page 455

    B-64483EN-1/03 1.AXIS CONTROL - 425 - NOTE 1 Turn the inter-path flexible synchronous mode on or off after flexible synchronization is canceled in the slave path. 2 Start or cancel flexible synchronous control with the signal (MTA, MTB, MTC, or MTD) in the slave path. Specify the M code for sta...

  • Page 456

    1.AXIS CONTROL B-64483EN-1/03 - 426 - Synchronization start Command sequence Flexible synchronous control mode select signal MTA Flexible synchronous control mode signal MFSYNA End signal FIN Strobe signal MF Synchronization start M command Waiting between paths Inter-path flexible synchronous ...

  • Page 457

    B-64483EN-1/03 1.AXIS CONTROL - 427 - Synchronization cancellation Command sequence Inter-path flexible synchronous mode off M command Inter-path flexible synchronous mode signal OVLNS End signal FIN Strobe signal MF Inter-path flexible synchronous mode select signal OVLN Synchronization cancel...

  • Page 458

    1.AXIS CONTROL B-64483EN-1/03 - 428 - NOTE 3 If an emergency stop is applied, flexible synchronous control is canceled and alarm PS5245 is issued in the path in which the emergency stop is not applied. When bit 1 (FCN) of parameter No. 1342 is 1, however, synchronization is not canceled and no a...

  • Page 459

    B-64483EN-1/03 1.AXIS CONTROL - 429 - 5666 Master axis number for flexible synchronous control (group D) 5667 Slave axis number for flexible synchronous control (group D) [Input type] Parameter input [Data Input type] Word path [Valid data range] 0 to Number of controlled axes or m × 100...

  • Page 460

    1.AXIS CONTROL B-64483EN-1/03 - 430 - #3 FSV When the axis related to synchronization is servo off state while flexible synchronous control or inter-path flexible synchronous control, an automatic operation is: 0: Stopped. 1: Stopped if the axis related to synchronization moves. NOTE In inte...

  • Page 461

    B-64483EN-1/03 1.AXIS CONTROL - 431 - Number Message Description PS5242 ILLEGAL AXIS NUMBER This alarm is issued when either of the following conditions is satisfied. (It is issued at the start of inter-path flexible synchronous control.) 1. The master or slave axis number is invalid. 2. The rel...

  • Page 462

    1.AXIS CONTROL B-64483EN-1/03 - 432 - Program example Axis configuration: X, Y, Z, C, and U axes Setting of flexible synchronous control : Master axis: Z-axis, slave axis: U-axis, M code for turning the flexible synchronous control mode on: M50 M code for turning the flexible synchronous co...

  • Page 463

    B-64483EN-1/03 1.AXIS CONTROL - 433 - Signal Override signals of gear ratio for flexible synchronization *KAV0 to *KAV7<Gn570>: Group A *KBV0 to *KBV7<Gn571>: Group B *KCV0 to *KCV7<Gn572>: Group C *KDV0 to *KDV7<Gn573>: Group D [Classification] Input signal [Funct...

  • Page 464

    1.AXIS CONTROL B-64483EN-1/03 - 434 - #2 KVC The gear ratio override signal of flexible synchronization group C is: 0: Disabled (fixed at 100%). 1: Enabled. #3 KVD The gear ratio override signal of flexible synchronization group D is: 0: Disabled (fixed at 100%). 1: Enabled. Alarm and mess...

  • Page 465

    B-64483EN-1/03 1.AXIS CONTROL - 435 - Also, this total number of the skip signal inputs is stored in the variable specified by R. Example) Mxx Flexible synchronous control mode on X-- Y-- G31.8 G91 A0 P100 Q30 R1 Skip command for flexible synchronous control After 30 times of skip signal i...

  • Page 466

    1.AXIS CONTROL B-64483EN-1/03 - 436 - #1 SK0 This parameter specifies whether the skip signal is made valid under the state of the skip signal SKIP and the multistage skip signals SKIP2 to SKIP8. 0: Skip signal is valid when these signals are "1". 1: Skip signal is valid when these s...

  • Page 467

    B-64483EN-1/03 1.AXIS CONTROL - 437 - Whether the skip signals are enabled or disabled Parameter Bit 4 (IGX) of parameter No. 6201 Bit 0 (GSK) of parameter No. 6200 Bit 7 (SKPXE) of parameter No .6201 Skip signal SKIPP Skip signal SKIP Multistage skip signals SKIP2-SKIP8 0 0 0 Disabled Enabled E...

  • Page 468

    1.AXIS CONTROL B-64483EN-1/03 - 438 - Signal ignoring period (parameter No. 6220) Skip signal This signal is ignored. When high-speed skip signals are used and bit 5 (CSE) of parameter No. 6201 is set to 1, signals are handled as follows: Signal ignoring period (parameter No. 6220)High-speed s...

  • Page 469

    B-64483EN-1/03 1.AXIS CONTROL - 439 - 1.15 POSITION FEEDBACK DYNAMIC SWITCHING FUNCTION Overview This function enables dynamic switching between, and use of, the position feedback from a separate position detector and that from a Pulsecoder, using signals. This function is an option. It supports...

  • Page 470

    1.AXIS CONTROL B-64483EN-1/03 - 440 - • Set up the A-axis so that it uses normal absolute position communication. (The A-axis is used as a parameter for storing the capacity of the reference counter on the Pulsecoder on the C-axis and the backlash compensation amount. Other parameters refer to...

  • Page 471

    B-64483EN-1/03 1.AXIS CONTROL - 441 - Servo axis number setting - A-type For the servo motor axis that uses this function (referred to as the C-axis in the remainder of this document) and a dummy axis (referred to as the A-axis), be sure to set an odd number in parameter No. 1023 for the servo ...

  • Page 472

    1.AXIS CONTROL B-64483EN-1/03 - 442 - 5. Set up the A-axis so that the serial feedback dummy function is enabled. (Set bit 0 (SERDx) of parameter No. 2009) to 1.) - B-type For the parameters for the A-axis (on the separate position detector) that uses this function, follow the procedure below....

  • Page 473

    B-64483EN-1/03 1.AXIS CONTROL - 443 - 12. Check that it is placed in full closed mode (the MSEMI signal is "0"), and set the controlled axis detach signal DTCH to "1" for the A- and C-axes. 13. Check that the A- and C-axes are no longer subject to control (the MDTCH signal is...

  • Page 474

    1.AXIS CONTROL B-64483EN-1/03 - 444 - Absolute coordinates and machine coordinates after position feedback switching - B-type If the C-axis is switched from semi-closed mode to full closed mode, the absolute coordinates in semi-closed mode are replaced by the absolute coordinates in full closed...

  • Page 475

    B-64483EN-1/03 1.AXIS CONTROL - 445 - NOTE 1 After switching, be sure to stop the axis, cancel tool length compensation and cutter compensation, and follow the flow chart to be described later. 2 The M code to specify position feedback dynamic switching must always be a unbuffered M code. Posit...

  • Page 476

    1.AXIS CONTROL B-64483EN-1/03 - 446 - Timing charts for switching between semi-closed mode and full closed mode - A-type Fig. 1.15 (c), “Switching from semi-closed mode to full closed mode” shows a timing chart for swathing from semi-closed mode to full closed mode, and Fig. 1.15 (d), “Sw...

  • Page 477

    B-64483EN-1/03 1.AXIS CONTROL - 447 - - B-type Fig. 1.15 (e), “Switching from semi-closed mode to full closed mode” shows a timing chart for switching from semi-closed mode to full closed mode, and Fig. 1.15 (f), “Switching from full closed mode to semi-closed mode” shows a timing char...

  • Page 478

    1.AXIS CONTROL B-64483EN-1/03 - 448 - #0 ROTx #1 ROSx Setting linear or rotary axis. ROSx ROTx Meaning 0 1 Rotary axis (A type) (1) Inch/metric conversion is not done. (2) Machine coordinate values are rounded in 0 to 360°. Absolute coordinate values are rounded or not rounded by bits 0 (RO...

  • Page 479

    B-64483EN-1/03 1.AXIS CONTROL - 449 - NOTE A type If this function is used, the following alarms are issued if an attempt is made to manually set APZ for the A-axis in full closed mode and APZ for the C-axis in semi-closed mode. - If an attempt is made to manually set APZ for the A axis in full...

  • Page 480

    1.AXIS CONTROL B-64483EN-1/03 - 450 - #7 XIAx In a system that uses a separate position detector, absolute position communication is performed using: 0: Data for the separate position detector. 1: Data for the Pulsecoder. NOTE If using the position feedback dynamic switching function, set t...

  • Page 481

    B-64483EN-1/03 1.AXIS CONTROL - 451 - With this setting method, however, cancellation in the servo software internal coefficient may occur depending on constants such as the machine deceleration ratio, causing the motor to vibrate. In such a case, the setting must be changed. For details, refer ...

  • Page 482

    1.AXIS CONTROL B-64483EN-1/03 - 452 - [Data type] Bit axis NOTE When at least one of these parameters is set, the power must be turned off before operation is continued. #0 CPYx When a change from a semi-closed loop to a closed loop is made by the SEMI signal, and when the SEMIx signal ind...

  • Page 483

    B-64483EN-1/03 1.AXIS CONTROL - 453 - Example - Alarm DS0300 is issued for the switching axis in semi-closed mode. Alarm DS0300, "(A) APC ALARM: NEED REF RETURN” - Alarm DS0300 is issued for the switching axis in full closed mode. Alarm DS0300, "(C) APC ALARM: NEED REF RETURN...

  • Page 484

    1.AXIS CONTROL B-64483EN-1/03 - 454 - 1.16 PARALLEL AXIS CONTROL Overview If a single machine contains multiple heads and tables to machine multiple workpieces simultaneously, it is possible to move multiple controlled axes assigned the same axis name, by using a move command for a single progra...

  • Page 485

    B-64483EN-1/03 1.AXIS CONTROL - 455 - NOTE 1 The parallel axis control function is effective to 1-path machining centers only. 2 The parallel axis control function does not support the functions below. (1) Smooth interpolation (2) Nano smoothing (3) 3-dimensional coordinate system conversion (4)...

  • Page 486

    1.AXIS CONTROL B-64483EN-1/03 - 456 - Signal address #7 #6 #5 #4 #3 #2 #1 #0 Gn515 PPK8 PPK7 PPK6 PPK5 PPK4 PPK3 PPK2 PPK1 Parameter 3131 Subscript of axis name [Input type] Parameter input [Data type] Byte axis [Valid data range] 0 to 9, 65 to 90 In order to distinguish axes under paral...

  • Page 487

    B-64483EN-1/03 1.AXIS CONTROL - 457 - Alarm and message Number Message Description PS0459 ALL PARALLEL AXES IN PARKING All the axes specified during automatic operation are parking. PS0508 G CODE TO NEED G90(PAC) In parallel axis control, a G code requiring an absolute command (G90) was specifie...

  • Page 488

    1.AXIS CONTROL B-64483EN-1/03 - 458 - 1.17 AXIS IMMEDIATE STOP FUNCTION Overview When the movement long an axis must be immediately stopped, the axis immediate stop function stops the movement using the axis immediate stop start signal and outputs an alarm. In the AI contour control mode, this f...

  • Page 489

    B-64483EN-1/03 1.AXIS CONTROL - 459 - Start of deceleration End of deceleration32msec Deceleration ESTPR Fig. 1.17 (b) Signal Axis immediate stop start signal ESTPR<Gn203.3> [Classification] Input signal [Function] The axis immediate stop function is used to start stopping the movemen...

  • Page 490

    1.AXIS CONTROL B-64483EN-1/03 - 460 - • Change to the acceleration/deceleration type from bell-shaped acceleration/ deceleration before interpolation to linear acceleration/deceleration before interpolation. Alarm and message Number Message Description DS5550 AXIS IMMEDIATE STOP The movement ...

  • Page 491

    B-64483EN-1/03 1.AXIS CONTROL - 461 - 1.18 FLEXIBLE PATH AXIS ASSIGNMENT Overview Conventionally, each controlled axis has been controlled within each path. This function can remove each controlled axis from the control of each path and assign them as the controlled axis in the other path. Using...

  • Page 492

    1.AXIS CONTROL B-64483EN-1/03 - 462 - (Example 2) In this example, the Z1 axis is switched from path 1 to path 2 or 3. (Rotary index machine) Z1 X1 S1S2S3X3X2Z3 Z2Turret-workpiece combination- Table position (1) Axis configuration: Path 1(X1-Z1), Path 2(X2-Z2), Path 3(X3-Z3) ↓ - Table...

  • Page 493

    B-64483EN-1/03 1.AXIS CONTROL - 463 - - Format 1) ID number type (bit 3 (FAM) of parameter No.11561 is set to 0) G52.1 P_ Q_ R_ ; Command to remove axes (Issued to a path having axes to be removed) P,Q,R : ID numbers for axes to be removed (up to 3 axes can be removed at a time) G52.2 P_ Q_...

  • Page 494

    1.AXIS CONTROL B-64483EN-1/03 - 464 - NOTE 1 Be sure to specify ID numbers (parameter No. 11560) even when using the axis name-based assignment method. 2 G52.1, G52.2, and G52.3 are a one-shot G code in group 00. 3 Do not use G52.1, G52.2, and G52.3 together in a single block; they must be used ...

  • Page 495

    B-64483EN-1/03 1.AXIS CONTROL - 465 - Program example 1) ID number type (bit 3 (FAM) of parameter No.11561 is set to 0) Axis configuration and setting of parameter No.11560 Path 1 Path 2 X 0 X 0 Z 0 Z 0 C 103 A 0 A 0 1. Removal and assignment commands (with no alarm) Program Operation Path...

  • Page 496

    1.AXIS CONTROL B-64483EN-1/03 - 466 - 2) Axis name type (bit 3 (FAM) of parameter No.11561 is set to 1) a) Invalid extended axis name (bit 0 (EEA) of parameter No.1000 is set to 0) Axid configuration Path 1 Path 2 X X Z Y C - Program Operation Path 1 Path 2 Path 1 Path ...

  • Page 497

    B-64483EN-1/03 1.AXIS CONTROL - 467 - Program Operation Path 1 Path 2 Path 1 Path 2 Operation XA move YB move N1 G00 XA=1.0 ; N1 G00 YB=1.0 ; Axis configurationXA,ZA,CA XB,YB Operation ZA and CA are removed. YB move N2 G52.1 ZA=0 CA=0 ; N2 G00 YB=2.0 ; Axis configurationXA XB,YB Operation XA mo...

  • Page 498

    1.AXIS CONTROL B-64483EN-1/03 - 468 - 1. Exchange command (with no alarm) Program Operation Path 1 Path 2 Path 3 Path 1 Path 2 Path 3 Operation X move Y move X move N1 G00 X1.0 ; N1 G00 Y1.0 ; N1 G00 X1.0 ; Axis configurationX,Z,A X,Y,B X,Z,C Operation A from path 1 is exchanged with B from pat...

  • Page 499

    B-64483EN-1/03 1.AXIS CONTROL - 469 - 3. When exchange commands are used in more than two paths (between paths 1 and 2 and between paths 2 and 3) Program Operation Path 1 Path 2 Path 3 Path 1 Path 2 Path 3 Operation X move Y move X move N1 G00 X1.0 ; N1 G00 Y1.0 ; N1 G00 X1.0 ;Axis configuratio...

  • Page 500

    1.AXIS CONTROL B-64483EN-1/03 - 470 - 1. Exchanging axes having the same name Program Operation Path 1 Path 2 Path 3 Path 1 Path 2 Path 3 Operation X move X move X move N1 G00 X1.0 ; N1 G00 X1.0 ; N1 G00 X1.0 ; Axis configurationX,Z,A X,Y,B X,Z,C Operation X from path 1 is exchanged X from path...

  • Page 501

    B-64483EN-1/03 1.AXIS CONTROL - 471 - Program Operation Path 1 Path 2 Path 3 Path 1 Path 2 Path 3 Operation XA move ZB move XC move N1 G00 XA=1.0 ; N1 G00 ZB=1.0 ; N1 G00 XC=1.0 ;Axis configurationXA,ZA,CA,AAXB,ZB,AB XC,ZC,CC Operation AA from path 1 is exchanged with AB from path 2. AB from pa...

  • Page 502

    1.AXIS CONTROL B-64483EN-1/03 - 472 - Table 1.18 (a) Functions requiring setting intra-path relative numbers using parameters Function Related parameter number Cs contouring control 3900, 3910, 3920, 3930, 3940 Constant surface speed control 3770 Y-axis offset 5043 to 5045 Wheel wear compensatio...

  • Page 503

    B-64483EN-1/03 1.AXIS CONTROL - 473 - (3) Case in which it is unnecessary to use G10 for parameter setting Axis configurations shown in Examples 2 to 4 do not cause intra-path relative numbers to be changed in flexible path axis assignment. So, it is unnecessary to use programmable parameter in...

  • Page 504

    1.AXIS CONTROL B-64483EN-1/03 - 474 - - Diameter / Radius setting Once flexible path axis assignment is executed, which setting type (diameter or radius setting) to use is selected according to the setting of bit 3 (DIA) of parameter No. 1006 (dynamic diameter/radius switching). Once flexible p...

  • Page 505

    B-64483EN-1/03 1.AXIS CONTROL - 475 - - PMC axis control No flexible path axis assignment can be performed for any axis under PMC axis control. Before performing flexible path axis assignment, cancel PMC axis control. No PMC axis control can be performed for any removed axis. Before performing ...

  • Page 506

    1.AXIS CONTROL B-64483EN-1/03 - 476 - - Inch/metric conversion No flexible path axis assignment can be applied between paths using different input unit methods (inch input and metric input). Diagnosis information 4000 Reason number of alarm in flexible path axis assignment The cause of the a...

  • Page 507

    B-64483EN-1/03 1.AXIS CONTROL - 477 - 36 An attempt was made to perform flexible path axis assignment during the SV rotation control mode. 37 An attempt was made to perform flexible path axis assignment during the polygon turning mode. 38 An attempt was made to perform flexible path axis assign...

  • Page 508

    1.AXIS CONTROL B-64483EN-1/03 - 478 - 11560 Identification number for an axis to be subjected to flexible path axis assignment NOTE When this parameter is set, the power must be turned off before operation is continued. [Input type] Parameter input [Data type] Word axis [Valid data range] 0...

  • Page 509

    B-64483EN-1/03 1.AXIS CONTROL - 479 - #7 #6 #5 #4 #3 #2 #1 #0 11562 FAN [Input type] Parameter input [Data type] Bit axis #1 FAN In flexible path axis assignment, axis names used after exchange are: 0: Those previously set for each axis. 1: Those set for the other axes in exchang...

  • Page 510

    1.AXIS CONTROL B-64483EN-1/03 - 480 - Note NOTE This function is optional. When the option is available, synchronous control and composite control are usable. Limitation 1. This function cannot be used with Manual Guide i. 2. This function cannot be used with Program Restart. 3. This function c...

  • Page 511

    B-64483EN-1/03 1.AXIS CONTROL - 481 - - History data In the alarm history and the workpiece offset data change history, the number of controlled axes was changed as stated below according to whether the flexible path axis assignment function is enabled or disabled: When the function is disable...

  • Page 512

    1.AXIS CONTROL B-64483EN-1/03 - 482 - #7 #6 #5 #4 #3 #2 #1 #0 RXXXX AXPT4 AXPT3 AXPT2 AXPT1 RXXXY AXNM5 AXNM4 AXNM3 AXNM2 AXNM1 RXXXZ AXRMV Parameter 11554 Internal relay user area (R) address for individual-axis information NOTE When this parameter is set, the power must b...

  • Page 513

    B-64483EN-1/03 1.AXIS CONTROL - 483 - 1.19 HIGH PRECISION OSCILLATION FUNCTION Overview In this function, the feedrate of oscillation axis (equivalent to a chopping axis that is moved vertically and repeatedly for grinding) changes along sine curve. This function is effective to improve, the acc...

  • Page 514

    1.AXIS CONTROL B-64483EN-1/03 - 484 - Explanation - Oscillation activated by signal input Before oscillation motion is started, oscillation axis, reference position, upper dead point, lower dead point, and oscillation base feedrate must be set on the parameter screen or the oscillation screen. O...

  • Page 515

    B-64483EN-1/03 1.AXIS CONTROL - 485 - F : Oscillation base feedrate [mm/min] Q : Distance between the upper dead point and lower dead point [mm] k : Oscillation override (0.0 (0%) to 1.5 (150%)) t : Time [sec] The value (kF) of the product of oscillation base feedrate and oscillation override i...

  • Page 516

    1.AXIS CONTROL B-64483EN-1/03 - 486 - (1) Point R > Center point between upper and lower dead points Upper dead pointLower dead pointPoint RCancel Center point(i)(ii) After cancel command, oscillation motion is continued until oscillation axis passes center point between upper and lower dead...

  • Page 517

    B-64483EN-1/03 1.AXIS CONTROL - 487 - State before G81.1 command The first dead pointIn the state that command of cancel was specified on the way to upper dead point at last oscillation motion. Upper dead point - Acceleration/deceleration Linear acceleration/deceleration by parameter No.25653 i...

  • Page 518

    1.AXIS CONTROL B-64483EN-1/03 - 488 - New upper dead pointPrevious upper dead pointLower dead point The tool first moves to the previous upper dead point, then to the lower dead point, and finally to the new upper dead point. (4) When the lower dead point is changed during movement from the lo...

  • Page 519

    B-64483EN-1/03 1.AXIS CONTROL - 489 - - PMC axis When the oscillation axis is operating as the PMC axis, oscillation is not started. - Mirror image Never attempt to apply the mirror image function about the oscillation axis. - Move command during oscillation motion If a move command is specifi...

  • Page 520

    1.AXIS CONTROL B-64483EN-1/03 - 490 - Example To start oscillation, specify the following command: G90 G81.1 Z100. Q-25. R10. F3000. ; - The tool moves to point R (Z+R = Z110.0) with rapid traverse feedrate. - Next, move to center point (Z87.5) between upper dead point (Z100.0) and lower dead po...

  • Page 521

    B-64483EN-1/03 1.AXIS CONTROL - 491 - Superimposed control If oscillation axis is set to master axis and superimposed control is started, it is necessary on the corresponding path to be executing superimposed ahead mode by adjusting superimposed ahead signal OVLN <Gn531.4> to "1"...

  • Page 522

    1.AXIS CONTROL B-64483EN-1/03 - 492 - Starting sequence of the superimposed ahead mode and superimposed control. Superimposed control axisselect signal OVLS Superimposed control modesignal SYN End signal FIN Strobe signal MF Superimposed control startM command Waiting b...

  • Page 523

    B-64483EN-1/03 1.AXIS CONTROL - 493 - Canceling sequence of the superimposed ahead mode and superimposed control. Superimposed ahead mode OFFM command Superimposed control cancelM command Superimposed ahead signalOVLN Superimposed ahead under waysignal OVLNS End signal ...

  • Page 524

    1.AXIS CONTROL B-64483EN-1/03 - 494 - Signal Oscillation start signal CHPST <Gn051.6> [Classification] Input signal [Function] Starts and stops oscillation. [Operation] Setting this signal to "1" starts oscillation. Setting this signal to "0" during osc...

  • Page 525

    B-64483EN-1/03 1.AXIS CONTROL - 495 - [Operation] When this signal is "1", the control device operates as follows. - The corresponding path enters the superimposed ahead state. To switch superimposed ahead signal to "1" or "0", it is necessary to stop al...

  • Page 526

    1.AXIS CONTROL B-64483EN-1/03 - 496 - Parameter #7 #6 #5 #4 #3 #2 #1 #0 8008 PFE [Input type] Parameter input [Data type] Bit axis #1 PEF If superimposed ahead signal <Gn531.4> is set to "1" , advanced preview feed forward for PMC axis control rapid traverse (00h),...

  • Page 527

    B-64483EN-1/03 1.AXIS CONTROL - 497 - 8372 Oscillation upper dead point [Input type] Parameter input [Data type] Real path [Unit of data] mm, inch, deg (input unit) [Min. unit of data] Depend on the increment system of the oscillation axis [Valid data range] 9 digit of minimum unit of data ...

  • Page 528

    1.AXIS CONTROL B-64483EN-1/03 - 498 - NOTE When this parameter is set, the power must be turned off before operation is continued. #0 SSO High precision oscillation function is 0: Disabled. 1: Enabled. #7 #6 #5 #4 #3 #2 #1 #0 25651 HST SGS FFS OST [Input type] Parameter input [Dat...

  • Page 529

    B-64483EN-1/03 1.AXIS CONTROL - 499 - #3 HST During oscillation motion, if oscillation hold signal *CHLD <Gn051.7> is set to"0" from "1", 0: Oscillation axis moves to point R and suspends. (Standard specification) 1: Oscillation axis decelerates and suspends. NOTE If...

  • Page 530

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 500 - 2 PREPARATIONS FOR OPERATION Chapter 2, “PREPARATIONS FOR OPERATION”, consists of the following sections: 2.1 EMERGENCY STOP .....................................................................................................................

  • Page 531

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 501 - To prevent the machine from moving beyond the software limit through servo feedback error, always install a stroke end limit switch (shown in Fig. 2.1 (b) as follows). Emergency stop limit switchRelay power supply Spark killer+X -X+Y-Y+Z-Z+4-4...

  • Page 532

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 502 - 2.2 CNC READY SIGNALS Overview When the CNC is turned on and becomes ready for operation, the CNC ready signal is set to 1. Signal CNC Ready Signal MA<Fn001.7> [Classification] Output signal [Function] The CNC ready signal indicates th...

  • Page 533

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 503 - 2.3 OVERTRAVEL CHECK 2.3.1 Overtravel Signals Overview When the tool tries to move beyond the stroke end set by the machine tool limit switch, the tool decelerates and stops as a result of tripping the limit switch, and an OVER TRAVEL is displa...

  • Page 534

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 504 - t2 : Receiver delay time 30msec T : Acceleration/deceleration time [msec] TS : Servo system delay [msec] (ii) Linear acceleration/deceleration Tt2t1V *+Lα limit switchCommand pulse decelerationServo system delay tV TS L=V(t1+t2+T/2+TS)×1/6...

  • Page 535

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 505 - #5 OTH The overtravel limit signal is: 0: Checked 1: Not checked WARNING For safety, usually set 0 to check the overtravel limit signal. Alarm and message Number Message Description OT0506 + OVERTRAVEL ( HARD ) The stroke limit switch in...

  • Page 536

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 506 - At this time, a signal (overtravel alarm signals +OT1 to +OT8 <Fn124>, -OT1 to -OT8 <Fn126>) can be output to the PMC if bit 6 (OTS) of parameter No. 1301 is set to 1. In addition, when the tool enters the forbidden area during manu...

  • Page 537

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 507 - Movement area 1 Parameter No. 1321 Parameter No. 1320 Parameter No. 1326 Parameter No. 1327 Movement area 2 Fig. 2.3.2 (c) NOTE Simultaneous selection of stored stroke limit 1-I and -II cannot be used together with the chopping function. Si...

  • Page 538

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 508 - Axis direction dependent stored stroke check 1 switch signals +EXL1 to +EXL8<Gn104>, -EXL1 to -EXL8<Gn105> [Classification] Input signal [Function] Switches between stroke limit 1-I (parameter No. 1320 and No. 1321) and stroke lim...

  • Page 539

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 509 - #7 #6 #5 #4 #3 #2 #1 #0 Fn124 +OT8 +OT7 +OT6 +OT5 +OT4 +OT3 +OT2 +OT1 Fn126 -OT8 -OT7 -OT6 -OT5 -OT4 -OT3 -OT2 -OT1 Parameter #7 #6 #5 #4 #3 #2 #1 #0 1300 BFA LMS NAL [Input type] Setting input [Data type] Bit path #1 NAL Wh...

  • Page 540

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 510 - #4 OF1 If the tool is moved into the range allowed on the axis after an alarm is raised by stored stroke check 1, 0: The alarm is not canceled before a reset is made. 1: The OT alarm is immediately canceled. NOTE In the cases below, the au...

  • Page 541

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 511 - When the stored stroke check switch signal EXLM is set to 1, or the stored stroke check switch signals for each axis direction +EXLx and -EXLx are set to 1, parameter No. 1326 and No. 1327 are used for stroke check instead of parameter No.1320 ...

  • Page 542

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 512 - In this function, coordinate values III to VIII can be defined by parameters Nos. 1350 to 1361 in addition to coordinate values I and II above. The stored stroke check 1 select signal can be used to switch between these coordinate values of the...

  • Page 543

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 513 - NOTE When bit 0 (DLM) of parameter No. 1301 is set to 1, the stored stroke check 1 select signal EXLM (EXLM3, EXLM2, or EXLM when stored stroke check 1 area expansion is used) is made invalid. 1320 Coordinate value I of stored stroke check 1...

  • Page 544

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 514 - NOTE 1 Specify diameter values for any axes for which diameter programming is specified. 2 The outside of the area set with each parameter is treated as the inhibition area. 3 The stored stroke check 1 select signal (EXLM3, EXLM2, EXLM) is vali...

  • Page 545

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 515 - 2.3.4 Stored Stroke Check 2, 3 Overview For stored stroke check 2, the outside or inside of the area specified by parameters or a program is defined as the forbidden area. As a limit position, specify a distance from the origin of the machine c...

  • Page 546

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 516 - The following shows the areas which the tool cannot enter for each stored stroke check. • Stroke check 1: Outside • Stroke check 2: Outside or inside (switchable) • Stroke check 3: Inside When the tool moves into the forbidden area, an al...

  • Page 547

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 517 - - Format Stored stroke check 2 on G22 X Y Z I J K ; X, Y, Z: Coordinate of stored stroke check 2 in the positive direction on each axis I, J, K: Coordinate of stored stroke check 2 in the negative direction on each axis Use add...

  • Page 548

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 518 - - Forbidden area overlapping Area can be set in piles. Setting the forbidden area overlapping Fig. 2.3.4 (h) Setting the forbidden area overlapping Unnecessary limits should be set beyond the machine stroke. - Condition under which each che...

  • Page 549

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 519 - #0 OUT The area inside or outside of the stored stroke check 2 is set as an inhibition area 0: Inside 1: Outside #5 RL3 Stored stroke check 3 release signal RLSOT3 is 0: Disabled 1: Enabled #7 BFA When the stored stroke check 1, 2, or 3...

  • Page 550

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 520 - [Valid data range] 9 digit of minimum unit of data (refer to standard parameter setting table (A)) (When the increment system is IS-B, -999999.999 to +999999.999) Set the coordinate value of stored stroke check 3 on each axis in the + or - dire...

  • Page 551

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 521 - Caution CAUTION 1 If the two points for specifying a forbidden area are identical, the inside for check 2 is forbidden (bit 0 (OUT) of parameter No. 1300 = 0), and all areas are handled as movement areas for check 3. 2 Even if the two points f...

  • Page 552

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 522 - NOTE 1 This function stores machine coordinates periodically while the CNC is operating. This means that no machine coordinates are stored when the tool moves while the power is off. If the power to the CNC is turned off while the tool is mov...

  • Page 553

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 523 - NOTE When this parameter is set, the power must be turned off before operation is continued. #0 DOTx Stored stroke limit check immediately after power-on is: 0: Disabled. 1: Enabled. If the stored stroke check is enabled, the machine coord...

  • Page 554

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 524 - • Parameter No. 1320: Coordinate value I of stored stroke check 1 in the positive direction on each axis • Parameter No. 1321: Coordinate value I of stored stroke check 1 in the negative direction on each axis • Parameter No. 1322: Coordi...

  • Page 555

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 525 - Explanation - Setting the forbidden area for a chuck • Chuck holding the outer face of a tool • Chuck holding the inner face of a toolW L1 L W1 CZAXCXZWL1LW1AX CX Z CZOrigin of workpiece coordinate systemNote) The hatched areas indicate...

  • Page 556

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 526 - - Setting the forbidden area for a tail stock Z LL1L2D3D2D1DTZBX Origin of the workpiece coordinate system Workpiece Fig. 2.3.8 (b) Symbol Description Parameter TZ Tailstock position (along the Z-axis) No.1348 L Tailstock length No.1341 D Ta...

  • Page 557

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 527 - When the G23 command (stored stroke check off) is specified, the tail stock barrier is disabled regardless of the signal *TSB. When the G22 command (stored stroke check on) is specified, the tail stock can be disabled by setting the signal to 1...

  • Page 558

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 528 - <2> When the tool enters an entry-inhibition area during automatic operation, set the manual absolute signal, *ABSM <Gn006.2>, to 0 (on), then manually retract the tool from the area. If this signal is 1, the distance the tool moves...

  • Page 559

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 529 - Dimensions of the claw of a chuck (L1) 1333 [Input type] Parameter input [Data type] Real path [Unit of data] mm, inch (input unit) [Min. unit of data] Depend on the increment system of the applied axis [Valid data range] 0 or positive 9...

  • Page 560

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 530 - [Unit of data] mm, inch (input unit) [Min. unit of data] Depend on the increment system of the applied axis [Valid data range] 9 digit of minimum unit of data (refer to standard parameter setting table (A)) (When the increment system is IS-B, ...

  • Page 561

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 531 - [Valid data range] 0 or positive 9 digit of minimum unit of data (refer to the standard parameter setting table (B)) (When the increment system is IS-B, 0.0 to +999999.999) Set the length (L1) of the tail stock. NOTE Whether to specify this p...

  • Page 562

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 532 - NOTE Specify this parameter by using a diameter value at all times. Diameter of a tail stock (D3) 1347 [Input type] Parameter input [Data type] Real path [Unit of data] mm, inch (input unit) [Min. unit of data] Depend on the increment...

  • Page 563

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 533 - Warning WARNING 1 When the stored stroke check 2 or 3 option and chuck/tail stock barrier option are used at the same time, the chuck/tail stock barrier option is valid and stored stroke check 2 or 3 is ignored. 2 If an alarm is issued, the t...

  • Page 564

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 534 - 2.3.9 Rotation Area Interference Check Overview This function checks the tool post and chucks for any interference to bring the machine to a stop safely. Four groups of interference check areas can be set; each group can be specified by combini...

  • Page 565

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 535 - Operation An interference check can be performed in the six patterns below. - Group A-group B The two groups are checked for any interference due to the movement and rotation of group A and those of group B. Interference check group A Interf...

  • Page 566

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 536 - - Group A-group D The two groups are checked for any interference due to the movement and rotation of group A and those of group D. Interference check group A Interference check group B Interference check group CInterference check Interferenc...

  • Page 567

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 537 - - Group B-group D The two groups are checked for any interference due to the movement and rotation of group B and those of group D. Interference check group AInterference check group B Interference check group C Interference check Interferenc...

  • Page 568

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 538 - NOTE 2 If an interference check detects interference, alarm OT0514, “(n) INTERFERENCE:+” or OT0515, , “(n) INTERFERENCE:-” is generated (where n is the name of the axis on which the alarm is generated). The alarm is generated on the axi...

  • Page 569

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 539 - NOTE 3 In the state in which no reference position is established, no interference check is performed. 4 Using the rotation area interference check disable signal ITCD<G0292.7>, the interference check function can be disabled. 5 Using the...

  • Page 570

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 540 - When 0, a signal enables the interference check function for its corresponding groups. Interference check area change signal ITRC <G0292.3> [Classification] Input signal [Function] Determines whether to reflect changes in the rectang...

  • Page 571

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 541 - [Data type] Bit #0 IB1 Movement direction of group B (the first axis) 0: The direction of movement along the first axis of the group-B movement plane is the same as the direction of movement along the first axis on the group-A movement pla...

  • Page 572

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 542 - #7 #6 #5 #4 #3 #2 #1 #0 14901 NB4 NB3 NB2 NB1 NA4 NA3 NA2 NA1 [Input type] Parameter input [Data type] Bit #0 NA1 Rectangle 1 in the group A which rotates according to the movement of rotary axes is specified. #1 NA2 Rectangle 2 in ...

  • Page 573

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 543 - 1: The direction of movement along the first axis of the group-D movement plane is opposite to the direction of movement along the first axis on the group-A movement plane. #3 IDA2 Movement direction of group D (the second axis) 0: The dir...

  • Page 574

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 544 - 14910 Axis number of the first axis of the plane on which group A is moved [Input type] Parameter input [Data type] Word [Valid data range] 0 to the number of controlled axes or m×100+n (m:1 to the path number, n:1 to the number of co...

  • Page 575

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 545 - 14912 Axis number of the rotary axis on which group A is rotated [Input type] Parameter input [Data type] Word [Valid data range] 0 to the number of controlled axes or m×100+n (m:1 to the path number, n:1 to the number of controlled axes)...

  • Page 576

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 546 - This parameter sets the axis number of the second axis of the group-B movement plane. Set the axis number of the axis parallel to the second axis of the group-A movement plane. If there is no relevant movement axis, set 0. 14915 Axis number o...

  • Page 577

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 547 - 901 to 932 : controlled axes on path9 1001 to 1032 : controlled axes on path10 This parameter sets the axis number of the second axis of the group-C movement plane. Set the axis number of the axis parallel to the second axis of the group-A ...

  • Page 578

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 548 - Setting value) 1 to 32 : controlled axes on own path 101 to 132 : controlled axes on path1 201 to 232 : controlled axes on path2 : 901 to 932 : controlled axes on path9 1001 to 1032 : controlled axes on path10 This parameter sets ...

  • Page 579

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 549 - If there is no relevant rectangle area, set 0. 14922 Maximum point of rectangle 1 of group A in the second axis 14923 Minimum point of rectangle 1 of group A in the second axis [Input type] Parameter input [Data type] Real [Unit of dat...

  • Page 580

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 550 - When a rotation axis is present (parameter No. 14912), set the distances from the machine zero point to the maximum and minimum points after the reference position return has been performed for the group-A movement axes with the rotation axis s...

  • Page 581

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 551 - [Data type] Real [Unit of data] mm, inch(machine unit) [Min. unit of data] Depend on the increment system of the reference axis in the first path [Valid data range] 9 digit of minimum unit of data(refer to standard parameter setting table(A))...

  • Page 582

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 552 - 14938 Reference angular displacement of the rotation axis of group A [Input type] Parameter input [Data type] Real [Unit of data] degree(machine unit) [Min. unit of data] Depend on the increment system of the reference axis in the first pa...

  • Page 583

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 553 - 14944 Maximum point of rectangle 2 of group B in the first axis 14945 Minimum point of rectangle 2 of group B in the first axis [Input type] Parameter input [Data type] Real [Unit of data] mm, inch(machine unit) [Min. unit of data] Depen...

  • Page 584

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 554 - When a rotation axis is present (parameter No. 14915), set the distances from the machine zero point to the maximum and minimum points after the reference position return has been performed for the group-B movement axes with the rotation axis s...

  • Page 585

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 555 - [Data type] Real [Unit of data] mm, inch(machine unit) [Min. unit of data] Depend on the increment system of the reference axis in the first path [Valid data range] 9 digit of minimum unit of data(refer to standard parameter setting table(A))...

  • Page 586

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 556 - (When the increment system is IS-B, -999999.999 to +999999.999) These parameters set the maximum point and minimum point of rectangle area 1 of group C in the first axis. When a rotation axis is present (parameter No. 14918), set the distances ...

  • Page 587

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 557 - 14966 Maximum point of rectangle 2 of group C in the second axis 14967 Minimum point of rectangle 2 of group C in the second axis [Input type] Parameter input [Data type] Real [Unit of data] mm, inch (machine unit) [Min. unit of data] De...

  • Page 588

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 558 - 14972 Maximum point of rectangle 4 of group C in the first axis 14973 Minimum point of rectangle 4 of group C in the first axis [Input type] Parameter input [Data type] Real [Unit of data] mm, inch (machine unit) [Min. unit of data] Depe...

  • Page 589

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 559 - 14978 Reference angular displacement of the rotation axis of group C [Input type] Parameter input [Data type] Real [Unit of data] degree(machine unit) [Min. unit of data] Depend on the increment system of the reference axis in the first pa...

  • Page 590

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 560 - [Valid data range] 9 digit of minimum unit of data(refer to standard parameter setting table(A)) (When the increment system is IS-B, -999999.999 to +999999.999) These parameters set the maximum point and minimum point of rectangle area 2 of gro...

  • Page 591

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 561 - These parameters set the maximum point and minimum point of rectangle area 3 of group D in the second axis. The set plane is specified with group-A movement axes 1 and 2. Set the distances from the machine zero point to the maximum and minimum ...

  • Page 592

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 562 - Set the distances from the machine zero point after reference position return has been performed for group-D movement axes. Be sure to set a radius value regardless of whether the axis command is a diameter- or radius-programmed command. The se...

  • Page 593

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 563 - Group A rotation axis B-axis Parameter No. 14912=5 Group B movement, 1st axis A-axis Parameter No. 14913=6 - Reference position return Perform a reference position return on each axis. - Positioning of the rotation axis at the reference ro...

  • Page 594

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 564 - Maximum pointMinimum point1st axis maximum point distance1st axis minimum point distanceMachine zero point 2nd axis minimum point distance2nd axis maximum point distance Parameter No. 14920 = Rectangle 1 1st axis maximum point distance Parame...

  • Page 595

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 565 - - Settings for interference check group B Similarly to interference check group A, in the state in which a reference position return is performed on the A-axis, measure the data on the rectangles making up the interference check group and set ...

  • Page 596

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 566 - Interference check group A Interference check group B X Z A Set bit 0 (IB1) of parameter No. 14900 to 1. IB1 1: The movement direction on the 1st axis on the group B movement plane is opposite to that on the 1st axis on the group A movement p...

  • Page 597

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 567 - Parameter No. 14966 = Rectangle 2 2nd axis maximum point distance Parameter No. 14967 = Rectangle 2 2nd axis minimum point distance Parameter No. 14968 = Rectangle 3 1st axis maximum point distance Parameter No. 14969 = Rectangle 3 1st axis min...

  • Page 598

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 568 - When the reference rotation angle of the A-axis is determined, set it in the parameter: Group B reference rotation angle Parameter No. 14958=A-axis machine coordinates - Rectangles to make up interference check group A In the state in which a...

  • Page 599

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 569 - - Settings for interference check group B Similarly to interference check group A, in the state in which the A-axis is positioned at the reference rotation angle, measure the data on the rectangles making up the interference check group and se...

  • Page 600

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 570 - The amount of overtravel can be determined with the following formula. All interference checks are performed in the time set in bits 4 (IC1) to 7 (IC4) of parameter No. 14900. The time will be a multiple of 8. If bits 4 (IC1) to 7 (IC4) of para...

  • Page 601

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 571 - 2.3.10 Built-in 3D Interference Check Overview This function checks for interference between structures, such as the tool, workpiece, and table, in 3-dimensional space on a real-time basis to determine in advance whether there is any machine in...

  • Page 602

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 572 - For the M series, the tool, tool holder, workpiece, jig, and table are assumed as interference check objects. For the T series, the cutting tool and tip, tool post, workpiece, chuck, and spindle are assumed as interference check objects. The f...

  • Page 603

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 573 - No. Work Reference item To be performed by 4 Setting of move axes for the following interference check objects: - Tool holder (Tool) - Workpiece - Jig - Machine structure (M series: table) “Definition of the moving axes” “Moving axis sett...

  • Page 604

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 574 - 4) More than one interference check combination is enabled by parameters TDIC100 to TDIC424. 5) The number of shapes that make up each interference check object enabled by parameters TDIC100 to TDIC424 is not 0. 6) All moving axes of each inter...

  • Page 605

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 575 - Function Tool Tool holder Object Interference check object name (Note 5) 0: Default name 1: “CUTTER” 2: “SINGLE PNT” 3: “TOOL” 0: Default name 1: “TURRET” 2: “TOOL HOLDER” 3: “TOOL POST” 4: “SPINDL HEAD” 0: Default n...

  • Page 606

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 576 - NOTE 1. For explanatory purposes, the tools for the first to fourth paths are referred to as tool 1, tool 2, tool 3, and tool 4, respectively. 2. For explanatory purposes, the tool holders for the first to fourth paths are referred to as tool h...

  • Page 607

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 577 - Fig. 2.3.10 (e) Combinations of interference check objects The default combinations of interference check objects are as shown in Table2.3.10 (d). Since performing the interference check for all these combinations takes tim...

  • Page 608

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 578 - NOTE 1. Usable when 1-path system is used and parameter ENO (No.10930#6) is set to 1. Or usable when the number of controlled paths is 2 or more. 2. Usable when the number of controlled paths is 2 or more. Tool holder 2 operates in combination...

  • Page 609

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 579 - The processed area can be judged by interference signal. Only the area being processed now can make the interference check object effective by the PMC window function (Function code: 436). As a result only a necessary interference check can be ...

  • Page 610

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 580 - If the function finds as a result of referencing the above data that it is unable to create a solid shape because the tool length, tool diameter, or other item is set to 0, alarm PS0492 “3DCHK FIG. ILLEGAL: [Target name]” is issued. If the ...

  • Page 611

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 581 - Table 2.3.10 (g) Tool geometry size data Tool type Tool name Tool set Holder numberTool data General-purpose tool (Note1) GENERAL Tool set(Note5)Holder number Cut edge angle Nose angle Tip width Tip thickness Threading tool (Note2) THREAD Tool ...

  • Page 612

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 582 - NOTE 1 The tip th of the general-purpose tool is regarded as the same as the tool width. 2 The tip length of the threading tool is calculated according to the nose angle and the tip width. 3 The tip length of the point nose straight tool is ca...

  • Page 613

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 583 - NOTE 1. When the difference value with an actual tool is set to the tool offset data, correct tool figure cannot be made. Please set data to the tool geometry size data. 2. Either the tool length or the tool radius can be retrieved. When both t...

  • Page 614

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 584 - The tip figure is made by the following method based on element 1 of the tool holder figure. - Thickness of the tip (a) : The opposite direction of adjacent vertex 1 of figure element 1 - Length of the tip (b) : The same direction of adjacent ...

  • Page 615

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 585 - Tool reference position Reference position Adjacent vertex 1 Adjacent vertex 2 Adjacent vertex 3Tip Figure element 2 Figure element 1 (a)(b) (c)Tip Fig.2.3.10 (h) 2. When tool setting of the each tool is set as Table2.3.10 (l), tip figure is...

  • Page 616

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 586 - Tool reference positionReference position Adjacent vertex 1 Adjacent vertex2 Adjacent vertex 3 Tip Figure element 2 Figure element 1(a)(b) (c)Tip Fig.2.3.10 (i) 3. When tool setting of point nose straight tool is set as Table2.3.10 (m), tip...

  • Page 617

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 587 - Making method 2 The following tools are made in the cylinder as Fig.2.3.10 (k). - Drill - Flat end mill - Ball end mill - Tap - Reamer - Boring tool - Face mill - Angle tool - Side tool for drill X Y Z Reference coordinate system Tool Referen...

  • Page 618

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 588 - Adjacent vertex 2( Tool holder) Adjacent vertex 3(Tool holder) Adjacent vertex 1(Tool holder)(c)(a)(c)(a)Tool HolderTool element 1Tool element 2Tip figureTool ref. point Tool tip direction(b)(b) Fig.2.3.10 (l) The reference vertex and the dir...

  • Page 619

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 589 - ・ Figure element 2 - The reference vertex: Calculated as Fig.2.3.10 (n). Element 1Element 2Adjacent vertex 2(element 1) Ref. vertex(element 2) Tool length 2 / 2 Tool width 2 / 2Adjacent vertex 1(element 2) Adjacent vertex 3(element 2) Fig....

  • Page 620

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 590 - Tool element 1 direction End point (Tool holder)Start point (Tool holder) Tool ref. point Tool element 2 direction= Tool direction (set to tool holder) Tool tip direction Fig.2.3.10 (p) The start point, the end point and the radius of the ea...

  • Page 621

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 591 - ・ Tip figure The reference position and each figure data of tip figure are set as follows. - The reference position: The end point of figure element 2 - Length of the tip: Tool tip direction set to tool holder (Tip width 1) - Width of the tip...

  • Page 622

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 592 - Adjacent vertex 2( Tool holder ) Adjacent vertex 3Adjacent vertex 1( Tool holder ) (c)(b)(b)(c)(a)(a)(b)(c)Tool HolderTool element 1Tool element 2Tool element 3Tip figureTool ref. pointTool tip direction(a) Fig.2.3.10 (s) The reference positi...

  • Page 623

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 593 - ・ Figure element 2 - The reference vertex: Adjacent vertex 2 of figure element 1 - Adjacent vertex 1 (a): The same direction to adjacent direction 1 of figure element1 (Length = Tool width 1) - Adjacent vertex 2 (b): The opposite direction t...

  • Page 624

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 594 - End point (Tool holder)Start point (Tool holder)Tool ref. point Tool element 1 directionTool element 2 direction= Tool tip direction (set to tool holder) Tool element 3 direction = Opposite direction of tool element 1 Tool tip direction ...

  • Page 625

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 595 - ・ Tip figure The reference position and each figure data of tip figure are set as follows. - The reference position: The end point of figure element 3 - Length of the tip: The opposite direction from start point to end point of figure eleme...

  • Page 626

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 596 - [Input data structure] +0 (Function code) 431 +2 (Completion code) - (Need not to be set) +4 (Data length) 2 +6 (Data number) 0 +8 (Data attribute) 0 +10 +11 Tool compensation number 2 bytes Tool compensation number Signed binary number...

  • Page 627

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 597 - CAUTION Built-in 3D interference check function is ineffective while executing this PMC window. NOTE To read or write data for the second path in two-path control CNC, add 1000 to the function code number. Similarly, to read or write data f...

  • Page 628

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 598 - 3. Up to 120 figures can be registered for tool holder 1-4. Up to 10 figures can be registered for each object. 4. For interference object 1-6, validate the figure by the following method. - Selecting interference check valid figure screen - C...

  • Page 629

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 599 - NOTE If the shape definition described later is not parallel to the X-, Y-, or Z-axis of the reference coordinate system or is rotated along the rotation axis, the interference check processing time takes longer. Therefore, define each shape s...

  • Page 630

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 600 - • Plane Set plane Interference check target plane Normal vector Fig.2.3.10 (dd) Margin width D is automatically calculated by the CNC using the rapid traverse rate of each axis. Margin width D (mm) = 100060TF×× F: Largest value of the r...

  • Page 631

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 601 - NOTE 1 The set margin width is applied, regardless of the length of the interference check processing time. If the processing takes time, pay attention to setting the margin width. For the interference check processing time, check No.1900 (buil...

  • Page 632

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 602 - The comment is set by reading the setting data for built-in 3D interference check. Please refer to “INPUT AND OUTPUT OF SETTING DATA FOR 3D INTERFERENCE CHECK” for the input format. Setting items of 3D interference check function Setting ...

  • Page 633

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 603 - X Y Z Reference coordinate system Reference positionRectangular parallelepiped Cylinder Plane Fig.2.3.10 (gg) The reference coordinate system is machine-specific coordinate system that does not move with any axis. Generally, this represents t...

  • Page 634

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 604 - Adjacent vertexes 1, 2, and 3 are the vertexes located at the other ends of the three sides extending from the reference vertex. The vector from the reference vertex (with the reference position being the start point and an adjacent vertex bei...

  • Page 635

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 605 - Reference positionX Y Z Reference coordinate system Arbitrary point Normal vector Fig.2.3.10 (jj) An arbitrary point is any given point on the plane. As the data, set the vector from the reference position (X,Y,Z). The normal vector is a vec...

  • Page 636

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 606 - Reference coordinate system XYZ Rotation center axis position (Position of an arbitrary point on the rotation center axis) Z Y X Example where one rotation axis controls the direction of a tool Rotation center axis Fig. 2.3.10 (kk) Reference...

  • Page 637

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 607 - Example when there are two rotation axes to control the tool directionMaster = Rotation axis 1First rotation axisSlave = Rotation axis 2 Second rotation axis Fig. 2.3.10 (mm) Second rotation axisMaster = Rotation axis 1Slave = Rotation axis ...

  • Page 638

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 608 - Reference coordinate system XYZ Rotation center axis position (Position of an arbitrary point on the rotation center axis of the master) Z Y X Example where two rotation axes control the direction of a tool First rotation axis (Rotation center...

  • Page 639

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 609 - 3D interference check using an NC program command Changing the interference object using an NC program command By specifying the G22.2 command in the NC program, it is possible to change the valid figure of an interference object to another fi...

  • Page 640

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 610 - - G10L35: Figure information setting (Only for the tool holder) - G10L36: Shape information setting (Rectangular parallelepiped / Cylinder / Plane) - G10L37: Valid figure setting (Object) The command format is the same as the I/O format. Pleas...

  • Page 641

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 611 - [Output data structure] +0 (Function code) 436 +2 (Completion code) ? (See above description) +4 (Data length) 2 (Same as input data) +6 (Data number) Interference object number (Same as input data) +8 (Data attribute) 0 (Same as input data) +...

  • Page 642

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 612 - Setting screens of 3D interference check function On the setting screens of built-in 3D interference check function, the following operations can be performed: • Sets each target figure for interference check. • Checks the current setting. ...

  • Page 643

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 613 - Fig. 2.3.10 (rr) Figure setting menu screen 10.4” Fig. 2.3.10 (ss) Figure setting menu screen 15” The maximum number of objects that can be set is 3 in 1-path control and parameter ENO (No.10930#6) is set to 0. The maximum number of obj...

  • Page 644

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 614 - NOTE Set the “names of objects” and “names of tool holders” on the relevant setting screen described later. Select an object or tool holder on the menu screen and press soft key [SELECT] or the <INPUT> key to display the relevan...

  • Page 645

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 615 - Fig. 2.3.10 (uu) Object figure setting screen 15” In the above setting example, figure 1 consists of five rectangular parallelepipeds (Figure element 2 = Shape number 19, Figure element 3 = Shape number 23, Figure element 4 = Shape number 2...

  • Page 646

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 616 - [SHAPE SET] : Sets a new shape or changes the shape type. [NO.SRH] : Displays the figure setting screen for the input figure number. Pressing soft key [ROTATION] causes soft keys for rotation operation to appear. Fig. 2.3.10 (vv) Soft keys ...

  • Page 647

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 617 - Fig. 2.3.10 (aaa) the soft keys which appear after selecting kind of shape 4. Pressing soft key [EXEC] causes the setting screen for the selected shape type to appear. The shape data before change is cleared. To cancel the change of the sha...

  • Page 648

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 618 - Fig. 2.3.10 (bbb) Tool holder figure setting screen 10.4” Fig. 2.3.10 (ccc) Tool holder figure setting screen 15” The number of figures that can be defined for tool holders is as follows: - Up to 120 in a 1-path system - Up to 60 i...

  • Page 649

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 619 - CAUTION The setting you make is not updated until you turn the power off, then on again, or set built-in 3D interference check setting change signal TDICHG to “1”. Shape type display To the right of each shape number, the icon indicating...

  • Page 650

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 620 - 4. Press the soft key corresponding to the shape type you want to set. Pressing the soft key selects the relevant shape type and displays the relevant setting screen. Procedure for changing the shape type To change the shape type of set shape ...

  • Page 651

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 621 - When rectangular parallelepiped data is not input or is invalid, no shape is displayed. Fig. 2.3.10 (jjj) Rectangular parallelepiped setting screen 10.4” Fig. 2.3.10 (kkk) Rectangular parallelepiped setting screen 15 inch Operation On t...

  • Page 652

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 622 - Fig. 2.3.10 (lll) Soft keys for rotation operation Soft key [↑]: Rotates the shape for check upward. Soft key [↓]: Rotates the shape for check downward. Soft key [←]: Rotates the shape for check to left. Soft key [→]: Rotates the shap...

  • Page 653

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 623 - Fig. 2.3.10 (nnn) Cylinder setting screen 15” Operation On the cylinder setting screen, the following soft keys are available to perform operation: [SHAPE LIST] : Displays the shape number list screen. [FIGURE] : Returns to the figure se...

  • Page 654

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 624 - Fig. 2.3.10 (ppp) Plane setting screen 15” Operation On the plane setting screen, the following soft keys are available to perform operation: [SHAPE LIST] : Displays the shape number list screen. [FIGURE] : Returns to the figure setting...

  • Page 655

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 625 - Fig. 2.3.10 (qqq) Shape number list screen 10.4” Fig. 2.3.10 (rrr) Shape number list screen 15” Moving the cursor on a shape number and pressing soft key [EDIT] causes the setting screen for the relevant shape to appear to enable the ed...

  • Page 656

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 626 - Operation On the shape number list screen, the following soft keys are available to perform operation: [EDIT] : Edits shape data for the shape number selected by the cursor. [NO.SRH] : Searches for a shape number input in the key-in buffe...

  • Page 657

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 627 - 1. Move the cursor to the shape number of which data you want to edit. 2. Press soft key [EDIT]. Pressing soft key [EDIT] causes the setting screen for the set shape type to appear. When no shape type is set, the rectangular parallelepiped sett...

  • Page 658

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 628 - Fig. 2.3.10 (yyy) Interference check valid figure selection screen 15” In the setting example shown in Fig. 2.3.10 (xxx) and Fig. 2.3.10 (yyy), 3D interference check is made for the object having figure number 1. Interference check is not m...

  • Page 659

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 629 - 3) Axis numbers of the first, second, and third linear axes: Set the axis number of the axis parallel to the X-, Y-, or Z-axis in the reference coordinate system as the axis number of each of the 1st, 2nd, and 3rd linear axes along which to mov...

  • Page 660

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 630 - Fig. 2.3.10 (aaaa) Moving axis setting screen 15”

  • Page 661

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 631 - NOTE 1 Set the direction of the rotation center axis of the rotation axis. 1: On X-axis 2: On Y-axis 3: On Z-axis 4: On an axis tilted a certain angle from the X-axis from the positive X-axis to positive Y-axis 5: On an axis tilted a certain an...

  • Page 662

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 632 - Monitor menu screen Screen configuration On the monitor menu screen, select a tool, tool holder, or object to display information related to the selected item. The following information is displayed according to the type of target item: The to...

  • Page 663

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 633 - NOTE Set the names of tools, tool holders, and objects which are to interfere with a tool on the relevant setting screen described later. Operation On the monitor menu screen, the following soft keys are available to perform operation: [SEL...

  • Page 664

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 634 - Fig. 2.3.10 (gggg) Soft keys displayed when the drawing coordinate system is changed 3. Press soft key [EXEC]. Pressing soft key [EXEC] determines the change of the drawing coordinate system. To cancel the change of the drawing coordinate sys...

  • Page 665

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 635 - Fig. 2.3.10 (iiii) Monitor screen for tool 15” Operation On the tool monitor screen, the following soft keys are available to perform operation: [MENU] : Displays the monitor menu screen. [UPDATE] : Updates the display of the figure fo...

  • Page 666

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 636 - Fig. 2.3.10 (kkkk) Object monitor screen 10.4” Fig. 2.3.10 (llll) Object monitor screen 15” Operation On the tool holder and object monitor screen, the following soft keys are available to perform operation: [MENU] : Displays the monit...

  • Page 667

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 637 - Soft key [↓] : Rotates the figure for check downward. Soft key [←] : Rotates the figure for check to left. Soft key [→] : Rotates the figure for check to right. Setting screens On setting screens, set the following items: - Names of too...

  • Page 668

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 638 - Interference check target item names No.Tool Tool holder Object 7 “TOOL HOLDER” 8 “STRUCTURE” 9 “OBJECT” 10 “WORK HEAD” 11 “WORK LIMIT” Default names The default names listed in Table 2.3.10 (o). below are used. ...

  • Page 669

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 639 - Fig. 2.3.10 (oooo) Name setting screen 15” Display setting screen Define the items displayed on built-in 3D interference check function setting screens. Set the following items: - Number of shapes: Set a numeric value between 0 and 150. On ...

  • Page 670

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 640 - Fig. 2.3.10 (pppp) Display setting screen 10.4” Fig. 2.3.10 (qqqq) Display setting screen 15” When the display of a figure setting screen is set to “NO”, the figure setting screen, moving axis setting screen, and interference check...

  • Page 671

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 641 - Number Drawing coordinate system 6 XYZ 7 YXZ 8 YZX Fig. 2.3.10 (rrrr) Drawing coordinate system setting screen 10.4” Fig. 2.3.10 (ssss) Drawing coordinate system setting screen 15” An asterisk (*) is displayed to the left of the curren...

  • Page 672

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 642 - Procedure for setting the drawing coordinate system To set the drawing coordinate system used to display the shape for check, use the following procedure: 1. Use the cursor keys <↑>, <↓>, <←>, and <→> to move th...

  • Page 673

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 643 - Fig. 2.3.10 (uuuu) Setting input/output screen 15” Input setting data for 3D interference check The setting data for built-in 3D interference check are loaded into the memory of the CNC from a memory card. The input format is the same as th...

  • Page 674

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 644 - 6. Press soft key [(OPRT)]. 7. Press the EDIT switch on the machine operator’s panel or enter state emergency stop. 8. Press soft key [F OUTPUT]. 9. Type the file name that you want to output. If the file name is omitted, default file name ...

  • Page 675

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 645 - NOTE ・ Up to ten ASCII characters can be set to the comment. When over ten characters are input, ten characters from the head are set to the comment. ・ Refer to the Table2.3.10 (q) which lists the character that can be set as a comment. The...

  • Page 676

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 646 - P_ : Type of interference check target item 1: Object 2: Tool holder Q_ : Number of the interference check target item The object (P1): 1 to 6 The tool holder (P2): 1 to 4 D_ : Figure screen display setting 0: Displays the figure screen. 1: Do...

  • Page 677

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 647 - T2=Cylinder definition information T3=Plane definition information - For no definition (T0) G10 L36 N_ T0 ; N_ : Shape number (1 to 150) T0 : T0 indicates that no data is defined for the shape number (N_). NOTE When data is input, defini...

  • Page 678

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 648 - (9) Moving axis information G10 L38 P_ Q_ N_ K_ A1(_) D1(_) A2(_) D2(_) A3(_) D3(_) I1(_) J1(_) X1(_) Y1(_) Z1(_) U1(_) V1(_) I2(_) J2(_) X2(_) Y2(_) Z2(_) U2(_) V2(_) M1(_) S1(_) M2(_) S2(_) … M6(_) S6(_) ; P_ : Type of interference chec...

  • Page 679

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 649 - Built-in 3D interference check disable signal TDID <G519.3> [Classification] Input signal [Function] Enables or disables built-in 3D interference check function. [Operation] When this signal is set to “1”, built-in 3D interfere...

  • Page 680

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 650 - Parameter change TDICHG<G0519.4> TDIACK<F0531.5> Fig.2.3.10 (vvvv) Time chart for changing 3D interference check-related setting NOTE - When changing settings related to 3D interference check after the CNC is turned on, halt the ...

  • Page 681

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 651 - The tool holder move axis data invalid signal TDIH1AE <F0542.4> TDIH2AE <F0542.5> TDIH3AE <F0542.6> TDIH4AE <F0542.7> [Classification] Output signal [Function] In built-in 3D interference function, this signal indic...

  • Page 682

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 652 - Signal address #7 #6 #5 #4 #3 #2 #1 #0 G0518 TDISD G0519 TDICHG TDID G0534 TDISAW #7 #6 #5 #4 #3 #2 #1 #0 F0531 TDIACK TDICHK F0540 TDIH4FE TDIH3FE TDIH2FETDIH1FETDIT4FETDIT3FE TD...

  • Page 683

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 653 - #2 ICT The method for built-in 3D interference check function to find tool offset number changed is: 0: The PMC window (function code 431) 1: The tool management function with the PMC window (function code 329) #3 ICV In built-in 3D interf...

  • Page 684

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 654 - #1 TDIC101 In built-in 3D interference check function, check for interference between tool 1 and object 1 is: 0: Enabled. 1: Disabled. #2 TDIC102 In built-in 3D interference check function, check for interference between tool 1 and object ...

  • Page 685

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 655 - #1 TDIC109 In built-in 3D interference check function, check for interference between object 2 and object 3 is: 0: Disabled. 1: Enabled. #7 #6 #5 #4 #3 #2 #1 #0 10933 TDIC207 TDIC206 TDIC205TDIC204TDIC203TDIC202 TDIC201 TDIC200 [Input ty...

  • Page 686

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 656 - #7 TDIC207 In built-in 3D interference check function, check for interference between object 1 and object 5 is: 0: Disabled. 1: Enabled. #7 #6 #5 #4 #3 #2 #1 #0 10934 TDIC215 TDIC214 TDIC213TDIC212TDIC211TDIC210 TDIC209 TDIC208 [Input ty...

  • Page 687

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 657 - #7 TDIC215 In built-in 3D interference check function, check for interference between object 4 and object 5 is: 0: Disabled. 1: Enabled. #7 #6 #5 #4 #3 #2 #1 #0 10935 TDIC223 TDIC222 TDIC221TDIC220TDIC219TDIC218 TDIC217 TDIC216 [Input ty...

  • Page 688

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 658 - #7 TDIC223 In built-in 3D interference check function, check for interference between object 1 and tool holder 2 is: 0: Enabled. 1: Disabled. #7 #6 #5 #4 #3 #2 #1 #0 10936 TDIC231 TDIC230 TDIC229TDIC228TDIC227TDIC226 TDIC225 TDIC224 [Inp...

  • Page 689

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 659 - #7 TDIC231 In built-in 3D interference check function, check for interference between object 5 and tool holder 2 is: 0: Enabled. 1: Disabled. #7 #6 #5 #4 #3 #2 #1 #0 10937 TDIC234 TDIC233 TDIC232 [Input type] Parameter input [Data ...

  • Page 690

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 660 - #2 TDIC302 In built-in 3D interference check function, check for interference between tool holder 1 and tool 3 is: 0: Enabled. 1: Disabled. #3 TDIC303 In built-in 3D interference check function, check for interference between tool holder 1...

  • Page 691

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 661 - #2 TDIC310 In built-in 3D interference check function, check for interference between object 4 and tool 3 is: 0: Enabled. 1: Disabled. #3 TDIC311 In built-in 3D interference check function, check for interference between object 4 and tool ...

  • Page 692

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 662 - #2 TDIC318 In built-in 3D interference check function, check for interference between tool holder 2 and tool 3 is: 0: Enabled. 1: Disabled. #3 TDIC319 In built-in 3D interference check function, check for interference between tool holder 2...

  • Page 693

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 663 - #5 TDIC405 In built-in 3D interference check function, check for interference between object 1 and tool holder 4 is: 0: Enabled. 1: Disabled. #6 TDIC406 In built-in 3D interference check function, check for interference between object 2 an...

  • Page 694

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 664 - #5 TDIC413 In built-in 3D interference check function, check for interference between object 5 and tool holder 4 is: 0: Enabled. 1: Disabled. #6 TDIC414 In built-in 3D interference check function, check for interference between object 6 an...

  • Page 695

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 665 - #5 TDIC421 In built-in 3D interference check function, check for interference between tool 3 and tool holder 4 is: 0: Enabled. 1: Disabled. #6 TDIC422 In built-in 3D interference check function, check for interference between tool holder 3...

  • Page 696

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 666 - #2 TDIR102 In built-in 3D interference check function, during cutting feed, canned cycle or 3D interference check between specified targets disable signal (TDISD) = “1”, check for interference between tool 1 and object 2 is: 0: Enabled. ...

  • Page 697

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 667 - #1 TDIR109 In built-in 3D interference check function, during cutting feed, canned cycle or 3D interference check between specified targets disable signal (TDISD) = “1”, check for interference between object 2 and object 3 is: 0: Enabled....

  • Page 698

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 668 - #6 TDIR206 In built-in 3D interference check function, during cutting feed, canned cycle or 3D interference check between specified targets disable signal (TDISD) = “1”, check for interference between object 1 and object 4 is: 0: Enabled....

  • Page 699

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 669 - #5 TDIR213 In built-in 3D interference check function, during cutting feed, canned cycle or 3D interference check between specified targets disable signal (TDISD) = “1”, check for interference between object 3 and object 5 is: 0: Enabled....

  • Page 700

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 670 - #4 TDIR220 In built-in 3D interference check function, during cutting feed, canned cycle or 3D interference check between specified targets disable signal (TDISD) = “1”, check for interference between tool holder 1 and tool 2 is: 0: Enabl...

  • Page 701

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 671 - #3 TDIR227 In built-in 3D interference check function, during cutting feed, canned cycle or 3D interference check between specified targets disable signal (TDISD) = “1”, check for interference between object 3 and tool holder 2 is: 0: Ena...

  • Page 702

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 672 - #2 TDIR234 In built-in 3D interference check function, during cutting feed, canned cycle or 3D interference check between specified targets disable signal (TDISD) = “1”, check for interference between tool 2 and tool holder 2 is: 0: Enabl...

  • Page 703

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 673 - #6 TDIR306 In built-in 3D interference check function, during cutting feed, canned cycle or 3D interference check between specified targets disable signal (TDISD) = “1”, check for interference between object 2 and tool 3 is: 0: Enabled. 1...

  • Page 704

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 674 - #5 TDIR313 In built-in 3D interference check function, during cutting feed, canned cycle or 3D interference check between specified targets disable signal (TDISD) = “1”, check for interference between object 5 and tool holder 3 is: 0: Ena...

  • Page 705

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 675 - #4 TDIR320 In built-in 3D interference check function, during cutting feed, canned cycle or 3D interference check between specified targets disable signal (TDISD) = “1”, check for interference between tool 3 and tool holder 3 is: 0: Enabl...

  • Page 706

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 676 - #6 TDIR406 In built-in 3D interference check function, during cutting feed, canned cycle or 3D interference check between specified targets disable signal (TDISD) = “1”, check for interference between object 2 and tool 4 is: 0: Enabled. 1...

  • Page 707

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 677 - #5 TDIR413 In built-in 3D interference check function, during cutting feed, canned cycle or 3D interference check between specified targets disable signal (TDISD) = “1”, check for interference between object 5 and tool holder 4 is: 0: Ena...

  • Page 708

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 678 - #4 TDIR420 In built-in 3D interference check function, during cutting feed, canned cycle or 3D interference check between specified targets disable signal (TDISD) = “1”, check for interference between tool 3 and tool 4 is: 0: Enabled. 1: ...

  • Page 709

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 679 - 10960 Figure number of tool holder 1 in built-in 3D interference check function [Input type] Parameter input [Data type] Word [Valid data range] 0 to the number of tool holder 1 figures In built-in 3D interference check function, the figur...

  • Page 710

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 680 - #7 #6 #5 #4 #3 #2 #1 #0 10966 TDISH14 TDIST14 TDISH13TDIST13TDISH12TDIST12 TDISH11 TDIST11 [Input type] Parameter input [Data type] Bit CAUTION This parameter is not updated until the power supply is turned off once or built-in 3D inte...

  • Page 711

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 681 - CAUTION This parameter is not updated until the power supply is turned off once or built-in 3D interference check setting change signal TDICHG<G519.4> is set to “1”. #0 TDIST21 In built-in 3D interference check function, when too...

  • Page 712

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 682 - #1 TDISH31 In built-in 3D interference check function, when tool holder 1 and object 3 interfere, 0: OT alarm occurs. 1: OT alarm does not occur, and interference is notified by the signal. #2 TDIST32 In built-in 3D interference check func...

  • Page 713

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 683 - #4 TDIST43 In built-in 3D interference check function, when tool 3 and object 4 interfere, 0: OT alarm occurs. 1: OT alarm does not occur, and interference is notified by the signal. #5 TDISH43 In built-in 3D interference check function, ...

  • Page 714

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 684 - #6 TDIST54 In built-in 3D interference check function, when tool 4 and object 5 interfere, 0: OT alarm occurs. 1: OT alarm does not occur, and interference is notified by the signal. #7 TDISH54 In built-in 3D interference check function, w...

  • Page 715

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 685 - Alarm and message Number Message Description PS0492 3DCHK FIG. ILLEGAL: [Target name] The figure data of [Target name] specified for built-in 3D interference check is invalid. PS0493 3DCHK AXIS ILLEGAL: [Target name] The move axis data of [Targ...

  • Page 716

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 686 - Diagnostic display 1900 Built-in 3D interference check calculation time [Data type] Word [Unit of data] msec [Description] In built-in 3D interference check function, displays the current processing time required for 3D interference check....

  • Page 717

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 687 - 2.4 ALARM SIGNALS When an alarm is triggered in the CNC, the alarm is displayed on the screen, and the alarm signal is set to 1. If the voltage level of the memory backup battery falls to below a specified level while the CNC is turned off, the...

  • Page 718

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 688 - [Operation] When the STLK signal is set to 1, a movement along an axis decelerates and stops. In this case, the automatic operation mode is maintained (with the STL signal set to 1 and the SPL signal set to 0) while the movement is stopped. Th...

  • Page 719

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 689 - Command readMF/SF/TF/BFFIN *IT Fig. 2.5 (d) Block containing auxiliary functions only (automatic operation) NOTE The overtravel distance of the motor after turning the signal *IT to 0 is represented by the following formula. Where Qmax=Fm...

  • Page 720

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 690 - [Operation] When an interlock signal for each axis direction is set to 1, the CNC applies an interlock to the specified axis direction only. During automatic operation, however, movements along all axes are stopped. NOTE 1 With the T series, ...

  • Page 721

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 691 - Signal address #7 #6 #5 #4 #3 #2 #1 #0 Gn007 STLK Gn008 *BSL *CSL *IT Gn130 *IT8 *IT7 *IT6 *IT5 *IT4 *IT3 *IT2 *IT1 Gn132 +MIT8 +MIT7 +MIT6 +MIT5 +MIT4 +MIT3 +MIT2 +MIT1 Gn134 -MIT8 -MIT7 -MIT6 -MIT5 -MIT4 -MIT3 -MIT2 -MI...

  • Page 722

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 692 - #7 #6 #5 #4 #3 #2 #1 #0 3004 BCY BSL [Input type] Parameter input [Data type] Bit path #0 BSL The block start interlock signal *BSL and cutting block start interlock signal *CSL are: 0: Disabled. 1: Enabled. #1 BCY When more t...

  • Page 723

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 693 - 2.6 MODE SELECTION Overview The mode selection signal is a code signal consisting of the three bits MD1, MD2, and MD4. The following five modes can be selected. • Memory edit (EDIT) • Memory operation (MEM) • Manual data input (MDI) • M...

  • Page 724

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 694 - Table 2.6 (a) Mode selection signals and corresponding check signals (A hyphen (-) indicates that the mode is not related to the status of the signal.) Input signal Mode MD4MD2MD1DNCI ZRN Output signalManual data input (MDI) 0 0 0 - - MMDI Memo...

  • Page 725

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 695 - NOTE 4 When switching to manual data input mode is made during operation in memory operation mode, the CNC enters the automatic operation stop state after executing the command in the current block. Signal STL is then set to 0. In this case, s...

  • Page 726

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 696 - NOTE 5 When the HANDLE/INC mode is selected while the CNC is operating in the MEM, RMT or MDI mode, the automatic or MDI operation stops, the STL signal turns to 0, the SPL signal simultaneously turns to 1, and the CNC enters the HANDLE/INC mod...

  • Page 727

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 697 - NOTE 6 When the JOG mode is selected during MEM, RMT or MDI mode operation, operation stops, the STL signal turns to 0, the SPL signal simultaneously turns to 1, and the CNC enters the JOG mode. Under these conditions, manual feed by feed axi...

  • Page 728

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 698 - NOTE 7 The mode switching operation is summarized in the time chart below (Fig. 2.6 (f)). MDI operation possible hereafterorEnd of operationMemory readMDI command operationDisable because of feed hold state of automatic operation H / SDisable b...

  • Page 729

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 699 - 2.7 STATUS OUTPUT SIGNAL The table below lists the status output signals. They indicate the state of the CNC. See the sections listed in the Table 2.7 (a) for details of each signal. Table 2.7 (a) Signal name Symbol Reference section Alarm sign...

  • Page 730

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 700 - Signal address #7 #6 #5 #4 #3 #2 #1 #0 Fn002 CUT RPDO 2.8 VRDY OFF ALARM IGNORE SIGNAL Overview The German VDE safety standard requires that the motor be deactivated when the safety guard is opened. By using the VRDY OFF Alarm Ignore...

  • Page 731

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 701 - NOTE When a reset is issued while the VRDY OFF alarm ignore signal is set to 1 and the motor activating current is low, the reset state can also be released, provided this parameter is set to 1. #6 SAK When the VRDY OFF alarm ignore signal...

  • Page 732

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 702 - (2) Unexpected disturbance torque detection alarm function This function stops motors or reverses them by an amount specified in a parameter, causing the CNC to output an alarm, whenever the disturbance torque is greater than the value specifi...

  • Page 733

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 703 - (1) Servo axis Unexpected disturbance torque detection function is available. Unexpected disturbance torque detection function to be used? Parameter ABNT (No.2016#0)= 0 Yes No Parameter ABNT(No.2016#0)= 1, Parameter (No.2104)= 0 Unexpected dis...

  • Page 734

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 704 - ・Timing chart when the unexpected disturbance torque detection group function is used Unexpected disturbance torque detection Speed for axis for which unexpected disturbance torqueis detected Servo error amount for axis for which unexpecte...

  • Page 735

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 705 - NOTE 1 The servo off signal must be input with follow up signal *FLWU <G007.5> set to 0 and bit 0 (FUPx) of parameter No. 1819 set to 0. 2 Input the servo off signals for all axes of the group to which the axis with an unexpected disturba...

  • Page 736

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 706 - [Function] Informs the PMC that an unexpected disturbance torque was detected on the fourth spindle axis. [Output cond.] This signal becomes 1 if: - An unexpected disturbance torque is detected for the fourth spindle under speed control. Une...

  • Page 737

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 707 - [Data type] Bit path #5 ANA When an unexpected disturbance torque is detected for an axis: 0: Movement along all axes is stopped, and a servo alarm is output. 1: No servo alarm is output, and movement along only the axes of the group contai...

  • Page 738

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 708 - Parameter No. 1881 Setting value (1st axis) 1 (2nd axis) 2 (3rd axis) 1 (4th axis) 0 (5th axis) 3 (6th axis) 2 (7th axis) 0 - Servo axis #7 #6 #5 #4 #3 #2 #1 #0 2015 TDOUT [Input type] Parameter input [Data type] Bit axis #5 T...

  • Page 739

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 709 - [Unit of data] Detection unit [Valid data range] 0 to 32767 This parameter specifies the distance by which the tool is to be retracted, by reversing the motor, if an unexpected disturbance torque is detected. When the motor is rotating at low...

  • Page 740

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 710 - #7 #6 #5 #4 #3 #2 #1 #0 2215 ABDSW [Input type] Parameter input [Data type] Bit axis #5 ABDSW The Unexpected disturbance torque detection function for a specified axis: 0: Cannot be disabled. 1: Can be disabled. - Parameters f...

  • Page 741

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 711 - Standard setting is 500. 4341 Threshold for unexpected disturbance torque detection alarm [Input type] Parameter input [Data type] Word spindle [Unit of data] 0.01% [Valid data range] 0 to 10000 This parameter specifies the threshold load...

  • Page 742

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 712 - Also with the format used for conventional advanced preview control, high precision contour control, and AI high precision contour control, the precision level can be changed. G05 P10000 Rx ; x : Level (1 to 10) G08 P1 Rx ; x : Level (1 to 1...

  • Page 743

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 713 - NOTE When this parameter is set, the power must be turned off before operation is continued. #0 MPR The machining parameter adjustment screen is: 0: Displayed. 1: Not displayed. Even if 1 is set in this parameter bit, the precision level se...

  • Page 744

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 714 - Each of these parameters sets an allowable acceleration rate change amount per 1 ms for each axis in speed control based on acceleration rate change under control on the rate of change of acceleration during AI contour control. Set a value (pre...

  • Page 745

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 715 - NOTE When 0 or a value not within the valid data range is set in this parameter, smooth bell-shaped acceleration/deceleration before look-ahead interpolation is not performed. 13620 Allowable acceleration rate when AI contour control is used...

  • Page 746

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 716 - [Min. unit of data] Depend on the increment system of the applied axis [Valid data range] Refer to the standard parameter setting table (C) (When the increment system is IS-B, 0.0 to +999000.0) Each of these parameters sets a maximum cutting sp...

  • Page 747

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 717 - 13662 Acceleration rate change time (bell-shaped) when AI contour control is used (precision level 1), range extended 13663 Acceleration rate change time (bell-shaped) when AI contour control is used (precision level 10), range extended [I...

  • Page 748

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 718 - - Nano smoothing - Machining condition selection function • In the following cases, the machining quality level adjustment screen is not displayed. Instead, the precision level selection screen and smoothing level selection screen are display...

  • Page 749

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 719 - This parameter sets the smoothing level currently selected when nano smoothing or nano smoothing 2 is used. 11682 Tolerance when nano smoothing is used (smoothing level 1) 11683 Tolerance when nano smoothing is used (smoothing level 10) [...

  • Page 750

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 720 - - Checking the maximum acceleration of the servo motor This function checks whether the maximum acceleration specified in parameter No. 12256 is exceeded. If the maximum acceleration is exceeded, this function issues alarms DS0005 and PW0006 ...

  • Page 751

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 721 - Alarm and message The machine is decelerated and stopped when a DS alarm is issued or is immediately stopped when an IE alarm is issued to prevent any malfunction. Check the block in which the machine is stopped. If you cannot find the cause, c...

  • Page 752

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 722 - 1. Functions operating during data setting • Checking whether offset data is within the valid setting range • Reconfirming incremental input operation • Disabling absolute input using soft keys to prevent an operator error related to abso...

  • Page 753

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 723 - Signal Start check signal STCHK<Gn408.0> [Classification] Input signal [Function] The traverse distance and modal can be checked before execution. [Operation] When this signal is 1, the remaining traverse distance and modal is displ...

  • Page 754

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 724 - • M series, tool offset memory C, geometry, and length offsets 10020 Upper limit 1 of tool offsets No. 01 to to 10039 Upper limit 1 of tool offsets No. 20 [Input type] Parameter input [Data type] Real path [Unit of data] mm, inch, deg...

  • Page 755

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 725 - [Data type] Real path [Unit of data] mm, inch, degree (input unit) [Min. unit of data] Depend on the increment system of the applied axis [Valid data range] 9 digit of minimum unit of data (refer to standard parameter setting table (A)) (When...

  • Page 756

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 726 - 10160 Lower limit 5 of tool offsets No. 01 to to 10179 Lower limit 5 of tool offsets No. 20 [Input type] Parameter input [Data type] Real path [Unit of data] mm, inch, degree (input unit) [Min. unit of data] Depend on the increment syste...

  • Page 757

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 727 - 10240 Lower limit 1 of a tool offset number range No. 01 to to 10259 Lower limit 1 of a tool offset number range No. 20 [Input type] Parameter input [Data type] Word path [Valid data range] 0 to maximum number of offset sets Each of these...

  • Page 758

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 728 - [Data type] Real path [Unit of data] mm, inch, degree (input unit) [Min. unit of data] Depend on the increment system of the applied axis [Valid data range] 9 digit of minimum unit of data (refer to standard parameter setting table (A)) (When...

  • Page 759

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 729 - 10310 Upper limit of workpiece zero point offsets No. 01 to to 10315 Upper limit of workpiece zero point offsets No. 06 [Input type] Parameter input [Data type] Real axis [Unit of data] mm, inch, degree (input unit) [Min. unit of data] D...

  • Page 760

    2.PREPARATIONS FOR OPERATION B-64483EN-1/03 - 730 - #7 #6 #5 #4 #3 #2 #1 #0 10330 ASD EBC MID HSC ADC PDC IIC [Input type] Parameter input [Data type] Bit #0 IIC At the time of incremental input, a confirmation message is: 0: Displayed. 1: Not displayed. #1 PDC At the time of progr...

  • Page 761

    B-64483EN-1/03 2.PREPARATIONS FOR OPERATION - 731 - #7 #6 #5 #4 #3 #2 #1 #0 10335 MSC [Input type] Parameter input [Data type] Bit path #0 MSC The reconfirming of midway block start of operator error prevent function is: 0: Enabled independently for each path. 1: Enabled for the ...

  • Page 762

    3.MANUAL OPERATION B-64483EN-1/03 - 732 - 3 MANUAL OPERATION Chapter 3, “MANUAL OPERATION”, consists of the following sections: 3.1 JOG FEED/INCREMENTAL FEED..............................................................................................732 3.2 MANUAL HANDLE FEED.................

  • Page 763

    B-64483EN-1/03 3.MANUAL OPERATION - 733 - For the signals selecting the mode, see "Mode Selection Signals." For the manual handle feed selection signals, MP1 and MP2 select the move amount, "Manual handle feed." For rapid traverse override signals ROV1 and ROV2, see “Feedra...

  • Page 764

    3.MANUAL OPERATION B-64483EN-1/03 - 734 - Jog mode or incremental feedmode+J11st axis moveAxis is fed again after signalshave turned to "0" once.+J1 isineffectiveduring thisperiod. Jog mode or incremental feedmodeReset+J11st axis moveAxis is fed again aftersignals have turned to "...

  • Page 765

    B-64483EN-1/03 3.MANUAL OPERATION - 735 - Manual rapid traverse selection signal RT<Gn019.7> [Classification] Input signal [Function] Selects a rapid traverse rate for jog feed or incremental feed. [Operation] When the signal turns to 1, the control unit operates as described below: The...

  • Page 766

    3.MANUAL OPERATION B-64483EN-1/03 - 736 - #7 #6 #5 #4 #3 #2 #1 #0 1401 RPD [Input type] Parameter input [Data type] Bit path #0 RPD Manual rapid traverse during the period from power-on time to the completion of the reference position return. 0: Disabled (Jog feed is performed.)...

  • Page 767

    B-64483EN-1/03 3.MANUAL OPERATION - 737 - [Valid data range] Refer to the standard parameter setting table (C) (When the increment system is IS-B, 0.0 to +999000.0) Set the rate of manual rapid traverse when the rapid traverse override is 100% for each axis. NOTE 1 If 0 is set, the rate set in ...

  • Page 768

    3.MANUAL OPERATION B-64483EN-1/03 - 738 - #7 #6 #5 #4 #3 #2 #1 #0 7103 HNT [Input type] Parameter input [Data type] Bit path #2 HNT When compared with the travel distance magnification selected by the manual handle feed travel distance selection signals (incremental feed signals)...

  • Page 769

    B-64483EN-1/03 3.MANUAL OPERATION - 739 - Explanation - Manual handle feed in the jog feed mode - Incremental feed in the manual handle feed mode The following states can be selected using bit 0 (JHD) of parameter No. 7100. JHD=0 JHD=1 Jog feed mode Manual handle feed mode Jog feed mode Manu...

  • Page 770

    3.MANUAL OPERATION B-64483EN-1/03 - 740 - nmABPulses over (k⋅m) will be ignored A: Amount of pulses the same as Rapid Traverse Rate. B: Amount of pulses saved in CNC. k : Integer number A+B=k・m Amount of pulses exceeding the Rapid Traverse Rate (n ≥ m) NOTE Due to change of mode, cl...

  • Page 771

    B-64483EN-1/03 3.MANUAL OPERATION - 741 - Signal Manual Handle Feed Axis Selection Signals HS1A to HS1D<Gn018.0 - 3>, HS1E<Gn411.0>, HS2A to HS2D<Gn018.4 - 7>, HS2E<Gn411.1>, HS3A to HS3D<Gn019.0 - 3>, HS3E<Gn411.2>, HS4A to HS4D<Gn020.0 - 3>, HS4E<...

  • Page 772

    3.MANUAL OPERATION B-64483EN-1/03 - 742 - CAUTION 1 Because the least input increment is used as the units for manual handle and incremental feed, the same value represents a different distance depending on whether the metric or inch input system is used. 2 For an axis under diameter programmi...

  • Page 773

    B-64483EN-1/03 3.MANUAL OPERATION - 743 - Signal address #7 #6 #5 #4 #3 #2 #1 #0 Gn018 HS2D HS2C HS2B HS2A HS1D HS1C HS1B HS1A Gn019 MP2 MP1 HS3D HS3C HS3B HS3A Gn020 HS4D HS4C HS4B HS4A Gn023 HNDLF Gn087 MP42 MP41 MP32 MP31 MP22 MP21...

  • Page 774

    3.MANUAL OPERATION B-64483EN-1/03 - 744 - #7 #6 #5 #4 #3 #2 #1 #0 7100 MPX THD JHD [Input type] Parameter input [Data type] Bit path #0 JHD Manual handle feed in JOG feed mode or incremental feed in the manual handle feed is: 0: Invalid. 1: Valid. #1 THD In the TEACH IN JOG mode...

  • Page 775

    B-64483EN-1/03 3.MANUAL OPERATION - 745 - #2 HNT When compared with the travel distance magnification selected by the manual handle feed travel distance selection signals (incremental feed signals) (MP1, MP2 <Gn019.4, Gn019.5>), the travel distance magnification for incremental feed/manu...

  • Page 776

    3.MANUAL OPERATION B-64483EN-1/03 - 746 - t Rapid Traverse Rate A:amount of pulses corresponds to value of Rapid Traverse Rate.B:amount of pulses accumulated in CNC. C:amount of pulses the same as B. ABC Amount of pulses exported by CNC in Manual Handle Feed Amount of pulses B is calcula...

  • Page 777

    B-64483EN-1/03 3.MANUAL OPERATION - 747 - 7134 Manual handle feed magnification n3 / 3rd. manual pulse generator 7135 Manual handle feed magnification m4 / 4th. manual pulse generator 7136 Manual handle feed magnification n4 / 4th. manual pulse generator 7137 Manual handle feed magnificat...

  • Page 778

    3.MANUAL OPERATION B-64483EN-1/03 - 748 - 12340 PMC path of the 1st. manual pulse generator connected with I/O Link 12341 PMC path of the 2nd. manual pulse generator connected with I/O Link 12342 PMC path of the 3rd. manual pulse generator connected with I/O Link 12343 PMC path of the 4th...

  • Page 779

    B-64483EN-1/03 3.MANUAL OPERATION - 749 - 3.3 MANUAL HANDLE INTERRUPT Overview In the automatic operation mode (manual data input, DNC operation, or memory operation) or memory edit mode, you can turn the handle of the manual pulse generator to overlap the movement by manual handle operation wit...

  • Page 780

    3.MANUAL OPERATION B-64483EN-1/03 - 750 - Signal address #7 #6 #5 #4 #3 #2 #1 #0 Gn041 HS2ID HS2IC HS2IB HS2IA HS1ID HS1IC HS1IB HS1IA Gn042 HS3ID HS3IC HS3IB HS3IA Gn088 HS4ID HS4IC HS4IB HS4IA Gn379 HS5ID HS5IC HS5IB HS5IA Gn411 HS4IE ...

  • Page 781

    B-64483EN-1/03 3.MANUAL OPERATION - 751 - #0 HNGx Axis movement direction for rotation direction of manual pulse generator 0: Same in direction 1: Reverse in direction #7 #6 #5 #4 #3 #2 #1 #0 7103 HIT RTH [Input type] Parameter input [Data type] Bit path #1 RTH By a reset or e...

  • Page 782

    3.MANUAL OPERATION B-64483EN-1/03 - 752 - t Rapid Traverse Rate A:amount of pulses corresponds to value of Rapid Traverse Rate.B:amount of pulses accumulated in CNC. C:amount of pulses the same as B. ABC Amount of pulses exported by CNC in Manual Handle Feed Amount of pulses B is calcula...

  • Page 783

    B-64483EN-1/03 3.MANUAL OPERATION - 753 - For each axis, this parameter sets the magnification m when manual handle feed movement selection signals MP1 = 0, MP2 = 1. NOTE When value is set to 0 for this parameter, the parameter No. 7113 is valid. 12351 Manual handle feed magnification n in e...

  • Page 784

    3.MANUAL OPERATION B-64483EN-1/03 - 754 - Z X Y Z X'Y Z'Y'X Coordinate system before conversionCoordinate system after conversion (When the Z-axis is selected, the travel distance is superposed on the Z'-axis as shown in the figure above.) Fig. 3.3.1 (a) Manual interruption of 3-dimensional c...

  • Page 785

    B-64483EN-1/03 3.MANUAL OPERATION - 755 - Signals 3-dimensional coordinate system conversion manual interrupt enable/disable switch signal NOT3DM<Gn347.7> [Classification] Input signal [Function] Enables or disables the 3-dimensional coordinate conversion manual interrupt function. [Ope...

  • Page 786

    3.MANUAL OPERATION B-64483EN-1/03 - 756 - 3.4 MANUAL LINEAR/CIRCULAR INTERPOLATION Overview In manual handle feed or jog feed, the following types of feed operations are possible along with the conventional feed operation with simultaneous single-axis control (for X, Y, Z, or other axis). • F...

  • Page 787

    B-64483EN-1/03 3.MANUAL OPERATION - 757 - - Data setting This function uses R960 to R979 of PMC as input data and R980 to R989 as output data for line and circle definitions. When bit 3 (MRI) of parameter No. 7106 is set to 1, an arbitrary R signal can be assigned to input data. Likewise, an ar...

  • Page 788

    3.MANUAL OPERATION B-64483EN-1/03 - 758 - NOTE 1 When the multi-PMC function is used, only the first PMC R address is available. 2 About the settings of parameters No. 13541 and No.13542 <1> Set a value that is a multiple of 4 (0, 4, 8, etc.). <2> The addresses of input data and out...

  • Page 789

    B-64483EN-1/03 3.MANUAL OPERATION - 759 - Based on this, set the data according to the procedure described below. P pO XY IyP (x, y) OX YIxθ Setting data <1> R961 : Linear feed <2> R962 - R965 : Approach direction Ix ⋅ 230 <3> R966 - R969 : Approach direction Iy ⋅ 230 ...

  • Page 790

    3.MANUAL OPERATION B-64483EN-1/03 - 760 - Negative (Area not including the origin) Positive (Area including the origin) Specified lineY X Origin <5> Specify the cutting direction. (R974) Specify the direction of travel for the forward rotation of the guidance handle, using R974. The m...

  • Page 791

    B-64483EN-1/03 3.MANUAL OPERATION - 761 - - Setting for circular feed Specify the data according to the procedure below. CCWCW XY (X0, Y0)R Setting data <1> R961 : Circular feed and direction of rotation (CW/CCW) <2> R962 to R965 : Center of the circle X0 <3> R966 to ...

  • Page 792

    3.MANUAL OPERATION B-64483EN-1/03 - 762 - When the approach handle is rotated in the forward direction, the direction of the tool movement (approach direction) is as follows: • When the inside of the circle is to be machined (R974 = 0), the tool moves from the center of the circle to the cir...

  • Page 793

    B-64483EN-1/03 3.MANUAL OPERATION - 763 - Setting data <1> R961 : 0 (Neither linear nor circular feed is carried out) <2> R962 to R965 : (Need not be specified) <3> R966 to R969 : (Need not be specified) <4> R970 to R973 : (Need not be specified) <5> R974 ...

  • Page 794

    3.MANUAL OPERATION B-64483EN-1/03 - 764 - Y X Path of travel using theapproach handle Path of travel using theguidance handle Specified straight line Tool Linear feed (3) Circular feed (simultaneous 2-axis control) A single manual handle operation can move the tool from the current position ...

  • Page 795

    B-64483EN-1/03 3.MANUAL OPERATION - 765 - - Direction of movement using manual handles When the tool is moved along a straight line or circle using the guidance handle or approach handle, the direction of the tool movement (for example, whether to make a clockwise or counterclockwise movement a...

  • Page 796

    3.MANUAL OPERATION B-64483EN-1/03 - 766 - (3) Move the tool using manual handle feed or jog feed. (a) To perform the manual handle feed First, select either single-axis feed along the X-, Y- or Z-axis, or simultaneous two-axis feed along a specified line or circle in the specified plane, using ...

  • Page 797

    B-64483EN-1/03 3.MANUAL OPERATION - 767 - Note NOTE This function is an optional function. Using this function requires the option "Manual handle feed 1-unit". When using the second or third manual pulse generator, the option "Manual handle feed 2/3-unit" or "Manual ha...

  • Page 798

    3.MANUAL OPERATION B-64483EN-1/03 - 768 - Signal address #7 #6 #5 #4 #3 #2 #1 #0 G086 -Ja +Ja -Jg +Jg G544 MHLC5 MHLC4 MHLC3 MHLC2 MHLC1 G545 MHUS5 MHUS4 MHUS3 MHUS2 MHUS1 Alarm and message Number Message Description PW5390 R-ADDRESS SETTING IS ILLEGAL Either ...

  • Page 799

    B-64483EN-1/03 3.MANUAL OPERATION - 769 - NOTE This parameter is valid only when bit 4 (JRV) of parameter No. 1402 is 1 (manual per revolution feed is enabled). If manual per revolution feed is disabled, the manual linear/circular interpolation continuous feedrate follows the dry run rate (para...

  • Page 800

    3.MANUAL OPERATION B-64483EN-1/03 - 770 - #3 MRI Internal relay (the R signal) of PMC that uses it with input data in manual linear/circular interpolation: 0: R960 to R979 are used. 1: The address that bound it with the parameter No. 13541 is used. #4 MRO Internal relay (the R signal) of PM...

  • Page 801

    B-64483EN-1/03 3.MANUAL OPERATION - 771 - 7161 Guidance handle clamp feedrate [Input type] Parameter input [Data type] Real path [Unit of data] mm/min, inch/min, degree/min (machine unit) [Min. unit of data] Depend on the increment system of the reference axis。 [Valid data range] Refer t...

  • Page 802

    3.MANUAL OPERATION B-64483EN-1/03 - 772 - Standard parameter setting table (C) velocity and angular velocity parameters Unit of data Increment system Minimum data unit Valid data range IS-A 0.01 0.00 to +999000.00 IS-B 0.001 0.000 to +999000.000 IS-C 0.0001 0.0000 ...

  • Page 803

    B-64483EN-1/03 3.MANUAL OPERATION - 773 - - Manual mode This function cannot be used in manual mode. - Different magnification in each axis Manual handle feed axis is not applied when this function is executing, it is not possible to apply a different magnification to the manual handle pulse ...

  • Page 804

    3.MANUAL OPERATION B-64483EN-1/03 - 774 - Handle-synchronous feed signal HREV <Gn023.4> [Classification] Input signal [Function] This signal selects handle-synchronous feed. That is to say, it causes the cutting feedrate used during automatic operation to be synchronized with the rotatio...

  • Page 805

    B-64483EN-1/03 3.MANUAL OPERATION - 775 - [Operation] When this signal is set to 0 • Only CW (clockwise) is the effective rotation direction of the manual pulse generator. When this signal is set to 1 • Only CCW (counterclockwise) is the effective rotation direction of the manual pulse gene...

  • Page 806

    3.MANUAL OPERATION B-64483EN-1/03 - 776 - Signal address #7 #6 #5 #4 #3 #2 #1 #0 Gn019 MP2 MP1 Gn023 HREV Gn046 DRN Gn193 HDSR Gn544 MHLC5 MHLC4 MHLC3 MHLC2 MHLC1 Gn545 MHUS5 MHUS4 MHUS3 MHUS2 MHUS1 #7 #...

  • Page 807

    B-64483EN-1/03 3.MANUAL OPERATION - 777 - [Data type] Bit path #6 CLR Reset button on the MDI panel, external reset signal, reset and rewind signal, and emergency stop signal 0: Cause reset state. 1: Cause clear state. For the reset and clear states, refer to Appendix in the OPERATOR’S MAN...

  • Page 808

    3.MANUAL OPERATION B-64483EN-1/03 - 778 - 3.6 RIGID TAPPING BY MANUAL HANDLE Overview To execute rigid tapping, set rigid mode, then switch to handle mode and move the tapping axis with a manual handle. Rigid tapping by manual handle is enabled by setting bit 0 (HRG) of parameter No. 5203 to 1. ...

  • Page 809

    B-64483EN-1/03 3.MANUAL OPERATION - 779 - - Arbitrary tapping axis M By setting bit 0 (FXY) of parameter No. 5101 to 1, an arbitrary tapping axis can be selected. In this case, specify a G code for plane selection and tapping axis address when rigid mode is set in MDI mode. T A tapping axis ...

  • Page 810

    3.MANUAL OPERATION B-64483EN-1/03 - 780 - - Extraction override In rigid tapping by manual handle, the extraction override function is disabled. - Acceleration/deceleration time constant for extraction In rigid tapping by manual handle, the use of an acceleration/deceleration time constant f...

  • Page 811

    B-64483EN-1/03 3.MANUAL OPERATION - 781 - 3.7 MANUAL NUMERIC COMMAND Overview The manual numeric command function allows data programmed through the MDI to be executed in jog mode. Whenever the system is ready for jog feed, a manual numeric command can be executed. The following eight functions ...

  • Page 812

    3.MANUAL OPERATION B-64483EN-1/03 - 782 - (parameter) (No. 1622) Override Manual feed override NOTE Since the feedrate is always the dry run feedrate, regardless of the setting of dry run switch, the feedrate cannot be specified using F. The feedrate is clamped so that the maximum cutting feed...

  • Page 813

    B-64483EN-1/03 3.MANUAL OPERATION - 783 - - T codes (tool functions) After address T, specify a numeric value no more than the number of digits specified by parameter No. 3032. NOTE 1 Subprogram calls cannot be performed using T codes. 2 In a lathe system, T code-specified tool compensation is...

  • Page 814

    3.MANUAL OPERATION B-64483EN-1/03 - 784 - - Unavailable functions No manual numeric commands can be specified using the following functions: • Extended axis name • Extended spindle name • Address P command for multispindle • Cs contour control Parameter #7 #6 #5 #4 #3 #2 #1 #0 7001 ...

  • Page 815

    B-64483EN-1/03 3.MANUAL OPERATION - 785 - #7 #6 #5 #4 #3 #2 #1 #0 3402 G01 [Input type] Parameter input [Data type] Bit path #0 G01 G01 Mode entered when the power is turned on or when the control is cleared 0: G00 mode (positioning) 1: G01 mode (linear interpolation) 3030 All...

  • Page 816

    3.MANUAL OPERATION B-64483EN-1/03 - 786 - 3.8 I/O Link β MANUAL HANDLE INTERFACE Overview This function controls manual handle feed for FANUC servo unit βi series with I/O Link option (I/O Link βi) by using a manual pulse generator on the host (CNC). Pulses from manual pulse generator are tra...

  • Page 817

    B-64483EN-1/03 3.MANUAL OPERATION - 787 - NOTE 1 The use of this function requires the Power Mate CNC manager option. 2 Do not use direct commands with the I/O Link β that uses this function. (Otherwise, movement along an axis may occur when it is switched between the a direct commands and a pe...

  • Page 818

    3.MANUAL OPERATION B-64483EN-1/03 - 788 - CAUTION 1 These signals are available when the bit 5 (MP) of parameter No. 0005 on the I/O Link βi is set to 1. 2 These signals are available on the manual handle mode only. 3 These signals are shared with the signals for rapid traverse override. 4 On...

  • Page 819

    B-64483EN-1/03 3.MANUAL OPERATION - 789 - Parameter - Parameter on I/O Link βi side No. #7 #6 #5 #4 #3 #2 #1 #0 0005 MP IOH [Data type] Bit #4 IOH Manual handle feed by way of I/O Link is : 0 : Unavailable 1 : Available CAUTION Please be sure to set bit 6 (EXPLS) of parameter ...

  • Page 820

    3.MANUAL OPERATION B-64483EN-1/03 - 790 - #7 #6 #5 #4 #3 #2 #1 #0 12330 G17 G16 G15 G14 G13 G12 G11 G10 #7 #6 #5 #4 #3 #2 #1 #0 12331 G1F G1E G1D G1C G1B G1A G19 G18 #7 #6 #5 #4 #3 #2 #1 #0 12332 G27 G26 G25 G24 G23 G22 G21 G20 #7 #6 #5 #4 #3 #2 #1 #0 12333 G2F G2E G2D G2C G2B G2A G2...

  • Page 821

    B-64483EN-1/03 3.MANUAL OPERATION - 791 - 3.9 MANUAL HANDLE FEED MULTIPLE 10 MILLION Overview This function can be used to magnify a travel distance in manual handle feed/manual handle interruption/incremental feed by a maximum of 10 million times. In the machine with the least input increment I...

  • Page 822

    3.MANUAL OPERATION B-64483EN-1/03 - 792 - Manual handle feed amount selection signals Travel distance MP4 MP2 MP1 Manual handle feed / Manual handle interrupt / Incremental feed step 1 1 0 Least input increment ×1000000 1 1 1 Least input increment ×10000000 *1) Magnification values m and n are...

  • Page 823

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 793 - 4 REFERENCE POSITION ESTABLISHMENT Chapter 4, “REFERENCE POSITION ESTABLISHMENT”, consists of the following sections: 4.1 MANUAL REFERENCE POSITION RETURN ...........................................................................793 ...

  • Page 824

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 794 - This operation is performed as if the following command were specified at the reference position: G92XαYβZγ ; NOTE Automatic coordinate system setting is not performed if the option for a workpiece coordinate system is used. In this ...

  • Page 825

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 795 - NOTE Grid is not a signal between PMC and CNC. - Installation conditions for deceleration limit switch When installing the deceleration limit switch for manual reference position return, ensure that following conditions are satisfied: *...

  • Page 826

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 796 - (Example) When the tool is fed at a feedrate F of 6000 mm/min with a servo loop gain G of 30 [s-1] and a detection unit U of 1 [μm], the servo position error is calculated as follows: 113016010006000error position Servo×××= = 3333 ...

  • Page 827

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 797 - Deceleration dog Reference position Grid pointReference position return directionLDEC LDEC: Distance from the end of the deceleration dog to the first grid point after that when the distance by which the reference position is to be shifted...

  • Page 828

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 798 - CAUTION 2 Install a deceleration dog so that the distance between the end of the deceleration dog and the first grid point after that is at least 1/2 of the interval between grid points. 3 When the distance by which the reference position...

  • Page 829

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 799 - performed irrespective of the direction specified by the feed axis and direction selection signal. After the completion of the positioning, the relevant reference position return end signal is set to 1. CAUTION For high-speed manual refe...

  • Page 830

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 800 - NOTE 1 The direction of reference position return is set for each axis by bit 5 (ZMI) of parameter No. 1006. If the tool is fed opposite to the preset direction in manual reference position return, while the deceleration signal is 0, the t...

  • Page 831

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 801 - NOTE Bit 2 (XSG) of parameter No. 3008 can be set to specify whether to fix the address of the reference position return deceleration signals to X009 or use a desired X address. When bit 2 (XSG) of parameter No. 3008 is set to 1, the X a...

  • Page 832

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 802 - Signal address #7 #6 #5 #4 #3 #2 #1 #0 X009 *DEC8 *DEC7 *DEC6 *DEC5 *DEC4 *DEC3 *DEC2 *DEC1 When the bit 0 (GDC) of parameter No. 3006 is set to 0. Gn196 *DEC8 *DEC7 *DEC6 *DEC5 *DEC4 *DEC3 *DEC2 *DEC1 When the bit 0 (GDC) of paramete...

  • Page 833

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 803 - NOTE When reference position return without dogs is specified, (when bit 1 (DLZ) of parameter No. 1005 is set to 1) the G28 command specified before a reference position is set causes an alarm PS0304 to be issued, regardless of the setti...

  • Page 834

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 804 - #0 ROTx #1 ROSx Setting linear or rotary axis. ROSx ROTx Meaning 0 0 Linear axis (1) Inch/metric conversion is done. (2) All coordinate values are linear axis type. (Is not rounded in 0 to 360°) (3) Stored pitch error compensation is ...

  • Page 835

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 805 - #1 ALZx In automatic reference position return (G28): 0: Reference position return is performed by positioning (rapid traverse). If no reference position return is performed after the power is turned on, however, reference position retur...

  • Page 836

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 806 - NOTE ZCL is valid when the workpiece coordinate system option is specified. In order to use the local coordinate system (G52), the workpiece coordinate system option is required. #7 #6 #5 #4 #3 #2 #1 #0 1206 HZP [Input type] ...

  • Page 837

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 807 - #0 RPD Manual rapid traverse during the period from power-on time to the completion of the reference position return. 0: Disabled (Jog feed is performed.) 1: Enabled #2 JZR The manual reference position return at jog feedrate 0: Not p...

  • Page 838

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 808 - NOTE 2 When manual rapid traverse is selected (bit 0 (RPD) of parameter No. 1401 is set to 1), manual feed is performed at the feedrate set in this parameter, regardless of the setting of bit 4 (JRV) of parameter No. 1402. 1425 FL rate o...

  • Page 839

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 809 - NOTE 4 When parameter No. 1428 is set to 0, the following parameter-set feedrates are applied. Before coordinate system establishmentAfter coordinate system establishmentAutomatic reference position return (G28) No. 1420 No. 1420 Automati...

  • Page 840

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 810 - 1844 Distance to the first grid point after the deceleration dog is turned off in the case where the reference position shift amount of the reference position shift function is 0 NOTE When this parameter is set, the power must be turne...

  • Page 841

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 811 - #5 DEC Deceleration signal (*DEC1 to *DEC8) for reference position return 0: Deceleration is applied when the signal is 0. 1: Deceleration is applied when the signal is 1. #7 #6 #5 #4 #3 #2 #1 #0 3006 GDC [Input type] Parame...

  • Page 842

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 812 - 3014 Bit position of an X address to which the deceleration signal for reference position return is assigned NOTE When this parameter is set, the power must be turned off before operation is continued. [Input type] Parameter input [Da...

  • Page 843

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 813 - Reference item Manual name Item name OPERATOR’S MANUAL (B-64484EN) Manual reference position return 4.2 REFERENCE POSITION SETTING WITHOUT DOG Overview This function moves each axis in the manual continuous feed mode near the reference ...

  • Page 844

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 814 - Grid - direction Position after jog feed + direction A : Reference position for reference position return in the negative direction B : Reference position for reference position return in the positive direction AB - Servo position error ...

  • Page 845

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 815 - +J1 or -J1 Grid ZP1 Feedrate Manual reference position return mode FL rate...... . P Ref. Upon the completion of setting the reference position without dog, the tool is positioned at a grid point and point Ref. in the figure is used as th...

  • Page 846

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 816 - #7 IDG When the reference position is set without dogs, automatic setting of the bit 0 (IDGx) of parameter No. 1012 to prevent the reference position from being set again is: 0: Not performed. 1: Performed. NOTE When this parameter is ...

  • Page 847

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 817 - NOTE IDGx is enabled when the bit 7 (IDG) of parameter No. 1002 is 1. If the function for setting the reference position without dogs is used, and the reference position is lost in absolute position detection for a cause, the alarm DS03...

  • Page 848

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 818 - NOTE This parameter selects a feedrate for reference position return performed without dogs. This parameter also selects a feedrate when manual reference position return is performed according to bit 7 (SJZ) of parameter No.0002 using rap...

  • Page 849

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 819 - 1850 Grid shift and reference position shift for each axis NOTE When this parameter is set, the power must be turned off before operation is continued. [Input type] Parameter input [Data type] 2-word axis [Unit of data] Detection un...

  • Page 850

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 820 - Number Message Description DS0300 APC ALARM: NEED REF RETURN A setting to zero position for the absolute position detector (association with reference position and the counter value of the absolute position detector) is required. Perform t...

  • Page 851

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 821 - 4.3 AUTOMATIC REFERENCE POSITION RETURN AND RETURN FROM THE REFERENCE POSITION Explanation - Automatic reference position return (G28) The G28 command positions the tool to the reference position, via the specified intermediate point, the...

  • Page 852

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 822 - Intermediate pointStart point Linear interpolation positioning bit 1 (LRP) of parameter No. 1401 = 1 and bit 4 (ZRL) of parameter No. 1015 = 1 Reference position CAUTION If G28 is specified when the reference point is not established,...

  • Page 853

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 823 - NOTE As with the positioning command (G00), positioning in the absolute coordinate system is used for traversing from the reference position to the intermediate point or traversing from the intermediate point to the specified point. Ther...

  • Page 854

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 824 - ROSx ROTx Meaning 0 1 Rotary axis (A type) (1) Inch/metric conversion is not done. (2) Machine coordinate values are rounded in 0 to 360°. Absolute coordinate values are rounded or not rounded by bits 0 (ROAx) and 2 (RRLx) of parameter No...

  • Page 855

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 825 - NOTE ROAx specifies the function only for a rotary axis (for which bit 0 (ROTx) of parameter No. 1006 is set to 1) #1 RABx In the absolute programming, the axis rotates in the direction 0: In which the distance to the target is shorter...

  • Page 856

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 826 - [Unit of data] mm, inch, degree (machine unit) [Min. unit of data] Depend on the increment system of the applied axis [Valid data range] 9 digit of minimum unit of data (refer to standard parameter setting table (A)) (When the increment s...

  • Page 857

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 827 - Reference item Manual name Item name OPERATOR’S MANUAL (B-64484EN) Reference position return CONNECTION MANUAL (FUNCTION) (This manual) Linear interpolation type G28,G30,G53 4.4 2ND REFERENCE POSITION RETURN / 3RD, 4TH REFERENCE POSITIO...

  • Page 858

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 828 - - An emergency stop is applied. - A servo alarm is raised. Signal address #7 #6 #5 #4 #3 #2 #1 #0 Fn096 ZP28 ZP27 ZP26 ZP25 ZP24 ZP23 ZP22 ZP21 Fn098 ZP38 ZP37 ZP36 ZP35 ZP34 ZP33 ZP32 ZP31 Fn100 ZP48 ZP47 ZP46 ZP45 ZP44 ZP43 ZP4...

  • Page 859

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 829 - Alarm and message Number Message Description PS0046 ILLEGAL REFERENCE RETURN COMMAND A command for a return to the second, third or fourth reference position is error. (The address P command is in error.) Although an option for a return t...

  • Page 860

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 830 - Example Reference item Manual name Item name OPERATOR’S MANUAL (B-64484EN) Reference position CONNECTION MANUAL (FUNCTION) (This manual) • Automatic reference position return and return from ...

  • Page 861

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 831 - 4.6 FLOATING REFERENCE POSITION RETURN Overview It is possible to return the tool to the floating reference position by commanding the G30.1. The floating reference position is located on the machine and can be a reference position for som...

  • Page 862

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 832 - #3 FPC When a floating reference position is set with a soft key, the relative position indication is: 0: Not preset to 0 (The relative position indication remains unchanged.) 1: Preset to 0. 1244 Coordinate value of the floating refer...

  • Page 863

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 833 - This starts the cycle operation for reference position setting. NOTE To set the torque limit to more than 39%, set parameter No.7187. - Cycle operation When no reference position has been set, operations (A) to (E), below, are performe...

  • Page 864

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 834 - - The tool is moved in the direction opposite to that specified with bit 5 (ZMIx) of parameter No.1006, at the feedrate specified with parameter No. 7185, for the distance specified with parameter No.7182. ~~~~~~~~~~~~~~~~~~ ~Mechanical s...

  • Page 865

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 835 - Signal Torque limit reach signals for reference position setting with mechanical stopper CLRCH1 to CLRCH8 <Fn180> [Classification] Output signal [Function] These signals are used to post notification of the torque limit having been...

  • Page 866

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 836 - 7183 First butting feedrate in reference position setting with mechanical stopper 7184 Second butting feedrate in reference position setting with mechanical stopper or butting feedrate in reference position setting with mechanical stopp...

  • Page 867

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 837 - Note NOTE 1 Multiple axes cannot be selected simultaneously. 2 This cycle is not executed if either of the following conditions is satisfied: (A) Automatic operation signal OP <F000.7> is set to 1. (B) The direction of reference posi...

  • Page 868

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 838 - (b) Parameters which can be set to different values for the master and slave axes under axis synchronous control. (The same value is set usually.) • Parameter No.7186 ...............................Torque limit (for 0% - 39%) • Paramet...

  • Page 869

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 839 - Mechanical stopper Align the start positions of the master and slave axes. Master axis Slave axis Start position (A) Each of the specified axes under axis synchronous control hits its mechanical stopper under torque limit control. • ...

  • Page 870

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 840 - Mechanical stopper The direction, feedrate,and distance are parameter-specified. Direction, Feedrate, Distance: The slave axis depends on the settings for the master axis. Master axisSlave axisStart position Amount of withdrawal (C) Oper...

  • Page 871

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 841 - Mechanical stopper The direction, feedrate, and distance are parameter-specified. Direction, feedrate, distance: The slave axis depends on the settings for themaster axis. Master axisSlave axisStart position Amount of withdrawal For torqu...

  • Page 872

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 842 - Mechanical stopper Master axisSlave axisStart position The slave axis returns from the position at which the master axis hit the mechanical stopper. Amount of withdrawal When the mechanical stopper for the slave axis is nearer than the ...

  • Page 873

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 843 - NOTE Alarm DS5387 is issued if the slave axis does not fall within the in-position width, for example, when the distance between the mechanical stoppers for the master and slave axes is larger than the withdrawal distance parameter-speci...

  • Page 874

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 844 - The following timing chart illustrates the cycle operations to be performed when the positions of the mechanical stoppers for the master and slave axes are aligned: Manual reference position return modeManual handle feed axis select sign...

  • Page 875

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 845 - [Output cond.] Each signal is set to 1 when: - The axis has reached the torque limit during cycle operation for reference position setting with mechanical stopper. Each signal is set to 0 when: - The axis has not reached the torque limit ...

  • Page 876

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 846 - This parameter sets a distance an axis in each cycle operation, along which withdrawal is performed after the mechanical stopper is hit (distance from the mechanical stopper to the withdrawal point). NOTE Set the same direction as that s...

  • Page 877

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 847 - Alarm and message Number Message Description PS0213 ILLEGAL COMMAND IN SYNCHRO-MODE The following errors occurred during the synchronous operation under axis synchronous control: (1) The program issued the move command to the slave axis. (...

  • Page 878

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 848 - NOTE 9 To use this function, feed axis selection signals such as +J1 and -J1 must be disabled when manual reference position return mode is selected. 10 When reference position setting with mechanical stopper is performed for axes under ax...

  • Page 879

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 849 - (3) When the axis stops at the first grid, its reference position return is completed. However, grids are ignored if a parameter specifies so, until the amount of servo position deviation changes from positive to negative or vice versa. N...

  • Page 880

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 850 - NOTE 2 When the relation of the sign of parameters Nos.1844 and 1850 is contradicted, the amount of the grid shift becomes effective only below the capacity of the Reference counter. Parameter #7 #6 #5 #4 #3 #2 #1 #0 1006 ZMIx ...

  • Page 881

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 851 - [Input type] Parameter input [Data type] 2-word axis [Unit of data] Detection unit [Valid data range] 0 to 999999999 Set a reference counter size. As a reference counter size, specify a grid interval for reference position return based ...

  • Page 882

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 852 - NOTE For setting the reference position without dogs, only the grid shift function can be used. (The reference position shift function cannot be used.) 7184 Second butting feedrate in reference position setting with mechanical stopper o...

  • Page 883

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 853 - #0 GRSx Reference point setting with mechanical stopper by grid method is: 0: Not performed. 1: Performed. #7 RNWx During grid-type reference position return with mechanical stopper, until the sign of servo position deviation is inver...

  • Page 884

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 854 - The timing chart for this procedure is given below. JOG ZRN +J1 Reference mark ZRF1 Feedrate FL rate FL rate FL rate Fig. 4.10 (b) Timing chart for reference position establishment - Procedure for establishing a reference positio...

  • Page 885

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 855 - In case of distance coded rotary encoder, the marker interval may be different from parameter setting value. (a-b section of the following figure) When the reference point return is executed through this section, it is not able to establis...

  • Page 886

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 856 - Scale end Reference mark (1)(2)(3)(a) (b) (c) Master axis Slave axis Start point End Point(Example of 3 points measurement system) In the above example, the following sequence is executed. a. When the reference mark (1) of the master ax...

  • Page 887

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 857 - Note (1) In the case of the actual interval of reference marks is different from parameter setting value, the alarm DS1449 occurs. (2) This function is disabled if any of the following conditions is satisfied: • Either parameter 1821 (ma...

  • Page 888

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 858 - (11) It is impossible to establish the reference position during synchronous operation or single-table operation of the twin tables. (12) No reference position can be established during flexible synchronization control. Parameter #7 #6...

  • Page 889

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 859 - #3 DCRx As a scale with absolute address reference marks: 0: A rotary encoder with absolute address reference marks is not used. 1: A rotary encoder with absolute address reference marks is used. NOTE When using a rotary encoder with a...

  • Page 890

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 860 - ● When parameter SCP = 1 + - Reference position Machine coordinate system 9.9409.9609.980 Mark 1Mark 2Mark 1 Mark 2 Mark 1Mark 1Mark 2 Mark 1 Mark 1Mark 2Mark 1 = Mark 2 0.020 Scale zero point 0.040 #7 #6 #5 #4 #3 #2 #1 #0 1818 ...

  • Page 891

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 861 - The automatic setting procedure is as follows: <1> Set an appropriate value in parameters Nos. 1815, 1821, and 1882. <2> Position the machine at the reference position by manual operation. <3> Set this parameter to 1. ...

  • Page 892

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 862 - [Unit of data] Detection unit [Valid data range] -999 to 999 When a linear scale with absolute address reference marks is used, set the distance from the scale zero point to reference position in parameter Nos. 1883 and 1884). Distance ...

  • Page 893

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 863 - [Setting parameter No. 1883] When it is difficult to measure the distance from the scale zero point to the reference position (parameter No. 1883), the method described below can be used to find the distance. <1> Set parameter No. ...

  • Page 894

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 864 - Number Message Description DS1448 ILLEGAL PARAMETER (D.C.S.) The setting value of parameter for reference marks is satisfied the following any conditions. - The absolute-position detection function is enabled. - Either parameter No. 1821 ...

  • Page 895

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 865 - 4.11 LINEAR SCALE WITH DISTANCE-CODED REFERENCE MARKS (SERIAL) Overview By using High-resolution serial output circuit for the linear scale with distance-coded reference marks (serial), the CNC measures the interval of referenced mark by a...

  • Page 896

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 866 - - Connection It is available under linear motor system and full closed system. CNCServo amplifierSeparate Detector Interface Unit Table High Resolution Serial Output Circuit C Full Closed System Linear scale with distance-coded reference...

  • Page 897

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 867 - - Stopping the operation for establishing a reference position The operation for establishing a reference position is stopped if any of the following operations is performed in steps (3) to (4), described above. • Reset • Setting the...

  • Page 898

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 868 - • It is necessary to use the linear scale with distance-coded reference marks (serial) for both the perpendicular axis and the angular axis. If not, the alarm DS0019 occurs when reference position establishment is commanded. • When the...

  • Page 899

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 869 - NOTE This parameter disables movement based on the G28 command to a reference position. So, use this parameter only in special cases. #1 RF2x If G28 is specified for an axis for which a reference position is already established (ZRF = ...

  • Page 900

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 870 - [Input type] Parameter input [Data type] 2-word axis [Unit of data] Detection unit [Valid data range] -999999999 to 999999999 1884 Distance 2 from the base point to reference position NOTE When this parameter is set, the power must ...

  • Page 901

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 871 - 14010 Maximum allowable travel distance when the reference position is established for a linear scale with an absolute address reference position [Input type] Parameter input [Data type] 2-word axis [Unit of data] Detection unit [Vali...

  • Page 902

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 872 - No. Message Description DS0020 REFERENCE RETURN INCOMPLETE An attempt was made to perform an automatic return to the reference position on the orthogonal axis before the completion of a return to the reference position on the angular axis....

  • Page 903

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 873 - 4.12 EXTENDED FUNCTION OF THE DISTANCE CODED LINEAR SCALE INTERFACE Overview The distance coded linear scale interface has reference marks at intervals that change at a constant rate. By determining the reference mark interval, the corresp...

  • Page 904

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 874 - <1> The tool is fed along a specified axis at the reference position return FL feedrate (parameter No. 1425). <2> Upon detection of a reference mark on the scale, the tool is stopped briefly then fed at the reference position ...

  • Page 905

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 875 - FL feedrate Rapid traverse rate X-axis Y-axis Time Z-axis ← Operation 1 → ← Operation 2 → Fig. 4.12.1 (b) When the reference position is established for all axes (3) When some axes require the reference position establishment op...

  • Page 906

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 876 - bold line in the Fig. 4.12.1 (d). Note that, however, the figure shows the positional relationship among points and that the intermediate tool path is not always of the linear interpolation type. Specified end point (xx,yy)Position at whi...

  • Page 907

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 877 - - Interruption by reset or emergency stop When a reset or emergency stop is applied during reference position establishment operation, the reference position establishment operation is interrupted. Since the reference position is not esta...

  • Page 908

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 878 - Reference mark ZRFn Feedrate FL feedrate Time JOG feedrate JOG +Jn(-Jn) Fig. 4.12.2 (a) Time chart for reference position establishment (jog feed) - Interruption by the feed axis and direction selection signal If the feed axis and dire...

  • Page 909

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 879 - Parameter #7 #6 #5 #4 #3 #2 #1 #0 1802 DC2x DC4x [Input type] Parameter input [Data type] Bit axis #1 DC4x When the reference position is established on the linear scale with reference marks: 0: An absolute position is estab...

  • Page 910

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 880 - 4.13 REFERENCE POSITION SIGNAL OUTPUT FUNCTION Overview If, after the establishment of the reference position on each axis, the coordinates in the machine coordinate system match the reference position, this function outputs a signal as th...

  • Page 911

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 881 - Signal address #7 #6 #5 #4 #3 #2 #1 #0 Fn517 RP18 RP17 RP16 RP15 RP14 RP13 RP12 RP11 Fn518 RP28 RP27 RP26 RP25 RP24 RP23 RP22 RP21 Parameter #7 #6 #5 #4 #3 #2 #1 #0 1205 R2O R1O [Input type] Parameter input [Data...

  • Page 912

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 882 - Parameter #7 #6 #5 #4 #3 #2 #1 #0 1006 ROSx ROTx [Input type] Parameter input [Data type] Bit axis NOTE When at least one of these parameters is set, the power must be turned off before operation is continued. #0 ROTx #1 ...

  • Page 913

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 883 - Example 1 0°180° -180° Correct machine position Scale data 359999 135000 -135° 0 -45°45°Movable range of rotary axis180000 90000 Machine position of NC -45.000°45.000° Fig. 4.14.2 (a) The case that the scale data is continuous in m...

  • Page 914

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 884 - Because the machine coordinate value of NC is shown by the following equation, (scale data when the power is turned on) - (scale data on the machine coordinate value equals 0), NC shows two position ranges. One is correct ones from -45.00...

  • Page 915

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 885 - 1. Perform a reference position return with the parameter No.1817#3=0. → The correspondence between the reference position and position in the absolute-position detector has been established. (parameter No.1815#4=1) 2. Record machine...

  • Page 916

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 886 - Parameter #7 #6 #5 #4 #3 #2 #1 #0 1817 SCRx [Input type] Parameter input [Data type] Bit axis NOTE When this parameter is set, the power must be turned off before operation is continued. #3 SCRx Specifies whether to conve...

  • Page 917

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 887 - In the case that scale data of a rotary scale without rotary data is larger than the scale data of the threshold position (this parameter value), it is converted to be continuous data in movable range by subtracting data of one rotation. T...

  • Page 918

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 888 - NOTE 3 When this parameter is set, machine position and position on absolute position detector become uncorresponding. Consequently, the bit 4 (APZ) of parameter No. 1815 (indicating that the correspondence is established) is set to 0, ala...

  • Page 919

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 889 - NOTE 3 If this parameter is available, the machine coordinate value just before CNC turns off is saved. In the case of moving over 180 degree during turning off, a machine coordinate value may get out over a rotation because CNC saves a ma...

  • Page 920

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 890 - NOTE 2 In the case that the amount of one rotation of rotary axis is 360, this parameter is set to 0.If it is necessary to set an amount of one rotation of rotary axis arbitrarily, this parameter is set to the amount of one rotation. 3 Whe...

  • Page 921

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 891 - 4.14.5 Method of Using Heidenhain Rotary Scale RCN223, 723 and 220 Heidenhain rotary scale RCN223, 723 and 220 are the detectors which save absolute position only within one rotation. • In the case of RCN223, 723 and 220, there is the ...

  • Page 922

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 892 - Flexible feed gear Parameters Nos.2084, 2085 In the case of RCN223, 723, amount of pulses per every one rotation are regarded as eight million pulses. Amount of table moving every one rotation of a detector [deg] Increment of detecti...

  • Page 923

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 893 - 4.15 MANUAL 2ND/3RD/4TH REFERENCE POSITION RETURN FUNCTION Overview This function enables positioning to the 2nd/3rd/4th reference position by JOG feed operation in manual reference position return mode. Use the manual 2nd/3rd/4th referen...

  • Page 924

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 894 - CAUTION 2 For manual 1st reference position return, be sure to set the manual 2nd/3rd/4th reference position return select 1/2 signals SLREF <Gn340.5> and SLRER <Gn340.6> to 0. Note NOTE 1 This function is an optional functio...

  • Page 925

    B-64483EN-1/03 4.REFERENCE POSITION ESTABLISHMENT - 895 - [Function] These signals indicate that the tool currently exists at the 2nd, 3rd, or 4th reference position on a controlled axis. The signals are available to each axis; the numeric character at the end of each signal name represents the...

  • Page 926

    4.REFERENCE POSITION ESTABLISHMENT B-64483EN-1/03 - 896 - #7 #6 #5 #4 #3 #2 #1 #0 1404 DLF [Input type] Parameter input [Data type] Bit path #1 DLF After a reference position is set, manual reference position return performed at: 0: Rapid traverse rate (parameter No.1420) 1: Manua...

  • Page 927

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 897 - 5 AUTOMATIC OPERATION Chapter 5, “AUTOMATIC OPERATION”, consists of the following sections: 5.1 CYCLE START/FEED HOLD.......................................................................................................897 5.2 RESET AND REWIND.....

  • Page 928

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 898 - The CNC enters the reset state and stops operating in the following cases during automatic operation: 1. When the emergency stop signal (*ESP) is set to 0 2. When the external reset signal (ERS) is set to 1 3. When the reset and rewind signal (RRW) is...

  • Page 929

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 899 - MEM, RMT, or MDI mode . . . . Start Signal ST "1" "0" Automatic operation 32 msec or more Fig. 5.1 (b) Feed hold signal *SP<Gn008.5> [Classification] Input signal [Function] Halts automatic operation. [Operation] When s...

  • Page 930

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 900 - (b) Feed hold state The CNC is not executing memory operation nor manual data input operation commands while the commands to be executed remain. (c) Automatic operation stop state Memory operation or manual data input operation has been completed and ...

  • Page 931

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 901 - 5.2 RESET AND REWIND Overview The CNC is reset and enters the reset state in the following cases: 1. When the emergency stop signal (*ESP) is set to 0 2. When the external reset signal (ERS) is set to 1 3. When the reset and rewind signal (RRW) is set...

  • Page 932

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 902 - Rewinding is described below. 1. When automatic operation (DNC operation (RMT)) mode is selected, if a portable tape reader is connected to the selected input/output equipment, the portable tape reader is rewound. The rewinding signal RWD is output w...

  • Page 933

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 903 - This signal is set to 0 when: - The MDI key is not pressed. - A path for which MDI reset is not enabled is selected. Signal address #7 #6 #5 #4 #3 #2 #1 #0 Gn008 ERS RRW #7 #6 #5 #4 #3 #2 #1 #0 Fn000 RWD Fn001 RST Fn006...

  • Page 934

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 904 - #6 CLR Reset button on the MDI unit, external reset signal, reset and rewind signal, and emergency stop signal 0: Cause reset state. 1: Cause clear state. For the reset and clear states, refer to Appendix in the OPERATOR’S MANUAL. #7 #6 #5 #4 #...

  • Page 935

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 905 - Signal All-axis machine lock signal MLK<Gn044.1> [Classification] Input signal [Function] Places all controlled axes in the machine lock state. [Operation] When this signal is set to 1, pulses (move commands) are not output to the servo m...

  • Page 936

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 906 - NOTE 1 This function is invalid for the axis in the machine lock state. 2 The followings can be commanded with the machine lock shift value remained. - Automatic reference position return (The middle point is not specified) - Workpiece coordinate syst...

  • Page 937

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 907 - Reference item Manual name Item name OPERATOR’S MANUAL (B-64484EN) Machine lock and auxiliary function lock 5.3.2 Dry Run Overview Dry run is valid only for automatic operation. The tool is moved at a constant feedrate regardless of the feedrate s...

  • Page 938

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 908 - This signal is set to 0 in the following case: - When dry run signal DRN is set to 0 Signal address #7 #6 #5 #4 #3 #2 #1 #0 Gn046 DRN #7 #6 #5 #4 #3 #2 #1 #0 Fn002 MDRN Parameter #7 #6 #5 #4 #3 #2 #1 #0 1401 RDR TDR [I...

  • Page 939

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 909 - 5.3.3 Single Block Overview Single block operation is valid only for automatic operation. When the single block signal (SBK) is set to 1 during automatic operation, the CNC enters the automatic operation stop state after executing the current block. ...

  • Page 940

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 910 - If you want to disable the single blocks in custom macro statements using system variable #3003, set this parameter to 0. If this parameter is set to 1, the single blocks in custom macro statements cannot be disabled using system variable #3003. To co...

  • Page 941

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 911 - Explanation - Basic operation procedure of the high-speed program check (1) Set the high-speed program check mode. (2) Perform a cycle start operation. The high-speed program check is then performed. (3) After program execution is completed and the c...

  • Page 942

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 912 - Program check execution feedrate Increment system IS-A IS-B IS-C IS-D IS-E Rotary axis (unit: deg/min) 999000 999000 999000 99900 99900 CAUTION The program check execution feedrate at circle, involute, spiral and conical interpolation, and NURBS in...

  • Page 943

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 913 - NOTE 1 When the signal EAX* <G0136> for control axis select (PMC axis control) is set to 1, the machine coordinate of the axis shows the actual machine coordinate regardless of the parameter PGM and PGA setting. 2 The diagnostic data No. 301 (m...

  • Page 944

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 914 - • Modal G-code • F, S, T, M, B, H, D-code • Tool life management data • Tool management data • Variable data changed by programmable data entry (G10) - Tool offset values - External workpiece origin offset values - Workpiece origin offset va...

  • Page 945

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 915 - CAUTION 1 After restoring the data, the absolute coordinate is calculated from machine coordinate by using the restored data. 2 In case that the relative position display is preset (the bit 3 (PPD) of parameter No. 3104=1) in the coordinate system s...

  • Page 946

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 916 - - Workpiece coordinate system preset Please set the bit 6 (WPS) of parameter No. 3006 to 1 to do workpiece coordinate system preset automatically at the end of the high-speed program check mode. When the workpiece coordinate system preset is command...

  • Page 947

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 917 - • Path table operation If some of above functions are effective, the alarm PS5364 occurs at the start of the high-speed program check mode. - Unavailable command Following functions can not be specified during the high-speed program check mode. If...

  • Page 948

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 918 - - Superimposed control WARNING When the Superimposed control is executed in the high-speed program check mode, the stroke limit is not checked correctly. - Relation to another function This function cannot coexist with the following functions •...

  • Page 949

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 919 - This signal turns to 0 under the following conditions. • The restore of the data, which are changed by automatic operation, is complete at the end of the high-speed program check mode. Signal address #7 #6 #5 #4 #3 #2 #1 #0 Gn290 PGCK #...

  • Page 950

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 920 - CAUTION 2 If this parameter is set to 1, M, S, T, and B codes are output to the PMC in the high speed program check mode. Therefore, when M, S, T, and B commands need not be executed in the high speed program check mode, create a ladder sequence that...

  • Page 951

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 921 - WARNING In a multi-path system, when one of the paths enters the high-speed program check mode, data of all paths is stored. After there is no path left in the high-speed program check mode, the data of all paths is restored at a time. This means th...

  • Page 952

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 922 - NOTE 1 When PMC axis select signal EAX*<G0136> is set to 1 for an axis, the actual machine coordinate value on the axis is indicated regardless of the settings of bit 7 (PGM) of parameter No. 11320 and bit 4 (PGA) of parameter No. 3115. 2 In di...

  • Page 953

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 923 - NOTE During the checking mode, it is not possible to change the parameter and offset. - Forward movement with a manual handle The "forward movement" is that the program is executed forward by turning a manual handle in the positive direct...

  • Page 954

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 924 - [Feedrate command value] × [Number of the handle pulse per a second]× [Handle magnification] × ([Parameter setting value]/100) × (8/1000) (mm/min or inch/min) Example) When feedrate command value is 30mm/min, handle magnification is 100, paramet...

  • Page 955

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 925 - - Notice of the operation • Dry-run can not operate during the checking mode. Dry-run signal must be set to 0. • Automatic operation starts immediately with the feedrate commanded by the program, when the checking mode signal or the synchronous o...

  • Page 956

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 926 - NOTE 2 In forward movement of Boring Cycle(G88), the sequence of actions at bottom of hole is shown as follows (dwell → stop of spindle motor → hold state). But in backward movement, that is (rotation of spindle → hold state → dwell after rest...

  • Page 957

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 927 - Forward movement Backward movement N8M300; M300 M300 (*3) N9G4X1.; N10M200; M200 M204 (*2) N11G4X1.; N12M0; M0 M0 (*3) N13G4X1.; N14M102; M102 M104 (*2) N15G4X1.; Backward movement starts from this block M2; *1 No M-code in the same group is ...

  • Page 958

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 928 - N6 N7N8T22 output Backward movement (When parameter STO is set to “0”) : N6 N7N8T33 outputBackward movement (When parameter STO is set to “1”) : T22 output - Direction change prohibition The direction change prohibition is a state not chan...

  • Page 959

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 929 - When the all condition is filled, "M.H.RTR" is displayed on clock display of CNC state display line. This status is displayed by the color of color number 3 (INPUT KEY, O/N NO. and STATUS are the same color). The screen display is as shown i...

  • Page 960

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 930 - Fig. 5.3.5 (b) " NO RVRS." status display Besides, when direction change prohibition signal MNCHG<F0091.1> is set to 1 and the direction of program’s execution is changed by manual handle, this status display changes from "M.H...

  • Page 961

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 931 - Fig. 5.3.5 (c) "NO.CHAG." status display Limitation - Movement in automatic operation by DNC operation mode(RMT) In the automatic operation by DNC operation mode(RMT), the backward movement is prohibited though the forward movement is ena...

  • Page 962

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 932 - [Backward movement] (1) G53 X0 Z0 M5 S0 F1.(2) G1 W100. (3) G0 U50. W50. The block of (2) moves with M5 S0 F1. - Non linear interpolation type positioning In the non-linear interpolation type positioning, the route is different between forward move...

  • Page 963

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 933 - If waiting M code exist in the program, please set No-wait signal of two path NOWT <Gn063.1>, or No-wait signal of three path NMWT<Gn063.9> to 1. - Modal display In the backward movement with manual handle, the modal display is updated a...

  • Page 964

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 934 - When the bit 7 (MG4) of parameter No. 6400 is set to 1 and the software option of multistage skip is enabled and the setting of parameter from No.6202 to No.6206 is enabled, the backward movement prohibition is enabled in G04 block for multistage skip...

  • Page 965

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 935 - #1 FWD With the manual handle retrace function, program execution can be performed: 0: In both forward and backward directions. 1: In the forward direction only. Execution in the backward direction is not permitted. #2 MC5 #3 MC8 These paramete...

  • Page 966

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 936 - #7 #6 #5 #4 #3 #2 #1 #0 6401 STO HST CHS [Input type] Parameter input [Data type] Bit path #2 CHS In manual handle retrace: 0: The status is displayed if the following conditions are all satisfied: (1) The manual handle retrace software ...

  • Page 967

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 937 - [Data type] Word path [Unit of data] % [Valid data range] 0 to 100 This parameter sets an override value (equivalence) for clamping the rapid traverse rate used with the manual handle retrace function. If a value greater than 100 is set in parameter...

  • Page 968

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 938 - 6443 M code of group I in manual handle retrace (1) to to 6446 M code of group I in manual handle retrace (4) 6447 M code of group J in manual handle retrace (1) to to 6450 M code of group J in manual handle retrace (4) 6451 M code of group K...

  • Page 969

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 939 - For an M code which is not set in any group by any of the above parameters, the M code for forward movement is output. With these parameters, an M code in the same group can be output in backward movement only when the M code is the first M code in ea...

  • Page 970

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 940 - Handle available signal in checking mode MCHK<Gn067.3> [Classification] Input signal [Function] Enabling/disabling of the manual handle operation in the manual handle retrace mode is changed. [Operation] When this signal is set to 1 in the ma...

  • Page 971

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 941 - [Operation] It becomes 1 when the backward movement can be executed no more (The status of the backward movement prohibition) from a certain block in the manual handle retrace mode. When the backward movement of the program can be executed, it become...

  • Page 972

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 942 - <4> When auxiliary function output block reverse movement enable output signal ADCO<Fn091.5> is set to 1, the PMC performs the corresponding operation with a ladder language program. After that, set finish signal FIN<Gn004.3> to 1. T...

  • Page 973

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 943 - #0 ADC If a move command and an auxiliary function (M/S/T/B code) are specified in the same block when the manual handle retrace function is used, the block: 0: Disables reverse movement. 1: Does not disable reverse movement. Notes NOTE 1 When a si...

  • Page 974

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 944 - NOTE Even when this function is enabled, the timing of block movement of each path may differ slightly due to the repetition of forward and backward movement and the rotation speed of the manual handle. Therefore, when synchronization is necessary, u...

  • Page 975

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 945 - When the above programs are operated in each path, the operation states of individual steps (in forward, backward, and re-forward movement) are shown below. Path1 Path2 Path3 Path4 N1 N2 N3N4N5 N1 N2 N3N4 N1 N2 N3N...

  • Page 976

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 946 - However, when bit 4 (HMP) of parameter No. 6400 is 0 (even if a path is prohibited from changing movement direction, the other paths can still change it), if operation is performed in the condition shown in the example below, re-forward movement may n...

  • Page 977

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 947 - To keep synchronization in re-forward movement, perform backward movement of path 1 until path 1 passes by block D, which prohibits a direction change, and start re-forward movement of path 1. In this case, if bit 4 (HMP) of parameter No.6400 is set ...

  • Page 978

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 948 - This function is optional (included in the multi-path manual handle retrace function). Explanation - Rigid tapping • When the bit 0 (HRA) of parameter No.6403 is set to 0 (Conventional specification) (1) When rigid tapping starts during forward mo...

  • Page 979

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 949 - NOTE 2 Alarm PS0130 occurs when one of the following operations is executed. (1) In the backward movement, when PMC axis control is specified for the axis specified by the program in the previous block. (2) During PMC axis control, when a direction ...

  • Page 980

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 950 - (2) The operation when the polygon machining block (G50.2) is reached in backward movement after the polygon machining is completed in forward movement the same as in the case where bit 3 (HRD) of parameter No. 6403 is 0. WARNING In the threading a...

  • Page 981

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 951 - NOTE 1 In the balance cutting mode, waiting is done so that the block starts at the same time in each path. Backward movement cannot start during the waiting. After the waiting is completed and the next block starts, backward movement becomes possible...

  • Page 982

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 952 - 5.4 MANUAL ABSOLUTE ON/OFF Overview Whether the distance by which the tool is moved by manual operation (such as jog feed or manual handle feed) is reflected in the absolute coordinate system can be selected. - When manual absolute turns on When ma...

  • Page 983

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 953 - [Output cond.] This signal is set to 1 in the following case: - When the manual absolute signal *ABSM is set to 0 This signal is set to 0 in the following case: - When manual absolute signal *ABSM is set to 1 Signal address #7 #6 #5 #4 #3 #2 #1 #...

  • Page 984

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 954 - (Example) //3 N123 X100.0 Y200.0 ; Invalid /1 /3 N123 X100.0 Y200.0 ; Valid The following figures show the relationship between the timing, when optional block skip signals (BDT1 to BDT9) are set to 1, and the ignored information: 1. When BDTn is ...

  • Page 985

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 955 - Optional block skip check signals MBDT1<Fn004.0>, MBDT2 to MBDT9<Fn005> [Classification] Output signal [Function] Notify the PMC of the states of the optional block skip signals BDT1 to BDT9. Nine signals are provided, corresponding to t...

  • Page 986

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 956 - Explanation - Outputting M, S, T, and B (second auxiliary function) codes on the program restart screen By setting bit 7 (MOP) of parameter No. 7300, the M, S, T, and B (second auxiliary function) codes can be output after a block where the program i...

  • Page 987

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 957 - - Feed hold If a feed hold operation is performed during the search, the restart steps must be performed again from the beginning. - Manual absolute Every manual operation must be performed with the manual absolute mode turned on regardless of whet...

  • Page 988

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 958 - - Cs contour control To restart a program containing a command for turning the Cs contour control mode on or off, whether the restart block is in the Cs contour control mode must be considered. Before starting restart operation, set the machine to th...

  • Page 989

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 959 - Program restart under way signal SRNMV<Fn002.4> [Classification] Output signal [Function] Indicates the program is being restarted. [Output cond.] The program restart under way signal becomes 1 when: - The program restart signal is set to...

  • Page 990

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 960 - This parameter is enabled when the bit 7 (MOU) of parameter No.7300 is set to 1. #7 MOU In program restart operation, before movement to a machining restart point after restart block search: 0: The M, S, T, and B codes are not output. 1: The last M...

  • Page 991

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 961 - #7 #6 #5 #4 #3 #2 #1 #0 13117 SQP SQB INT [Input type] Parameter input [Data type] Bit path #4 INT During a program restart, the interference check on cutter/tool nose radius compensation is: 0: Enabled. 1: Disabled. #6 SQB A program ...

  • Page 992

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 962 - Number Message Description SR5020 PARAMETER OF RESTART ERROR An invalid value is set in parameter No. 7310, which specifies the axis order in which the tool is moved along axes to the machining restart position in dry run. A value ranging from 1 to th...

  • Page 993

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 963 - Caution CAUTION 1 Keep the following in mind when restarting a program including macro variables. - Common variable When the program is restarted, the previous values are inherited as common variables without being preset automatically. Before restar...

  • Page 994

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 964 - Explanation - Program restart procedure Follow the procedure below to restart a program using this function: 1. Turn on the program restart switch. (Set program restart signal SRN <Gn006.0> to 1.) 2. Display a program you want to restart and s...

  • Page 995

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 965 - NOTE 1 When bit 7 (KEY) of parameter No. 3290 is set to 0, KEY3 is used to protect the MDI program. When the bit is set to 1, KEY1 is used instead. 2 When the 8-level data protection function is enabled, whether MDI program editing is allowed or not d...

  • Page 996

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 966 - Signal address #7 #6 #5 #4 #3 #2 #1 #0 Gn046 KEY3 KEY1 #7 #6 #5 #4 #3 #2 #1 #0 Fn316 SQMPE SQMPR Parameter #7 #6 #5 #4 #3 #2 #1 #0 3290 KEY [Input type] Parameter input [Data type] Bit path #7 KEY For memory protect...

  • Page 997

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 967 - Reference item Manual name Item name OPERATOR’S MANUAL (B-64484EN) "Auxiliary function output in program restart" function 5.6.2 Approach for Each Arbitrary Axis in Program Restart Overview For the approach to the program restart positio...

  • Page 998

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 968 - 5.7 QUICK PROGRAM RESTART Overview Generally, the following operations are required when machining is interrupted due to a reason such as a damaged tool and is restarted: 1. Removes the cause which interrupted the machining. 2. Locates the interrupted...

  • Page 999

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 969 - • For this function, either of the following two types of restart methods can be selected. <1> Search method Use this type when it is difficult to restore the status of modal information and auxiliary functions manually. This type can be selec...

  • Page 1000

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 970 - Notes - Program restart memory 1. The following blocks are stored in the program restart memory: a. Last executed block b. Blocks of positioning c. Blocks of subprogram calls (including M98, M198, G65, G, and M code macro calls and subprogram calls) ...

  • Page 1001

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 971 - (2) It may take 1 to a few minutes to move the cursor to the restart block in a long program longer than 20 MB. 6. The jump position is shifted if the number of lines in the program is changed by editing the program after interrupted. 7. When a direct...

  • Page 1002

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 972 - #3008 ≠ 0 : Program restart operation - Functions that cannot be used simultaneously Quick program restart cannot be used in combination with the following functions: • Learning control function • Preview repetitive control function • Learni...

  • Page 1003

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 973 - Function name Search methodDirect jump Remarks Multi threading *4 *4 Continuous threading *4 *4 Variable lead thread cutting *4 *4 Circular thread cutting *4 *4 Skip *5 *2 High-speed skip *5 *2 Multi-step skip *5 *2 Continuous high-speed skip *...

  • Page 1004

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 974 - Function name Search methodDirect jump Remarks Tool center point control A *2 See item “Tool center point control” for details when a direct jump is selected. See item “Workpiece setting error compensation (or tilted working plane indexing + too...

  • Page 1005

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 975 - Function name Search methodDirect jump Remarks Jerk control A A AI contour control I A A AI contour control II A A High-speed processing A A Exact stop mode A *2 Tapping mode A *2 Cutting mode A *2 Automatic corner override A *2 Auxiliary func...

  • Page 1006

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 976 - - Cs contour control To restart a program containing a command for turning the Cs contour control mode on or off, whether the restart block is in the Cs contour control mode must be considered. Before starting restart operation, set the machine to t...

  • Page 1007

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 977 - <5> The present absolute coordinate is matched to the absolute coordinates of the restart block. - Tool center point control / High-speed Smooth TCP (Smooth control) To restart a program from a block in the tool center point control mode usin...

  • Page 1008

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 978 - Signal Program restart under way signal SRNMV<Fn002.4> [Classification] Output signal [Function] Indicates the program is being restarted. [Output cond.] The program restart under way signal becomes 1 when: - The program restart signal is...

  • Page 1009

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 979 - #7 #6 #5 #4 #3 #2 #1 #0 7300 CCS [Input type] Parameter input [Data type] Bit path #5 CCS When the Cs contour control axis is used in the spindle mode or when the origin of the Cs contour control axis is not established, program restar...

  • Page 1010

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 980 - #7 OAA In the program restart output function, the approach to the program restart position for each arbitrary axis is: 0: Not used. 1: Used. #7 #6 #5 #4 #3 #2 #1 #0 13117 INT [Input type] Parameter input [Data type] Bit path #4 INT...

  • Page 1011

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 981 - Warning WARNING 1 In principle, the tool cannot return to a correct position in the following cases. Special care must be taken in the following cases since none of them cause an alarm. - Manual operation is performed when the manual absolute mode is...

  • Page 1012

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 982 - Caution CAUTION 1 Keep the following in mind when restarting a program including a macro variable. - Common variable When a program is restarted, the previous values are inherited as common variables without being preset automatically. For this reaso...

  • Page 1013

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 983 - : When N130 is specified as the restart block, the tool moves from the current position to the end point of N130. Current position X ZN130 Y N140N150 Explanation Bit 5 (SPR) of parameter No. 11250 can be used to select whether to use suppress moti...

  • Page 1014

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 984 - Caution CAUTION When suppress motion is used, the tool moves to the end point of the restart block only along the axis specified in the restart block. For this reason, the tool does not move to the end point of the restart block along any axis that ...

  • Page 1015

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 985 - Number Message Description PS1931 ILLEGAL MODE AFTER RESTART Suppress motion is specified in a mode in which suppress motion is not available. Select a block in a mode in which suppress motion is available as the restart block. Reference item Manual ...

  • Page 1016

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 986 - 5.8 TOOL RETRACT AND RECOVER Overview The tool can be retracted from a workpiece to replace the tool, if damaged during machining, or to check the status of machining. Then, the tool can be returned to restart machining efficiently. : Position at whic...

  • Page 1017

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 987 - The tool is retracted by linear interpolation at the minimum feedrate among the parameter (No.7042) values of moving axes. If a block is being executed halfway when the TRESC signal is set to 1 during automatic operation, the execution of the block ...

  • Page 1018

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 988 - NOTE If the path number is 5 or over, the maximum number of record points on the tool retract path is 10. (3) Restore the automatic operation mode, and set tool return signal TRRTN to 1 then back 0. The CNC then reverses the tool along the path of t...

  • Page 1019

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 989 - Automatic operation mode Tool retraction mode signal (TRACT) Tool retraction/return completion signal (TRSPS)Automatic operation start signal (ST) Move in re-positioning Tool retraction axis movement signal (TRMTN) Fig. 5.8 (e) Timing chart of re-pos...

  • Page 1020

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 990 - Tool return completion signal TRSPS<Fn092.5> [Classification] Output signal [Function] This signal reports that the tool is in the retract position in tool retraction mode. When this signal is 0, re-positioning cannot be performed by pressin...

  • Page 1021

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 991 - This parameter sets the retraction distance used when G10.6 is specified alone for the tool retract and return. The tool is retracted by the distance set for this parameter in the incremental mode. This data is valid only when bit 2 (RPS) of parameter...

  • Page 1022

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 992 - Number Message Description PS0429 ILLEGAL COMMAND IN G10.6 When retraction was started in the threading block, the retract command was performed in the longitudinal direction of the threading. Reference item Manual name Item name OPERATOR’S MANUAL ...

  • Page 1023

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 993 - Example-1 (When the bit 6 (TNR) of parameter No.7002 is set to 0): Assuming that the compensation value is updated from OFS1 to OFS2 at the manual retract position. When the recovery operation is started, the updated compensation value OFS2 is used, ...

  • Page 1024

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 994 - Example-2 (When the bit 6 (TNR) of parameter No.7002 is set to 1): Assuming that the compensation value is updated from OFS1 to OFS2 in the manual retract position. When the recovery operation is started, the updated compensation value OFS2 is not use...

  • Page 1025

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 995 - Notes NOTE 1 The compensation considered by this function is as follows. Neither the cutter compensation nor the tool nose radius compensation is considered. Machining system : Tool length compensation G43/G44 (wear/geometry), Tool Offset G43.7/G44....

  • Page 1026

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 996 - 5.9 MANUAL INTERVENTION AND RETURN Overview If you use feed hold to stop the tool from moving an axis during automatic operation and restarts the tool after manual intervention, for example, for checking a cutting surface, the tool can resume automati...

  • Page 1027

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 997 - WARNING Manual intervention must be performed correctly with meticulous care, following the machining direction and the shape of the workpiece, not to damage the workpiece, machine, and/or tool. N2 N1Point APoint B Return (Non-linear interpolation ty...

  • Page 1028

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 998 - If the return operation is started with the axis under PMC axis control being stopped after having completed the PMC axis control command, however, the return operation is performed by the amount of movement by PMC axis control. When PMC axis control ...

  • Page 1029

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 999 - - 3-dimensional coordinate system conversion, tilted working plane indexing, and tool center point control for 5-axis machining Alarm PS5129 is issued when manual intervention and the return is attempted during execution of 3-dimensional coordinate s...

  • Page 1030

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 1000 - 5.10 RETRACE M Overview The tool can retrace the path along which the tool has moved so far (reverse execution). Furthermore, the tool can move along the retraced path in the forward direction (forward reexecution). After forward reexecution is perf...

  • Page 1031

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 1001 - Single block stop Reverse execution signal RVS = 1Cycle start Cycle start (start of forward execution)Start of reverse executionForward Reverse Fig. 5.10 (c) When method 3) is used, performing a cycle start operation starts reverse execution from ...

  • Page 1032

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 1002 - When method 2) is used, performing a cycle start operation starts forward reexecution from the position at which a single block stop takes place. Cycle start (start of forward execution) Start of forward reexecutionForward Reverse Forward reexecuti...

  • Page 1033

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 1003 - If reverse execution was performed after feed hold stop, forward reexecution ends when the feed hold stop position is reached, then forward execution is performed. Also if single block operation was performed, forward reexecution ends at the single b...

  • Page 1034

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 1004 - - Reset A reset operation (the key on the MDI panel, the external reset signal, or the reset & wind signal) clears the blocks stored for reverse execution. - Feedrate A feedrate to be applied during reverse execution can be specified in param...

  • Page 1035

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 1005 - • Exponential interpolation (G02.3, G03.3) • 3-dimensional circular interpolation (G02.4, G03.4) • NURBS interpolation (G06.2) • Cylindrical interpolation (G07.1,G107) • Polar coordinate interpolation (G12.1, G13.1,G112,G113) • Polar coor...

  • Page 1036

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 1006 - - Single block stop position A block that is internally generated by the control unit is also treated as one block during reverse execution. Path after compensationProgrammed path 22345 Fig. 5.10 (m) Path when cutter compensation is applied In the ...

  • Page 1037

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 1007 - - Skip function (G31) and automatic tool length compensation (G37) The skip signal and the automatic tool length measurement signal are ignored during reverse execution and forward reexecution. During reverse execution and forward reexecution, the ...

  • Page 1038

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 1008 - - Inverse time feed (G93) If a nonzero value is set as the feedrate to be applied during reverse execution in parameter No. 1414, a block that moves the tool by inverse time feed during forward execution is executed at the parameter-set feedrate (fe...

  • Page 1039

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 1009 - To make swift switching from forward execution to reverse execution or from reverse execution to forward reexecution, set the automatic operation stop signal *SP to 0 to stop automatic operation, and after the automatic operation in-progress signal S...

  • Page 1040

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 1010 - [Data type] Real path [Unit of data] mm/min, inch/min, degree/min (machine unit) [Min. unit of data] Depend on the increment system of the reference axis [Valid data range] Refer to the standard parameter setting table (C) (When the increment syste...

  • Page 1041

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 1011 - 5.11 ACTIVE BLOCK CANCEL FUNCTION Overview The automatic operation can be stopped by inputting block cancellation signal BCAN<Gn297.0> while automatic operation. After an automatic operation becomes stop, automatic operation signal OP <Fn000...

  • Page 1042

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 1012 - CAUTION 2 If the part program is incremental command, the terminal of the next block shifts cancellation amount when automatic operation restarts. This amount of the gap keeps remaining until the absolute command is executed next. Therefore, this fu...

  • Page 1043

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 1013 - Position where tool halts by signal input N10 N20 Fig. 5.11 (c) Canned cycle for drilling 1 Example 2 N10 G90 G84 X_ Y_ Z_ R_ ; N20 X_ Y_ ; N30 X_ Y_ ; N40 X_ Y_ ; N50 G00 X_ Y_ Z_ ; Position where tool halts by signal N10 N50N20 N30N...

  • Page 1044

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 1014 - Signal address #7 #6 #5 #4 #3 #2 #1 #0 Gn297 BCAN #7 #6 #5 #4 #3 #2 #1 #0 Fn297 MBCAN Timing chart for block cancel operation Automatic operation signal : OP Block cancel acknowledgement signal : MBCANCycle start lamp signal : S...

  • Page 1045

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 1015 - Automatic operation signal : OP Block cancel acknowledgement signal : MBCANCycle start lamp signal : STL Block cancel signal : BCAN Strobe signal : MF End signal : MFIN At the deceleration of all axes terminates Fig. 5.11 (g) Block cancel of execut...

  • Page 1046

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 1016 - CAUTION 3 When reset or the emergency stops is executed during the stopping by this function, this function becomes invalid. In a word, maintained various data and modal data are changed to the clear or reset states by the reset operation. 4 This fu...

  • Page 1047

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 1017 - 5.12 EXACT STOP / EXACT STOP MODE / TAPPING MODE / CUTTING MODE Overview NC commands can be used to control a feedrate in continuous cutting feed blocks as described below. - Exact stop (G09) The tool is decelerated in a block specifying G09, and a...

  • Page 1048

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 1018 - 5.13 RETRACTION FOR RIGID TAPPING Overview When rigid tapping is stopped, either as a result of an emergency stop or a reset, the tap may cut into the workpiece. The tap can subsequently be drawn out by using a PMC signal. This function automatically...

  • Page 1049

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 1019 - - Start and completion time chart Rigid tapping retraction startsignal RTNTM29 commandSpindle enable signal ENBRigid tapping signal RGTAPM29 completion signal FINSpindle excitationRetract movementRigid tapping retractioncompletion signal RTPT Fig. 5...

  • Page 1050

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 1020 - - Retraction for rigid tapping by using the G30 command If bit 1 (RG3) of parameter No. 5202 is 1, it is possible to perform retraction for rigid tapping by using the G30 command. If rigid tapping is interrupted due to a reset or emergency stop or ...

  • Page 1051

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 1021 - For an explanation of the processing for placing the PMC in rigid tapping mode, see "Interface with the PMC", to be described later. This signal is a check signal used to determine whether the PMC is placed in rigid tapping mode. If M29 is ...

  • Page 1052

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 1022 - NOTE When this parameter is 1, retraction for rigid tapping using the input signal RTNT <Gn062.6> cannot be performed. 5381 Override value during rigid tapping return [Input type] Parameter input [Data type] Word path [Unit of data] % [V...

  • Page 1053

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 1023 - Note NOTE 1 Setting rigid tapping retraction start signal RTNT to 1 starts rigid tapping retraction only when the CNC is placed in both the reset state and MDI mode. 2 The machining data for rigid tapping retraction is retained until the next rigid ...

  • Page 1054

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 1024 - This signal is set to 0 when: - Reset - Switching to other mode (MEM/MDI) while DNC mode. - Switching to other mode (MDI/DNC) while executing M198 in MEM mode. - Switching to other mode (MEM/DNC) while executing M198 in MDI mode. Signal address #7...

  • Page 1055

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 1025 - Number Message Description PS1081 EXT DEVICE SUB PROGRAM CALL MODE ERROR The external device subprogram call is not possible in this mode. 5.15 DIRECT OPERATION BY PERSONAL COMPUTER FUNCTION Overview When automatic operation is started in the DNC o...

  • Page 1056

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 1026 - - If the memory operation mode (MEM) is not selected, the control unit ignores this signal and does nothing. - If the memory operation mode (MEM) is selected, the DNC operation mode (RMT) is selected, enabling DNC operation. At this time, DNC operati...

  • Page 1057

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 1027 - Signal address #7 #6 #5 #4 #3 #2 #1 #0 Gn042 DMMC #7 #6 #5 #4 #3 #2 #1 #0 Fn003 MRMT NOTE As direct operation select signal DMMC<Gn042.7>, the same signal as the signal used for direct operation by personal computer functi...

  • Page 1058

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 1028 - Specification method When rigid tapping has been stopped as a result of a reset or emergency stop, or when the machine power has been disconnected during rigid tapping, execute the command in the format shown below in MEM operation or MDI operation,...

  • Page 1059

    B-64483EN-1/03 5.AUTOMATIC OPERATION - 1029 - Signal address #7 #6 #5 #4 #3 #2 #1 #0 Gn062 RTNT #7 #6 #5 #4 #3 #2 #1 #0 Fn066 RTPT Parameter #7 #6 #5 #4 #3 #2 #1 #0 5200 DOV [Input type] Parameter input [Data type] Bit path #4 DOV Override during extraction i...

  • Page 1060

    5.AUTOMATIC OPERATION B-64483EN-1/03 - 1030 - [Valid data range] 0 or positive 9 digit of minimum unit of data (refer to the standard parameter setting table (B)) (When the increment system is IS-B, 0.0 to +999999.999) This parameter is used to set an extra amount of rigid tapping return. The t...

  • Page 1061

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1031 - 6 INTERPOLATION FUNCTION Chapter 6, “INTERPOLATION FUNCTION”, consists of the following sections: 6.1 POSITIONING .............................................................................................................................103...

  • Page 1062

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1032 - Parameter #7 #6 #5 #4 #3 #2 #1 #0 1401 LRP [Input type] Parameter input [Data type] Bit path #1 LRP Positioning (G00) 0: Positioning is performed with non-linear type positioning so that the tool moves along each axis independently...

  • Page 1063

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1033 - 6.2 SINGLE DIRECTION POSITIONING Overview For accurate positioning without play of the machine (backlash), final positioning from one direction is available. Start position End position Temporary stopStart position Overrun Fig. 6.2 (a) Example in...

  • Page 1064

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1034 - - Overview of operation • In the case of positioning of non-linear interpolation type (bit 1 (LRP) of parameter No. 1401 = 0) As shown below, single direction positioning is performed independently along each axis. Programmed end point Progra...

  • Page 1065

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1035 - [Unit of data] mm, inch, degree (machine unit) [Min. unit of data] Depend on the increment system of the applied axis [Valid data range] Refer to the standard parameter setting table (A) (When the increment system is IS-B, -999999.999 to +999999....

  • Page 1066

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1036 - • In the single direction positioning mode, G07.1, G12.1, G70 to G76, and G90 to G94 cannot be specified. Reference item Manual name Item name OPERATOR’S MANUAL (B-64484EN) Single direction positioning 6.3 LINEAR INTERPOLATION Overview Tool...

  • Page 1067

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1037 - Parameter 1411 Cutting feedrate NOTE When this parameter is set, the power must be turned off before operation is continued. [Input type] Setting input [Data type] Real path [Unit of data] mm/min, inch/min, degree/min (input unit) [Min. u...

  • Page 1068

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1038 - 6.4 CIRCULAR INTERPOLATION Overview The command below can move a tool along a circular arc in the defined plane. "Clockwise"(G02) and "counterclockwise"(G03) on the XpYp plane (ZpXp plane or YpZp plane) are defined when the XpY...

  • Page 1069

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1039 - (Example) For arc (1) (less than 180°) G91 G02 X60.0 Y20.0 R50.0 F300.0 ; For arc (2) (greater than 180°) G91 G02 X60.0 Y20.0 R-50.0 F300.0 ; r=50mmEnd point Start pointr=50mmYX(1)(2) Fig. 6.4 (c) The feedrate in circular interpolation is equal...

  • Page 1070

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1040 - [Data type] Bit path #1 G18 Plane selected when power is turned on or when the control is cleared 0: G17 mode (plane XY) 1: G18 mode (plane ZX) #2 G19 Plane selected when power is turned on or when the control is cleared 0: The setting of b...

  • Page 1071

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1041 - Note NOTE 1 For T series, the U, V and W axes (parallel with the basic axis) can be used with G-code system B and C. 2 If I, J, K, and R addresses are specified simultaneously, the arc specified by address R takes precedence and the other are igno...

  • Page 1072

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1042 - 6.5 THREADING 6.5.1 Threading Overview Tool movement can be synchronized with spindle rotation when cutting threads. The spindle speed is continuously read through the position coder attached to the spindle. Then, it is converted to a cutting feed...

  • Page 1073

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1043 - #7 #6 #5 #4 #3 #2 #1 #0 1402 JRV NPC [Input type] Parameter input [Data type] Bit path #0 NPC Feed per revolution without the position coder (function for converting feed per revolution F to feed per minute F in the feed per revolut...

  • Page 1074

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1044 - #7 #6 #5 #4 #3 #2 #1 #0 3408 C22 C17 C16 [Input type] Parameter input [Data type] Bit #0 C16 When bit 6 (CLR) of parameter No. 3402 is 1, the key on the MDI panel, the external reset signal, the reset and rewind signal, or emergency...

  • Page 1075

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1045 - Cutting value (chamfering value) in thread cutting cycles G92 and G76 5130 Cutting value (chamfering value) in thread cutting cycle G76.7 [Input type] Parameter input [Data type] Byte path [Unit of data] 0.1 [Valid data range] 0 to 127 This...

  • Page 1076

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1046 - This parameter sets the number of final finishing cycle repeats in the multiple repetitive canned cycle G76 or G76.7. When 0 is set, only one final finishing cycle is executed. Tool nose angle in multiple repetitive canned cycle G76 5143 Tool n...

  • Page 1077

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1047 - Note NOTE Even in the machine lock state, threading detects a one-rotation signal from the position coder mounted to the spindle. If threading is specified, and the threading is to be performed without waiting for a one-rotation signal from the...

  • Page 1078

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1048 - Table 6.5.2 (a) Bit 0 (CFR) of parameter No.1611) Parameter No.1466 Description 0 Non-0 The type of acceleration/deceleration after interpolation for threading is used together with the threading time constant (parameter No.1626), FL feedrate (par...

  • Page 1079

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1049 - NOTE When this parameter is set to 0 or bit 1 (CFR) of parameter No. 1611 is set to 1, the rapid traverse rate set in parameter No. 1420 is used. #7 #6 #5 #4 #3 #2 #1 #0 1610 THLx [Input type] Parameter input [Data type] Bit axis ...

  • Page 1080

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1050 - 1627 FL rate for acceleration/deceleration in threading cycles for each axis [Input type] Parameter input [Data type] Real axis [Unit of data] mm/min, inch/min, degree/min (machine unit) [Min. unit of data] Depend on the increment system of t...

  • Page 1081

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1051 - 6.5.3 Threading Cycle Retract (Multiple Repetitive Canned Cycle) T Overview When the "threading cycle retract" option function is provided, if feed hold is performed during threading in multiple repetitive threading cycle (G76), threadi...

  • Page 1082

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1052 - CAUTION Feed hold cannot be performed during retracting. Parameter #7 #6 #5 #4 #3 #2 #1 #0 RTV ROC 1403 [Input type] Parameter input [Data type] Bit path #4 ROC In the threading cycles G92 and G76, rapid traverse overri...

  • Page 1083

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1053 - #7 #6 #5 #4 #3 #2 #1 #0 CFR 1611 [Input type] Parameter input [Data type] Bit path #0 CFR For retraction after threading in the threading cycles G92 (T series), G76 (T series), and G76.7 (M series): 0: The type of accelera...

  • Page 1084

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1054 - This parameter sets a thread cutting angle in a thread cutting cycle (G92/G76). When 0 is set, an angle of 45 degrees is specified. #7 #6 #5 #4 #3 #2 #1 #0 11223 TRS [Input type] Parameter input [Data type] Bit path #1 TRS In thre...

  • Page 1085

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1055 - Reference item Manual name Item name OPERATOR’S MANUAL (B-64484EN) Variable lead threading 6.5.5 Continuous Threading Overview Threading blocks can be programmed successively to eliminate a discontinuity due to a discontinuous movement in machi...

  • Page 1086

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1056 - NOTE If it is necessary to perform circular threading G36 (counterclockwise), set this parameter to 1. #7 #6 #5 #4 #3 #2 #1 #0 3451 GQS [Input type] Parameter input [Data type] Bit path #0 GQS When threading is specifie...

  • Page 1087

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1057 - 6.5.7 Arbitrary Speed Threading 6.5.7.1 Arbitrary speed threading Overview In conventional threading, spindle speed could not be changed because tool movement could not synchronize with spindle rotation. This function makes it possible to change s...

  • Page 1088

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1058 - Explanation The system enters arbitrary speed threading mode according to the sequence of arbitrary speed threading mode change by specifying the M code set in parameter No.11487 (start of arbitrary speed threading). Then, threading (constant lead...

  • Page 1089

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1059 - NOTE 1 When continuous threading is executed, the lead along the feed axis (the first axis on the plane) must not be changed between threading blocks. 2 If the next block of threading command (G32: lathe system in G code system A, G33: machining c...

  • Page 1090

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1060 - Parameter number Description No.4507 Cs contour control high speed switching : Reference position establishment completion level AST(No.11485#0) Whether to use the function of arbitrary speed threading No.11487 M code to start arbitrary speed thre...

  • Page 1091

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1061 - - Sequence of arbitrary speed threading mode change Spindle speed control Cs contour control spindle speed Reference position establishment 0min-1 Cs contour control change signal CON<Gn027.7> Cs contour control high speed switching signals...

  • Page 1092

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1062 - position establishment completion signal CYSFN becomes “1”. - After threading starts until the feedrate of feed axis (the first axis on the plane) arrives at the commanded speed. NOTE 1 If spindle speed override in each path is used, not on...

  • Page 1093

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1063 - S0: value set in parameter No.11020 (Acceleration is switched at S0[min-1].) S1: value set in parameter No.11021 (Acceleration is switched at S1[min-1].) S : specified rotation speed[min-1] Aa : value set in parameter No.11030 (Acceleration [min-1...

  • Page 1094

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1064 - - Acceleration/Deceleration of feed axis and infeed axis in threading In threading, the axis whose travel distance is the longest is called a major axis. Thread is machined so that the specified lead would be applied in the direction of the major ...

  • Page 1095

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1065 - - Retraction after chamfering for threading cycle and multiple threading cycle Feedrate, type of acceleration/deceleration, and time constant of retraction after chamfering (3. retraction of Fig.6.5.7.1 (g)threading cycle) are as usual, as shown i...

  • Page 1096

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1066 - Position error of servo which is calculated before threading is indicated in diagnosis display No.4300, and position error of spindle which is calculated before threading is indicated in diagnosis display No.4301. - Maximum cutting feedrate If th...

  • Page 1097

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1067 - - Interlock All axes interlock signal *IT<Gn008.0> and interlock signals for each axis *IT1 to *IT8<Gn130> are ineffective for a spindle during arbitrary speed threading. - Stored stroke check Stored stroke check is ineffective for a ...

  • Page 1098

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1068 - - Simple spindle synchronous control Both spindle synchronous control and simple spindle synchronous control are not available for the spindle during arbitrary speed threading. Alarm PS0529 “THREADING COMMAND IMPOSSIBLE” is issued. - Manual re...

  • Page 1099

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1069 - 3.) In order to measure the groove of thread, groove of thread measurement signal GTMSR <Gn549.4> is set to “1”. Groove of thread measurement signal GTMSR <Gn549.4> is set to “0” after groove of thread measurement completion si...

  • Page 1100

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1070 - Fig.6.5.7.2 (a) measurement of thread groove CAUTION 1 The groove of thread must be measured when axes except for PMC axis, and spindle for arbitrary speed threading are stopped. 2 The groove of thread must be measured with the same tool which...

  • Page 1101

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1071 - NOTE 2 If re-machining thread is executed without measuring the groove of thread after power-on, the alarm PS0532 ”RE-MACHINING OF THREAD CUTTING IMPOSSIBLE” is issued. - Available threading commands for re-machining thread Threading commands...

  • Page 1102

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1072 - CAUTION - When bit 0 (ADQ) of parameter No.11486 is set to 1: In re-machining the thread which is machined the following program, the groove of thread which is machined by address Q=0 must be measured. Example) G32 Z-200.0 F10...

  • Page 1103

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1073 - Limitation - Multiple threading cycle Cutting method of multiple threading cycle is usually one-edge threading with constant cutting amount as shown in Fig.6.5.7.2 (c) (1). Re-machining of multiple threading cycle is executed so that the groove of...

  • Page 1104

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1074 - [Function] If bit 3 (MSC) of parameter No.3713 = 1, and bit 4 (EOV) of parameter No.3713 = 1, an override of 0% to 254% of the rotation speed specified by the CNC can be applied to individual spindles separately. [Operation] Specify an override ...

  • Page 1105

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1075 - NOTE When SFRx (or SRVx) is set to “0” during mode switching from spindle speed control to Cs contour control, the spindle decelerates, then reference position establishment is performed. Reference position establishment starting signal (seri...

  • Page 1106

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1076 - NOTE Rotation direction in arbitrary speed threading might be switched from that in spindle speed control due to machine configuration or parameter setting. For this case, SV reverse signal SVRVS1 to SVRVS8 <Gn523> is set to “1” before ...

  • Page 1107

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1077 - Sequence of thread groove measurement Fig.6.5.7 (a) completion of thread groove measurement Fig.6.5.7 (b) error of thread groove measurement Re-machining thread signal RMTC<Gn549.5> [Classification] Input signal [...

  • Page 1108

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1078 - #7 #6 #5 #4 #3 #2 #1 #0 Gn549 RMTC GTMSR CONH4 CONH3 CONH2 CONH1 #7 #6 #5 #4 #3 #2 #1 #0 Fn546 GTME GTMC CSMC4 CSMC3 CSMC2 CSMC1 - For first serial spindle #7 #6 #5 #4 #3 #2 #1 #0 Gn070 SFRA SRVA #7 #6 #5 #4 #3 #2 #1 #0 Gn3...

  • Page 1109

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1079 - NOTE When this parameter is set, the power must be turned off before operation is continued. #0 AST Arbitrary speed threading is: 0: Disabled. 1: Enabled. #1 RMT Re-machining thread is: 0: Disabled. 1: Enabled. #7 #6 #5 #4 #3 #2 #1 #0 11...

  • Page 1110

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1080 - NOTE In case of this parameter is 1, M code to start arbitrary speed threading can be re-commanded in arbitrary speed threading mode. Arbitrary speed threading mode is already selected. So process to change to arbitrary speed threading is not per...

  • Page 1111

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1081 - 11490 Spindle speed arrival level in arbitrary speed threading [Input type] Parameter input [Data type] word path [Unit of data] min-1 [Valid data range] 0 to 32767 Threading is started if the spindle speed is arrived within the level set in...

  • Page 1112

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1082 - #6 DCS Special acceleration for deceleration is: 0: Disabled. 1: Enabled. 11020 Acceleration/deceleration switching speed (S0) for each axis 11021 Acceleration/deceleration switching speed (S1) for each axis 25700 Acceleration/decelerati...

  • Page 1113

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1083 - #0 ROTx #1 ROSx Setting linear or rotary axis. ROSx ROTx Meaning 0 0 Linear axis (1) Inch/metric conversion is done. (2) All coordinate values are linear axis type. (Is not rounded in 0 to 360°) (3) Stored pitch error compensation is linear ...

  • Page 1114

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1084 - #7 #6 #5 #4 #3 #2 #1 #0 1408 IRCx [Input type] Parameter input [Data type] Bit axis #3 IRCx The least input increment of the maximum cutting feedrates set in parameter No.1430 and 1432 and the maximum servo motor speed set in para...

  • Page 1115

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1085 - [Data type] Bit axis #0 CTLx Acceleration/deceleration in cutting feed or dry run during cutting feed 0: Exponential acceleration/deceleration is applied. 1: Linear acceleration/deceleration after interpolation is applied. #1 CTBx Accelera...

  • Page 1116

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1086 - [Unit of data] msec [Valid data range] 0 to 4000 Set a time constant for acceleration/deceleration after interpolation in the threading cycles G92 (T series), G76 (T series), and G76.7 (M series) for each axis. 1627 FL rate for acceleration/de...

  • Page 1117

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1087 - NOTE Set a value in this parameter so that the absolute value of “Cs axis move command (converted to the spindle speed) ± setting” does not exceed the maximum spindle speed in Cs contour control (set in parameter No.4021). If the value excee...

  • Page 1118

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1088 - This parameter sets the completion level for reference position establishment. When the absolute value of spindle positional deviation becomes within the setting after the move command for reference position establishment has been distributed, the...

  • Page 1119

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1089 - Number Message Description DS0083 THREADING SIGNAL ERROR Signal setting is invalid. Possible causes are: - Reference position establishment starting signal CSYC is set to “1” before the Cs contour control high speed switching completion signal...

  • Page 1120

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1090 - 6.6 HELICAL INTERPOLATION Overview Helical interpolation which moved helically is enabled by specifying up to two other axes which move synchronously with the circular interpolation by circular commands. A tangential velocity of an arc in a specif...

  • Page 1121

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1091 - Parameter #7 #6 #5 #4 #3 #2 #1 #0 1403 HTG [Input type] Parameter input [Data type] Bit path #5 HTG The feedrate for helical interpolation/helical involute interpolation/3-dimensional circular interpolation is: 0: Specified using ...

  • Page 1122

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1092 - 6.7 INVOLUTE INTERPOLATION Overview Involute curve machining can be performed by using involute interpolation. Cutter compensation can be performed. Involute interpolation eliminates the need for approximating an involute curve with minute segment...

  • Page 1123

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1093 - X (θ), Y (θ) : Current position on the X-axis and Y-axis Base circle Start point Involute curve(X, Y)End point θo (Xo, Yo) R θX Y Fig. 6.7 (b) Involute curve Involute curves on the Z-X plane and Y-Z plane are defined in the same way as an i...

  • Page 1124

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1094 - G40: Cutter compensation cancel G41: Cutter compensation left G42: Cutter compensation right First, a point of intersection with a segment or an arc is approximated both at the start point and at the end point of the involute curve. An involute cu...

  • Page 1125

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1095 - - Automatic speed control for involute interpolation This function automatically overrides the programmed feedrate in two different ways during involute interpolation. With this function, a favorable cutting surface can be formed with high precis...

  • Page 1126

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1096 - Clamping the acceleration in the vicinity of basic circle If the acceleration calculated from the radius of curvature of the involute curve exceeds a value specified in the corresponding parameter, the tangential velocity is controlled so that...

  • Page 1127

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1097 - 1732 Minimum allowable feedrate for the deceleration function based on acceleration in circular interpolation [Input type] Parameter input [Data type] Real path [Unit of data] mm/min, inch/min, degree/min (machine unit) [Min. unit of data] D...

  • Page 1128

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1098 - [Valid data range] 0 or positive 9 digit of minimum unit of data (refer to the standard parameter setting table (B)) (When the increment system is IS-B, 0.0 to +999999.999) This parameter sets the allowable limit of deviation between an involute c...

  • Page 1129

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1099 - 6.8 POLAR COORDINATE INTERPOLATION Overview Polar coordinate interpolation is a function that exercises contour control in converting a command programmed in a Cartesian coordinate system to the movement of a linear axis (movement of a tool) and t...

  • Page 1130

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1100 - [Data type] Bit path #0 PDI When the second axis on the plane in the polar coordinate interpolation mode is based on radius specification: 0: Radius specification is used. 1: Diameter specification is used. #2 PLS The polar coordinate inter...

  • Page 1131

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1101 - Alarm and message Number Message Description PS0145 ILLEGAL USE OF G12.1/G13.1 The axis No. of plane selection parameter No. 5460 (linear axis) and No. 5461(axis of rotation) in the polar coordinate interpolation mode is out of range (1 to number ...

  • Page 1132

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1102 - On the other hand, the cylindrical interpolation cutting point control function controls the tool so that the tangent from the tool to the cutting face of a contour figure passes the rotation center of the workpiece at all times. That is, the cutt...

  • Page 1133

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1103 - To determine a plane for circular interpolation, cutter compensation, and so forth (G17: Xp-Yp plane, G18: Zp-Xp plane, G19: Yp-Zp plane) and a 3-dimensional tool compensation space (XpYpZp), specify which of the basic three axes (X, Y, and Z) is ...

  • Page 1134

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1104 - #5 CYA Specifies whether to perform cylindrical interpolation cutting point compensation in the cylindrical interpolation command (G07.1). 0: Perform. 1: Do not perform. #6 CYS Specifies whether when the cylindrical interpolation cutting poin...

  • Page 1135

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1105 - [Unit of data] mm, inch (input unit) [Min. unit of data] Depend on the increment system of the reference axis [Valid data range] 1 to 999999999 The following operation is performed, depending on the type of interpolation: (1) For linear interpola...

  • Page 1136

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1106 - 6.10 POLYGON TURNING Polygon turning means machining a workpiece to a polygonal figure by rotating the workpiece and tool at a certain ratio. WorkpieceWorkpieceTool Fig. 6.10 (a) By changing conditions which are rotation ratio of workpiece and ...

  • Page 1137

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1107 - (4) Reset (external reset signal ERS, reset/rewind signal RRW, and key on the MDI panel) (5) Occurrence of alarm PS0217 to PS0221, PS0314, and PS5018 NOTE 1 Before polygon turning, reference position return operation on the Y-axis needs to be sp...

  • Page 1138

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1108 - P0 : (A,0) Pt0 : (A-B,0) Y X Tool Angular speed βBP0A (0,0)WorkpieceAngular speed α Pt0 Fig. 6.10.1 (a) Pt(Xt,Yt)...

  • Page 1139

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1109 - Fig. 6.10.1 (c) If three tools are set at every 120°, the machining figure will be a hexagon as shown Fig. 6.10.1 (d). Fig. 6.10.1 (d) WARNING For the maximum rotation speed of the tool, see the instruction manual supplied with the machine....

  • Page 1140

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1110 - DMR=36/100 (With the above setting, the reference counter capacity is 360000.) No.1820=2 (CMR) No.1821=360000 (reference counter capacity) No.2084=36 (DMR numerator) No.2085=100 (DMR denominator) For the other servo parameters, specify typi...

  • Page 1141

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1111 - Likewise, the polygon axis rotates through 1.000[deg] by the following command: V1.0; The current position of the Y-axis in the machine coordinate system is normalized according to the value specified by parameter No. 7620. Typical values rang...

  • Page 1142

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1112 - #7 #6 #5 #4 #3 #2 #1 #0 7603 PLROT RPL [Input type] Parameter input [Data type] Bit path #0 RPL Upon reset, polygon turning mode is: 0: Released. 1: Not released. NOTE 1 When an emergency stop occurs, the polygon turning mode is re...

  • Page 1143

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1113 - [Input type] Parameter input [Data type] Real path [Unit of data] Degree [Min. unit of data] Depend on the increment system of the applied axis [Valid data range] 0 or positive 9 digit of minimum unit of data (refer to the standard parameter s...

  • Page 1144

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1114 - Number Message Description PS5018 POLYGON SPINDLE SPEED ERROR In G51.2 mode, the speed of the spindle or polygon synchronous axis either exceeds the clamp value or is too small. The specified rotation speed ratio thus cannot be maintained. For pol...

  • Page 1145

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1115 - <3> An alarm condition occurs in the spindle control unit, and the serial spindle control unit stops in an emergency on the PMC signals *ESPA<Gn071.1> and *ESPB<Gn075.1>. <4> Alarm PS0218, PS0219, PS0221, PS0314, or PS501...

  • Page 1146

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1116 - The diagnostic display bit 2 (QCL) of No. 471 can be used to check whether the clamp speed is exceeded after the command is executed. - PMC sequence Although this function is based on the G-code system, it is necessary to add or change PMC ladd...

  • Page 1147

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1117 - Diagnosis screen For polygon turning with two spindles, the following information is displayed on the diagnosis display screen. #7 #6 #5 #4 #3 #2 #1 #0 470 SC0 LGE SCF PSC PEN PSU SPL Polygon turning with two spindles Indication of informati...

  • Page 1148

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1118 - SC0 Actual speed command is 0 during polygon synchronization mode with two spindles. NOTE Signal SC0 is not a value specified by the program. It is set to 1 under any of the following conditions: 1. When the S command value is adjusted accordin...

  • Page 1149

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1119 - QCL The polygon synchronization axis is clamped. NOTE QCL becomes 1, when the polygon synchronization axis receives a command with a polygon synchronization speed that is higher than the value specified in parameter No. 7621 and is clamped at t...

  • Page 1150

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1120 - 476 Phase difference between the two spindles under polygon synchronization control with two spindles(R command value) This indication is the current phase value (R command value) specified during the polygon synchronization mode with two spindl...

  • Page 1151

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1121 - When the activated spindle is turned off by the spindle stop (for example, M05) command, move command pulses are generated even when activation is off unless the spindle speed command is set to 0 using the spindle stop signal *SSTP<Gn029.6> ...

  • Page 1152

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1122 - Signal address #7 #6 #5 #4 #3 #2 #1 #0 Gn038 *PLSST #7 #6 #5 #4 #3 #2 #1 #0 Fn063 PSYN PSAR PSE2 PSE1 PMC sequence The following shows the signal status time chart when the polygon synchronization mode is on and off. Signal st...

  • Page 1153

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1123 - Signal status time chart when the polygon synchronization mode is off Polygon sync axis rotation control G50.2 commandPolygon sync ON Polygon sync OFF Master axis rotation signal Polygon master axis not arrival signal Polygon sync axis not arr...

  • Page 1154

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1124 - In addition, while the polygon synchronization under way signal is 1, prevent the activation of the master axis and polygon synchronization axis from being turned off by, for example, prohibiting the acceptance of spindle stop (for example M05) du...

  • Page 1155

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1125 - The polygon spindle speed arrival signal PSAR<Fn063.2> can be used to check whether both spindles meet the settings of parameters No. 7631 and 7632 after phase control is performed in the polygon synchronization mode. The set time (parame...

  • Page 1156

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1126 - 7621 Maximum allowable speed for the tool rotation axis for polygon turning [Input type] Parameter input [Data type] 2-word path [Unit of data] min-1 [Valid data range] 0 or positive 9 digit of minimum unit of data (refer to the standard para...

  • Page 1157

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1127 - NOTE 3 When a spindle other than the first serial spindle is used as a master axis, the multi-spindle control option is required to specify an S command for the master axis. 4 When the PMC window function or G10 command is used to rewrite this par...

  • Page 1158

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1128 - NOTE 4 When the PMC window function or G10 command is used to rewrite this parameter, rewrite this parameter before the block specifying the spindle-spindle polygon command G51.2. When the PMC window function is used to rewrite this parameter in t...

  • Page 1159

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1129 - Number Message Description PS0314 ILLEGAL SETTING OF POLYGONAL AXIS An axis was specified invalidly in polygon turning. For polygon turning: A tool rotation axis is not specified. (Parameter No. 7610) For polygon turning with two spindles: Valid...

  • Page 1160

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1130 - CAUTION 5 During the polygon synchronization mode, no command cannot be executed for the polygon synchronization axis. During the polygon synchronization mode, the spindle orientation function cannot be used for either the master axis and polygo...

  • Page 1161

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1131 - 6.10.3 Concurrent Use of Polygon Turning and Polygon Turning with Two Spindles Overview When both options of polygon turning and polygon turning with two spindles are specified, which polygon turning option is used for each path can be selected us...

  • Page 1162

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1132 - Parameter #7 #6 #5 #4 #3 #2 #1 #0 7604 PCG NOTE When this parameter is set, the power must be turned off before operation is continued. [Input type] Parameter input [Data type] Bit path #7 PCG If both the spindle-spindle polygon ...

  • Page 1163

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1133 - 6.11 NORMAL DIRECTION CONTROL Overview When a tool with a rotation axis (C-axis) is moved in the XY plane during cutting, the normal direction control function can control the tool so that the C-axis is always perpendicular to the tool path (Fig. ...

  • Page 1164

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1134 - #0 ROTx #1 ROSx Setting linear or rotary axis. ROSx ROTx Meaning 0 0 Linear axis (1) Inch/metric conversion is done. (2) All coordinate values are linear axis type. (Is not rounded in 0 to 360°) (3) Stored pitch error compensation is linear a...

  • Page 1165

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1135 - [Unit of data] Degree [Min. unit of data] Depend on the increment system of the reference axis [Valid data range] 0 or positive 9 digit of minimum unit of data (refer to the standard parameter setting table (B)) The rotation block of the normal d...

  • Page 1166

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1136 - 6.12 GENTLE NORMAL DIRECTION CONTROL Overview The movement of the rotation axis (C-axis) in normal direction control is inserted before the movement block of linear axes (X- and Y-axes) and it rotates independently. The X- and Y-axes always stop i...

  • Page 1167

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1137 - [Unit of data] degree [Min. unit of data] Depend on the increment system of the reference axis [Valid data range] 0 to 360 This parameter is valid when bit 0 (SDC) of parameter No. 5484 is set to 1. Gentle normal direction control rotates a nor...

  • Page 1168

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1138 - Reference item Manual name Item name OPERATOR’S MANUAL (B-64484EN) Normal direction control 6.13 EXPONENTIAL INTERPOLATION M Overview Exponential interpolation exponentially changes the rotation of a workpiece with respect to movement on the r...

  • Page 1169

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1139 - This parameter sets the ordinal number, among the controlled axes, for the rotation axis to which exponential interpolation is applied. 5643 Amount of linear axis division (span value) in exponential interpolation [Input type] Setting input ...

  • Page 1170

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1140 - Format G05.1Q2 Xp0 Yp0 Zp0 ; Smooth interpolation mode on : G05.1Q0 ; Smooth interpolation mode off Xp : X axis or an axis parallel to the X-axis Yp : Y axis or an axis parallel to the X-axis Zp : Z axis or an axis parallel to the X-axis ...

  • Page 1171

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1141 - [Example] O0010 … (G5.1 Q1 R1;) G43 H1; G5.1 Q2 X0 Y0 Z0; … G5.1 Q0; G49; … M30; If the following functions are required before smooth interpolation, specify G5.1. - AI contour control - Machining condition selecting function Smooth interpol...

  • Page 1172

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1142 - Resulting surfaces produced using high-precision contour control Smooth surface even when machining is performed exactly as specified by a program Uneven surfaces may result when machining is performed exactly as specified by a program Example o...

  • Page 1173

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1143 - - Conditions for enabling smooth interpolation Smooth interpolation is performed when all the following conditions are satisfied. If any of the following conditions is not satisfied for a block, that block is executed without smooth interpolation...

  • Page 1174

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1144 - N08 X1000 Z-350 ; N09 Y1000 ; Interpolated by smooth curve Interpolated by smooth curve (Example)N17 N16N1N2 N15N14N13N12N11N10 N9 N3N4N5N6N7N8Linear interpolation Fig. 6.14 (d) Limitation Basically, limitations on AI contour contr...

  • Page 1175

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1145 - • Retrace • Active block cancel • Interruption type custom macro - Functions that cannot be used together with smooth interpolation Smooth interpolation cannot be used together with the functions below. • Parallel axis control • Twin t...

  • Page 1176

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1146 - Y r 0 Z 1π2ππ2 Fig. 6.15 (a) Reference item Manual name Item name OPERATOR’S MANUAL (B-64484EN) Hypothetical interpolation 6.16 HELICAL INTERPOLATION B Overview The helical interpolation B function differs from the helical interpolation fu...

  • Page 1177

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1147 - #5 HTG The feedrate for helical interpolation/helical involute interpolation/3-dimensional circular interpolation is: 0: Specified using the feedrate along the tangent to an arc/involute curve/3-dimensional arc 1: Specified using the feedrate al...

  • Page 1178

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1148 - 6.17 SPIRAL INTERPOLATION, CONICAL INTERPOLATION Overview Spiral interpolation is enabled by specifying the circular interpolation command together with a desired number of revolutions or a desired increment (decrement) for the radius per revoluti...

  • Page 1179

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1149 - Parameter 3471 Allowable difference between the specified end position and the end position obtained from the increase/decrease and frequency in spiral interpolation or conic interpolation [Input type] Parameter input [Data type] Real axis [U...

  • Page 1180

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1150 - Reference item Manual name Item name OPERATOR’S MANUAL (B-64484EN) Spiral interpolation, conical interpolation

  • Page 1181

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1151 - 6.18 NURBS INTERPOLATION M Overview Many computer-aided design (CAD) systems used to design metal dies for automobiles and airplanes utilize non-uniform rational B-spline (NURBS) to express a sculptured surface or curve for the metal dies. This f...

  • Page 1182

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1152 - In addition, NURBS interpolation can be used with tool center point control (type 1 (G43.4)). This eliminates the necessity of modifying a program when the tool length is changed. Alarm and message Number Message Description PS5115 ILLEGAL ORDER ...

  • Page 1183

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1153 - #5 FDI Parametric feedrate control of NURBS interpolation is: 0: Disabled. 1: Enabled. 6.19 LINEAR INTERPOLATION (G28, G30, G53) Overview When positioning operation of linear interpolation type is specified (bit 1 (LRP) of parameter No. 1401 = ...

  • Page 1184

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1154 - Note NOTE Automatic reference position return operation of low-speed type (G28) If reference position return operation is not performed for a specified axis even once after the power is turned on in automatic reference position return operation ...

  • Page 1185

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1155 - Alarm and message Number Message Description PS5430 ILLEGAL COMMAND IN 3-D CIR In a modal state in which 3-dimensional circular interpolation cannot be specified, a 3-dimensional circular interpolation (G02.4/G03.4) is specified. Alternatively, in...

  • Page 1186

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1156 - If specifying the machining condition selecting function, specify G5.1 Q1 Rx first and then nano smoothing. Example O0010 … (G5.1 Q1 R1;) G5.1 Q3 X0 Y0 Z0; … G5.1 Q0; … M30; If the following functions are required before nano smoothing, spe...

  • Page 1187

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1157 - Explanation Generally, a program approximates a sculptured surface with minute segments with a tolerance of about 10 μm. ToleranceProgrammed pointDesired curve Fig. 6.21 (a) Many programmed points are placed on the boundary of tolerance. The pro...

  • Page 1188

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1158 - : Command point Smoothing on XYZ space : Command point Smoothing on BC space XYZBCG5.1 Q3 X0 Y0 Z0 B0 C0;X_ Y_ Z_ B_ C_; X_ Y_ Z_ B_ C_; … G5.1 Q0; Fig. 6.21 (c) Insertion points for the rotation axes are corrected so that each axis element of...

  • Page 1189

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1159 - N1 N2N3 θ1θ2 θ1 : the difference in angle between N1 and N2 θ2 : the difference in angle between N2 and N3 Fig. 6.21 (e) If the value specified in the parameter is 0, no decision is made at the corner on the basis of the difference in angl...

  • Page 1190

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1160 - • Constant surface speed control cancel • Cutting mode • Coordinate system rotation/3-dimensional coordinate system conversion cancel • Polar coordinate command cancel • Normal direction control cancel • Polar coordinate interpolation ...

  • Page 1191

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1161 - - Tool radius / tool nose radius compensation If tool radius / tool nose radius compensation is specified in the nano smoothing mode, the nano smoothing mode is cancelled. Then, when the command of tool radius / tool nose radius compensation canc...

  • Page 1192

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1162 - (5) Active block cancel The active block cancel function is temporarily disabled in the nano smoothing mode. - Functions that cannot be used simultaneously The nano smoothing function cannot be used simultaneously with the following functions. ...

  • Page 1193

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1163 - This parameter sets a block length used to determine whether to apply smooth interpolation or Nano smoothing. If the line specified in a block is shorter than the value set in this parameter, smooth interpolation or Nano smoothing is not applied t...

  • Page 1194

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1164 - Alarm and message Number Message Description PS0340 ILLEGAL RESTART(NANO SMOOTHING) With manual absolute turned on, an attempt was made to restart the operation in nano smoothing mode after performing the manual intervention. PS0341 TOO MANY COMMA...

  • Page 1195

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1165 - • Captures the rise of the signal and causes the tool to retract along the axis for which a retract amount is set in parameter No. 7741. The retract amount and the retract speed assume the values previously set in parameters Nos. 7741 and 7740. ...

  • Page 1196

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1166 - (2) Interruption of retraction due to a reset RTRCT RTRCTF Movement Interruption of retract operation RST Turn the RTRCT signal off at the same time as turning the RST signal on. Fig. 6.22 (c) (3) Interruption of retraction d...

  • Page 1197

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1167 - NOTE The tool moves (is retracted) by the specified amount regardless of whether diameter or radius programming is specified. #7 #6 #5 #4 #3 #2 #1 #0 7704 ACR [Input type] Parameter input [Data type] Bit path #0 ACR In the AI co...

  • Page 1198

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1168 - CAUTION 6 When retraction is performed during automatic operation, the execution of a command is interrupted as soon as a retract operation starts. However, the operation state is switched to the automatic operation stopped state when the retract...

  • Page 1199

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1169 - CAUTION 16 This function cannot be used in high-speed cycle cutting or binary operation. For high-speed cycle cutting and in binary operation, use the retract functions provided for the respective functions. 17 If an electronic gear box option is...

  • Page 1200

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1170 - 6.23 GROOVE CUTTING BY CONTINUOUS CIRCLE MOTION M Overview Groove cutting with a width greater than the tool diameter can be performed by causing the tool to make continuous circle motion independently of axis movement by the groove cutting path ...

  • Page 1201

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1171 - i (Groove width) q (pitch) k (Tool diameter)Groove cutting path program Fig. 6.23 (b) Signal Groove cutting by continuous circle motion enable signal CGREN <Gn067.1> [Classification] Input signal [Function] Enables the groove cutting by...

  • Page 1202

    6.INTERPOLATION FUNCTION B-64483EN-1/03 - 1172 - This signal is set to 0 when the groove cutting by continuous circle motion mode is canceled. Signal address #7 #6 #5 #4 #3 #2 #1 #0 Gn067 CGREN Gn220 *CGROV7 *CGROV6 *CGROV5*CGROV4*CGROV3*CGROV2 *CGROV1 *CGROV0 #7 #6 #5 #4 ...

  • Page 1203

    B-64483EN-1/03 6.INTERPOLATION FUNCTION - 1173 - Number Message Description PS5256 G12.4/G13.4 EXECUTION ERROR (1) In the groove cutting by continuous circle motion mode, a command other than G01, G02, G03, G04, G90, G91, and the auxiliary function is specified. (2) The groove cutting by contin...

  • Page 1204

    B-64483EN-1/03 - 1174 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL 7 FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL Chapter 7, “FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL”, consists of the following sections and subsections: 7.1 FEEDRATE CONTROL .............

  • Page 1205

    B-64483EN-1/03 - 1175 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL7.1.1 Rapid Traverse Rate Overview The positioning command (G00) positions the tool by rapid traverse. G00 IP_ ; G00 : G code (group 01) for positioning (rapid traverse) IP_ : Dimension word for the end point In ra...

  • Page 1206

    B-64483EN-1/03 - 1176 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL #1 LRP Positioning (G00) 0: Positioning is performed with non-linear type positioning so that the tool moves along each axis independently at rapid traverse. 1: Positioning is performed with linear interpolation...

  • Page 1207

    B-64483EN-1/03 - 1177 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL7.1.2 Cutting Feedrate Clamp Overview An upper limit can be set on the cutting feedrate along each axis (parameter No. 1430). If an actual cutting feedrate (with an override applied) exceeds a specified upper limit, i...

  • Page 1208

    B-64483EN-1/03 - 1178 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL 7.1.3 Feed per Minute Overview - Feed per minute After specifying G94 (G98 for lathe system) (in the feed per minute mode), the amount of feed of the tool per minute is specified by setting a number after F. G94 (...

  • Page 1209

    B-64483EN-1/03 - 1179 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROLExample) Execute the program below by setting bit 4 (MFC) of parameter No. 13450 to 1. At the block for switching from G94 to G95 (N06), alarm PS0011 is issued. O0001 ; N01 G90 G00 X0.0 Y0.0 ; N02 M03 S100 ; N03...

  • Page 1210

    B-64483EN-1/03 - 1180 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL NOTE 3 If this parameter bit is 1, and bit 7 (FC0) of parameter No. 1404 is set to 1, alarm PS0011 is not issued and the block is executed with a feedrate of 0 even if the feed selection command is used to switch t...

  • Page 1211

    B-64483EN-1/03 - 1181 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROLA cutting feedrate can be specified with this parameter for a machine which does not have to change the cutting feedrate frequently during machining. This eliminates the need to specify a cutting feedrate (F code) in ...

  • Page 1212

    B-64483EN-1/03 - 1182 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL Alarm and message Number Message Description PS0011 FEED ZERO ( COMMAND ) The cutting feedrate instructed by an F code has been set to 0.This alarm is also generated if the F code instructed for the S code is set e...

  • Page 1213

    B-64483EN-1/03 - 1183 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROLNOTE 1 Specify a feedrate in parameter No. 1423. 2 For the machining center system, the option for threading/synchronous feed is required. 1423 Feedrate in manual continuous feed (jog feed) for each axis [Input ty...

  • Page 1214

    B-64483EN-1/03 - 1184 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL - Cutting feed override during one-digit F code feed The following functions are enabled for a cutting feedrate during one-digit F code feed: • Feedrate override • Second feedrate override • Override cancel ...

  • Page 1215

    B-64483EN-1/03 - 1185 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROLFmax1: Upper limit of the feedrate for F1 to F4 (parameter No. 1460) Fmax2: Upper limit of the feedrate for F5 to F9 (parameter No. 1461) 1451 Feedrate for F1 to to 1459 Feedrate for F9 [Input type] Setting inpu...

  • Page 1216

    B-64483EN-1/03 - 1186 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL Circle radius : mm (metric input) inch (inch input) CAUTION In circular interpolation, the distance is not an actual distance of the block but the speed is calculated from the circle radius. Alarm and message...

  • Page 1217

    B-64483EN-1/03 - 1187 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL7.1.7 Override 7.1.7.1 Rapid traverse override Overview An override of four steps (F0, 25%, 50%, and 100%) can be applied to the rapid traverse rate. F0 is set by a parameter No. 1421. The 1% step rapid traverse overr...

  • Page 1218

    B-64483EN-1/03 - 1188 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL Signal Rapid traverse override signal ROV1,ROV2<Gn014.0 to 1> [Classification] Input signal [Function] These signals override the rapid traverse rate [Operation] These code signals correspond to the rates ...

  • Page 1219

    B-64483EN-1/03 - 1189 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL- Signals *FHRO0 to *FHRO9 are inverted signals. To set an override value of 0.1%, set signals *FHRO0 to *FHRO9 to 1111111110, which corresponds to a binary code of 0000000001. Signal address #7 #6 #5 #4 #3 #2 #1 #...

  • Page 1220

    B-64483EN-1/03 - 1190 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL The signals indicated below are not affected. • 1% step rapid traverse override selection signal HROV <Gn096.7> • 1% step rapid traverse override signals *HROV0 to *HROV6 <Gn096.0 to Gn096.6> • 0....

  • Page 1221

    B-64483EN-1/03 - 1191 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL ToolCheck the machining by altering the feedrate from the value specified in the program. Feedrate 100 mm/min(Specified by programmed)Feedrate 50 mm/min after feedrate override Workpiece Fig. 7.1.7 (b) Feedrate overr...

  • Page 1222

    B-64483EN-1/03 - 1192 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL #7 #6 #5 #4 #3 #2 #1 #0 3002 IOV [Input type] Parameter input [Data type] Bit path #4 IOV Override-related signal logic is: 0: Used without modification (A signal of negative logic is used as a nega...

  • Page 1223

    B-64483EN-1/03 - 1193 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL [Function] The cutting feedrate is multiplied by the second feedrate override. These eight binary code signals correspond to the override values as follows. Override value=∑×70=i%|2|Vii Vi=0 when *AFVi is 1 and Vi...

  • Page 1224

    B-64483EN-1/03 - 1194 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL The signals indicated below are not affected. • 1% step rapid traverse override selection signal HROV <Gn096.7> • 1% step rapid traverse override signals *HROV0 to *HROV6 <Gn096.0 to Gn096.6> • 0....

  • Page 1225

    B-64483EN-1/03 - 1195 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL θ θ θ θ :Tool :Programmed path :Cutter center path 1. Straight line-straight line 2. Straight line-arc3. Arc-straight line 4. Arc-arc Fig. 7.1.8 (a) Inner corner - Overriding range When an inner corner is found...

  • Page 1226

    B-64483EN-1/03 - 1196 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL daLsLebProgrammed path ToolLsLe<2>C Cutter center path Fig. 7.1.8 (d) Overriding range (straight line - arc, arc - straight line) - Override value An override value is set with parameter No. 1712. An over...

  • Page 1227

    B-64483EN-1/03 - 1197 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROLIf Rc is much smaller than Rp, Rc/Rp≒0; the tool stops. A minimum deceleration ratio (MDR) is to be specified with parameter No. 1710. When Rc/Rp≤MDR, the feedrate of the tool is (F×MDR). If parameter No. 1710 is...

  • Page 1228

    B-64483EN-1/03 - 1198 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL 1712 Override value for inner corner override [Input type] Parameter input [Data type] Byte path [Unit of data] % [Valid data range] 1 to 100 Set an inner corner override value in automatic corner overriding. ...

  • Page 1229

    B-64483EN-1/03 - 1199 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROLExplanation - Override To select whether to enable/disable this function, set the 1% step rapid traverse override selection signal HROV<Gn096.7>. To select the override ratio, set the 1% step rapid traverse ove...

  • Page 1230

    B-64483EN-1/03 - 1200 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL [Example] If the override is 60%, and the following program is commanded. N10 M03 ; N20 ... ; If the processing time of N10 block is 80ms, N20 block begins in about 56ms after the N10 block is completed. S...

  • Page 1231

    B-64483EN-1/03 - 1201 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL [Operation] These seven signals give a binary code indicating an override applied to the rapid traverse rate. - When a binary code corresponding to an override value of 101% to 127% is specified, the applied override...

  • Page 1232

    B-64483EN-1/03 - 1202 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL 3011 Acceptable width of M, S, T, and B function completion signal (FIN) [Input type] Parameter input [Data type] Word path [Unit of data] msec [Valid data range] 0 to 32767 Set the minimum signal width of the...

  • Page 1233

    B-64483EN-1/03 - 1203 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL7.1.10 External Deceleration Overview The control axis is externally decelerated. The feedrate is decelerated by the external deceleration signals from the machine. The deceleration rate is set by the parameters. The ...

  • Page 1234

    B-64483EN-1/03 - 1204 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL [Operation] When a signal becomes 0, the corresponding axis decelerates to stop in the specified direction. If a specified feedrate is lower than the external deceleration rate, the specified feedrate is selected...

  • Page 1235

    B-64483EN-1/03 - 1205 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL #7 #6 #5 #4 #3 #2 #1 #0 1405 EDR [Input type] Parameter input [Data type] Bit path #5 EDR As the external deceleration rate for positioning of linear interpolation type: 0: The external deceleration ra...

  • Page 1236

    B-64483EN-1/03 - 1206 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL [Min. unit of data] Depend on the increment system of the applied axis [Valid data range] Refer to the standard parameter setting table (C) (When the increment system is IS-B, 0.0 to +999000.0) Set a maximum manual...

  • Page 1237

    B-64483EN-1/03 - 1207 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL[Valid data range] Refer to the standard parameter setting table (C) (When the increment system is IS-B, 0.0 to +999000.0) Set external deceleration rate 3 for each axis in rapid traverse. 1445 Maximum manual handle...

  • Page 1238

    B-64483EN-1/03 - 1208 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL [Valid data range] Refer to the standard parameter setting table (C) (When the increment system is IS-B, 0.0 to +999000.0) Set a maximum manual handle feedrate 4 for each axis. 12754 External deceleration rate se...

  • Page 1239

    B-64483EN-1/03 - 1209 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL Parameter 1832 Feed stop positioning deviation for each axis [Input type] Parameter input [Data type] 2-word axis [Unit of data] Detection unit [Valid data range] 0 to 99999999 Set the feed stop positioning devi...

  • Page 1240

    B-64483EN-1/03 - 1210 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL - Manual intervention If a manual operation is inserted during automatic operation by halting rapid traverse with feed hold or mode switching, the value of the loop gain is changed to the value set in parameter No...

  • Page 1241

    B-64483EN-1/03 - 1211 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL - AI contour control During the AI contour control mode, this function is disabled if acceleration/deceleration before interpolation or optimum torque acceleration/deceleration is used for rapid traverse. - Axis sy...

  • Page 1242

    B-64483EN-1/03 - 1212 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL NOTE 1 To use this parameter, set bit 0 (OADx) of parameter No. 6131 to 1. 2 If 0 is set in all of parameters Nos. 6136 to 6138 and 11230 to 11232, this function is disabled. 3 The settings must satisfy the follow...

  • Page 1243

    B-64483EN-1/03 - 1213 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROLThe rapid traverse time constant for each axis is set. 6181 Level 1 servo loop gain 6182 Level 2 servo loop gain 6183 Level 3 servo loop gain 6184 Level 4 servo loop gain 6185 Level 5 servo loop gain 6186 ...

  • Page 1244

    B-64483EN-1/03 - 1214 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL 7.1.13 AI Contour Control I and AI Contour Control II Overview The AI contour control I and AI contour control II functions are provided for high-speed, high-precision machining. This function enables suppression o...

  • Page 1245

    B-64483EN-1/03 - 1215 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROLFunction AI contour control I AI contour control II AI contour control II with high-speed processingNumber of blocks read ahead 40 *1 (When G8 is specified: 1)200 (When G8 is specified: 1)600 *2 *3 (When G8 is specif...

  • Page 1246

    B-64483EN-1/03 - 1216 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL NOTE 3 If the parameter is 0 for all paths, it is assumed that the maximum number of blocks is set for the first path. 4 High-speed processing is usable for up to two paths with up to 12 axes. Alarm and message Nu...

  • Page 1247

    B-64483EN-1/03 - 1217 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROLProgram: N1 G01 G91 X20.0 F6000 Move on the X-axis. G04 X0.01 N2 Y20.0 Move on the Y-axis. G04 X0.01 N3 X20.0 Y20.0 Move in the XY direction (at 45 degrees). The acceleration in N3 is 1414 mm/sec2. At this po...

  • Page 1248

    B-64483EN-1/03 - 1218 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL FeedrateTimeDecelerationstart pointDecelerationstart pointSpeed control by look-aheadacceleration/deceleration beforeinterpolationProgrammed speed - Deceleration based on a distance If the total distance of the b...

  • Page 1249

    B-64483EN-1/03 - 1219 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROLAcceleration/deceleration curveSpecifiedfeedrateFeedrateT1'T2'T2' There are three methods for specifying the acceleration/deceleration reference speed. (1) Specifying the speed using an F in a G05.1 Q1 block (2) Set...

  • Page 1250

    B-64483EN-1/03 - 1220 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL (Example) Program N1 G01 G91 X100. F5000 N2 Y100. N1N2Tangent feedrate X-axis feedrate Y-axis feedrate The deceleration based on the feedrate difference is used. Tangent feedrateX-axis feedrateY-axis feedrateThe f...

  • Page 1251

    B-64483EN-1/03 - 1221 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROLIf 1 is set for this parameter, the deceleration feedrate determined with the feedrate difference may be up to 30% lower than that determined if 0 is set. Deceleration to354 mm/min Deceleration to354 mm/min (Example)...

  • Page 1252

    B-64483EN-1/03 - 1222 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL NOTE Even if the AI contour control option is absent, this function can be used by specifying the speed control function option using the acceleration of circular interpolation. - Speed control with the accelera...

  • Page 1253

    B-64483EN-1/03 - 1223 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROLIf 0 is set, the highest feedrate that does not cause the permissible acceleration set for parameter No. 1737 to be exceeded is assumed to be the deceleration feedrate. In this case, the deceleration feedrate differs ...

  • Page 1254

    B-64483EN-1/03 - 1224 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL In such a case, the use of smooth speed control enables speed control by recognizing the entire figure, which provides smooth speed control while suppressing local deceleration, therefore increasing the feedrate. ...

  • Page 1255

    B-64483EN-1/03 - 1225 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL - Deceleration with the cutting load Usually, the cutting resistance produced when machining is performed with the bottom of the cutter as the tool lowers along the Z-axis is greater than the cutting resistance produ...

  • Page 1256

    B-64483EN-1/03 - 1226 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL XY plane Z 30° 45° 60° 90° Area1 Area2 Area3 Area4 CAUTION 1 The speed control with the cutting feed is effective only when the tool is parallel with the Z-axis. Thus, it may not be possible to apply this fu...

  • Page 1257

    B-64483EN-1/03 - 1227 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL [Function] This signal indicates that the system is in AI contour control mode. [Output cond.] This signal is set to 1 when the cutting command or other conditions for AI contour control is met in AI contour control...

  • Page 1258

    B-64483EN-1/03 - 1228 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL #7 #6 #5 #4 #3 #2 #1 #0 1604 SHP [Input type] Parameter input [Data type] Bit path #0 SHP When automatic operation is started, the state equivalent to the specification of G5.1Q1 for AI contour cont...

  • Page 1259

    B-64483EN-1/03 - 1229 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL[Valid data range] Refer to the standard parameter setting table (C) (When the increment system is IS-B, 0.0 to +999000.0) With the deceleration function based on acceleration in circular interpolation, an optimum fee...

  • Page 1260

    B-64483EN-1/03 - 1230 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL In circular interpolation, however, the deceleration function based on feedrate control using acceleration in circular interpolation (parameter No. 1735) is enabled. 1738 Minimum allowable feedrate for the decele...

  • Page 1261

    B-64483EN-1/03 - 1231 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL Feedrate in tangent direction Optimum inclination is automatically calculated from the setting of parameter No. 1660. (A) (B) (B) (B)(B)(A)(A)(C) (C)Time set by parameter No. 1772 1783 Maximum allowable feedrate ...

  • Page 1262

    B-64483EN-1/03 - 1232 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL CHARACTER CODE LIST Character Code Comment CharacterCodeComment Character Code Comment 032 Space 6 054 L 076 ! 033 Exclamation mark 7 055 M 077 ” 034 Quotation marks 8 056 N 078 # 035 Sharp 9 057 O 079 $...

  • Page 1263

    B-64483EN-1/03 - 1233 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL #7 #6 #5 #4 #3 #2 #1 #0 8451 NOF ZAG [Input type] Setting input [Data type] Bit path #4 ZAG The deceleration function based on cutting load in AI contour control (deceleration based on Z-axis fall angle...

  • Page 1264

    B-64483EN-1/03 - 1234 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL Usually, override is enabled for a specified feedrate, and AI contour control is applied to the specified feedrate. When this parameter is set to 1, override is applied to a feedrate placed under AI contour control...

  • Page 1265

    B-64483EN-1/03 - 1235 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL #7 #6 #5 #4 #3 #2 #1 #0 19503 ZOL HPF [Input type] Parameter input [Data type] Bit path #0 HPF When a feedrate is determined based on acceleration in AI contour control, smooth feedrate control is: 0: N...

  • Page 1266

    B-64483EN-1/03 - 1236 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL #1 HNG By block length of the linear interpolation, speed control with acceleration on each axis and speed control with change of acceleration on each axis; 0: Are not invalidated. 1: Are invalidated. Speed contr...

  • Page 1267

    B-64483EN-1/03 - 1237 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROLExample O0010 … G5.1 Q1; G01 … X1.0Y2.0Z3.0; M220; … M221; X2.0Y2.0Z4.0; … X4.0Y1.0Z2.0; G5.1 Q0; … M30; (Note The way to specify synchronous, composite, and superimposed controls differ from one machine to...

  • Page 1268

    B-64483EN-1/03 - 1238 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL In case that you need to execute the macro statement after completing the NC block just before the macro statement, specify M code or G code that is not buffered just before the macro statement. Specially, in case ...

  • Page 1269

    B-64483EN-1/03 - 1239 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL• When bit 2 (AOFF) of parameter No. 1611 is set to 1 Immediately after automatic operation is started, the advanced preview feed forward function is enabled in the N01 and N03 blocks and the advanced preview feed f...

  • Page 1270

    B-64483EN-1/03 - 1240 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL - Conventional speed and angular velocity parameters Table 7.1.14 (a) Unit of data Increment system Minimum data unit Valid data range IS-C 0.0001 0.0000 to +99999.9999 IS-D 0.00001 0.00000 to +9999.99999 mm/min d...

  • Page 1271

    B-64483EN-1/03 - 1241 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL Limitation - Time constant parameters for linear acceleration/deceleration after interpolation and bell-shaped acceleration/deceleration after interpolation If linear acceleration/deceleration after interpolation or...

  • Page 1272

    B-64483EN-1/03 - 1242 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL When this function is made effective, the digit number below the decimal point of the parameter on input screen is changed. The digit number below the decimal point decreases by one digit in case of the least input...

  • Page 1273

    B-64483EN-1/03 - 1243 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL7.2 ACCELERATION/DECELERATION CONTROL 7.2.1 Automatic Acceleration/Deceleration 7.2.1.1 Automatic acceleration/deceleration Overview To prevent a mechanical shock, acceleration/deceleration is automatically applied wh...

  • Page 1274

    B-64483EN-1/03 - 1244 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL Parameter #7 #6 #5 #4 #3 #2 #1 #0 1610 JGLx CTBx CTLx [Input type] Parameter input [Data type] Bit axis #0 CTLx Acceleration/deceleration in cutting feed or dry run during cutting feed 0: Exponential ...

  • Page 1275

    B-64483EN-1/03 - 1245 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL For bell-shaped acceleration/deceleration Speed Rapid traverse rate (Parameter No. 1420) Time T1 T2 T2 T2T2 T1 Fig. 7.2.1.1 (c) T1 : Setting of parameter No. 1620 T2 : Setting of parameter No. 1621 (However, T1 ...

  • Page 1276

    B-64483EN-1/03 - 1246 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL 1624 Time constant of acceleration/deceleration in jog feed for each axis. [Input type] Parameter input [Data type] Word axis [Unit of data] msec [Valid data range] 0 to 4000 Set the time constant used for acc...

  • Page 1277

    B-64483EN-1/03 - 1247 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROLExplanation Fh Fd Axis speed Time Fh: Rapid traverse rate α: Reduction ratio (set by parameter No. 1722) Fd: Deceleration evaluation rate = Fd×α/100 N10 G00 X10.0 ;N20 G00 Y10.0 ; X-axis speedY-axis speedStart ...

  • Page 1278

    B-64483EN-1/03 - 1248 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL 1722 Rapid traverse feedrate reduction ratio for overlapping rapid traverse blocks [Input type] Parameter input [Data type] Byte axis [Unit of data] % [Valid data range] 0 to 100 This parameter is used when ra...

  • Page 1279

    B-64483EN-1/03 - 1249 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL - Rapid traverse overlap between threading cycle blocks Rapid traverse overlap is executed between "retract(3)" and "return(4)" and between "return(4)" and "next-threading cycle pos...

  • Page 1280

    B-64483EN-1/03 - 1250 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL Fh Fd Axis speed Time Fh: Rapid traverse feedrate α: Reduction ratio(specified in parameter No. 1726) Fd: Reduction criterion feedrate = Fh × α/100 Retract along the X-axis Shift to the cycle start point along...

  • Page 1281

    B-64483EN-1/03 - 1251 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROLParameter #7 #6 #5 #4 #3 #2 #1 #0 1601 RTO [Input type] Parameter input [Data type] Bit path #4 RTO Block overlap in rapid traverse 0: Blocks are not overlapped in rapid traverse. 1: Blocks are overlap...

  • Page 1282

    B-64483EN-1/03 - 1252 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL NOTE The parameter No. 1722 is effective when bit 4 (RTO) of parameter No. 1601 is set to 1. 1726 Rapid traverse rate reduction ratio for overlapping threading cycle blocks [Input type] Parameter input [Data ...

  • Page 1283

    B-64483EN-1/03 - 1253 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL <Rapid traverse linear acceleration/deceleration>Speed Rapid traverse rateTimeT : Time constant for linear acceleration/deceleration T T<Rapid traverse bell shaped acceleration/deceleration>Speed Rapid tr...

  • Page 1284

    B-64483EN-1/03 - 1254 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL For bell-shaped acceleration/deceleration Speed Rapid traverse rate (Parameter No. 1420) Time T1 T2 T2 T2T2 T1 T1 : Setting of parameter No. 1620 T2 : Setting of parameter No. 1621 (However, T1 ≥ T2 must be ...

  • Page 1285

    B-64483EN-1/03 - 1255 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL Speed Acceleration/deceleration circuit Time t : Time constantSpeed Time SpeedTimeSpeedTimett tt → → →→Acceleration/deceleration circuit This function is enabled when bit 0 (CTL) of parameter No. 1610 is se...

  • Page 1286

    B-64483EN-1/03 - 1256 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL 1624 Time constant of acceleration/deceleration in jog feed for each axis. [Input type] Parameter input [Data type] Word axis [Unit of data] msec [Valid data range] 0 to 4000 Set the time constant used for acc...

  • Page 1287

    B-64483EN-1/03 - 1257 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROLCutting feed: Bell-shaped acceleration/deceleration (constant acceleration time) Specify the acceleration/deceleration time constant for each axis in parameter No. 1622. Jog feed: Exponential or bell-shaped acceler...

  • Page 1288

    B-64483EN-1/03 - 1258 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL Set the time constant used for exponential acceleration/deceleration in cutting feed, bell-shaped acceleration/deceleration after interpolation or linear acceleration/deceleration after interpolation in cutting fee...

  • Page 1289

    B-64483EN-1/03 - 1259 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL7.2.5 Optimum Torque Acceleration/Deceleration Overview This function enables acceleration/deceleration in accordance with the torque characteristics of the motor and the characteristics of the machines due to its fri...

  • Page 1290

    B-64483EN-1/03 - 1260 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL Table 7.2.5 (a) Optimum torque acceleration/deceleration Bit 0 (FAP) of parameter No. 19540 (Optimum torque acc/dec) Bit 1 (LRP) of parameter No. 1401 (Linear type positioning)Reference accelerationBell-shaped acc...

  • Page 1291

    B-64483EN-1/03 - 1261 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROLTable 7.2.5 (b) Parameters for acceleration pattern Acceleration parameter During acceleration During deceleration Acceleration setting point Speed parameter During movement in plus direction During movement in minus...

  • Page 1292

    B-64483EN-1/03 - 1262 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL 02040608010001000200030004000Speed(min-1)Torque(Nm) Fig. 7.2.5 (e) Torque for Acc/Dec with consideration of friction Let the torque be x (Nm), the inertia be y(Kgm2), and the ball screw pitch p(mm), then the accel...

  • Page 1293

    B-64483EN-1/03 - 1263 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL Parameter No. SettingUnit Remarks Speed at P1 19541 515 0.01% - Assuming that parameter No. 1672 (bell-shaped acceleration change time) is set to 40 (msec), the speed at P1 will be 2474 mm/min from the calculation de...

  • Page 1294

    B-64483EN-1/03 - 1264 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL NOTE The values in the model αiS 30/4000 speed-torque characteristic diagram are just typical ones. The values will change depending on the digital servo software, parameters, input voltage, and other factors. T...

  • Page 1295

    B-64483EN-1/03 - 1265 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL Parameter No. SettingUnit Remarks Acceleration at P3-P4 19548 to 19549 0 0.01% 0 is set because P3 to P4 are skipped. Acceleration at P5 19550 10187 0.01% At P5, 49(Nm) can be used for the acceleration/deceleration, ...

  • Page 1296

    B-64483EN-1/03 - 1266 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL Parameter No. SettingUnit Remarks Acceleration at P5 19562 22662 0.01% At P5, 109(Nm) can be used for the acceleration/deceleration, so set the ratio 9346 (mm/sec2) to 4124 (mm/sec2). (2.2662 = 9346 / 4124) P0P1P...

  • Page 1297

    B-64483EN-1/03 - 1267 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROLP0P1P2010002000300040005000600070008000900010000080001600024000320004000048000Speed mm/minAcceleration mm/sec2P5 Fig. 7.2.5 (l) Acceleration pattern in case of - move and acceleration with consideration of gravity an...

  • Page 1298

    B-64483EN-1/03 - 1268 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL P0P1P20100020003000400050006000700080009000080001600024000320004000048000Speed mm/minAcceleration mm/sec2P5 Fig. 7.2.5 (n) Acceleration pattern in case of - move and deceleration with consideration of gravity and ...

  • Page 1299

    B-64483EN-1/03 - 1269 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROLParameter 1671 Maximum allowable acceleration rate in acceleration/deceleration before interpolation for linear rapid traverse for each axis, or maximum allowable reference acceleration rate in optimum torque acceler...

  • Page 1300

    B-64483EN-1/03 - 1270 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL #7 #6 #5 #4 #3 #2 #1 #0 11240 FAE [Input type] Parameter input [Data type] Bit path #0 FAE During positioning when the AI contour control mode is canceled, the optimum torque acceleration/decelerati...

  • Page 1301

    B-64483EN-1/03 - 1271 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROLSetting an acceleration pattern A cce le ra tio n Sp eed FbFaA a P1 P2P3P4P5A b A cce leration pa ttern P0 Fig. 7.2.5 (p) Set the speed at each of the acceleration setting points (P0 to P5) in a corresponding pa...

  • Page 1302

    B-64483EN-1/03 - 1272 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL 19551 Optimal torque acceleration/deceleration (acceleration at P0 during movement in - direction and acceleration) to to 19556 Optimal torque acceleration/deceleration (acceleration at P5 during movement in - d...

  • Page 1303

    B-64483EN-1/03 - 1273 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL7.2.6 Corner Control 7.2.6.1 In-position check signal Overview On general CNCs, the feedrate during cutting feed never becomes 0 between two successive blocks. So, a corner may be rounded. This portion causes a corne...

  • Page 1304

    B-64483EN-1/03 - 1274 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL Signal address #7 #6 #5 #4 #3 #2 #1 #0 Gn053 SMZ 7.2.6.2 In-position check Overview Whether the position of the servo motor is within a specified range is checked. If the in-position check function is...

  • Page 1305

    B-64483EN-1/03 - 1275 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL1826 In-position width for each axis [Input type] Parameter input [Data type] 2-word axis [Unit of data] Detection unit [Valid data range] 0 to 99999999 The in-position width is set for each axis. When the deviat...

  • Page 1306

    B-64483EN-1/03 - 1276 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL Example O0001; N10 G00 X50.0; N20 G00 X100.0; N30 M30; Note) The program starts at the position in which X-coordinate is 0.0. <1> When NOINPS <Gn023.5> is 0 (An in-position check is performed.) N10 N...

  • Page 1307

    B-64483EN-1/03 - 1277 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL #5 NCI An in-position check: 0: Confirms that the specified feedrate becomes 0 (the acceleration/deceleration delay becomes 0) at deceleration time and that the machine position has reached a specified position (the...

  • Page 1308

    B-64483EN-1/03 - 1278 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL The table indicates the relationships between the parameters for cutting feed and rapid traverse. Bit 5 (CIN) of parameter No. 1801 0 1 Rapid traverse → Rapid traverse No. 1826 Rapid traverse → Rapid traverse...

  • Page 1309

    B-64483EN-1/03 - 1279 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL7.2.7 Feed Forward in Rapid Traverse Overview Feed-forward control can be available even during rapid traverse. In this case, the servo position deviation is reduced, thus it reduces the time required for positioning ...

  • Page 1310

    B-64483EN-1/03 - 1280 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL Spindle speed TimeAcceleration Symmetrical inthe low-speedand high-speedparts Real acceleration pattern Maximum acceleration line Low-speed High-speed The best ofmotor performance is not drawn. Spindle speed Fi...

  • Page 1311

    B-64483EN-1/03 - 1281 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL - Setting optimum acceleration/deceleration Set bit 0 (RAU) of parameter No. 11420 to 1 to enable this function. Allowable acceleration Spindle speed FbFaAa P0 P1P2P3P4Ab Acceleration pattern Fig. 7.2.8 (c) Acceler...

  • Page 1312

    B-64483EN-1/03 - 1282 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL • Set parameters Nos. 11441 to 11480 to the allowable acceleration for P0 to P4 as the ratio relative to the maximum acceleration (parameters Nos. 11421 to 11424). • Skip the acceleration setting point in wh...

  • Page 1313

    B-64483EN-1/03 - 1283 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL• The spindle and spindle motor is mutually connected directly (1:1). • The maximum spindle speed is 6000 min-1. Table 7.2.8 (b) Example of setting the parameters for acceleration patterns Parameter No. Setting ...

  • Page 1314

    B-64483EN-1/03 - 1284 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL NOTE 2 Maximum spindle speed parameters Nos. 5241 to 5244 and spindle speed parameters Nos. 11429 to 11440 may not match the speed of the spindle motor. The acceleration pattern needs to be set by taking the actual...

  • Page 1315

    B-64483EN-1/03 - 1285 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL - Functions that cannot be used simultaneously Optimum acceleration/deceleration for rigid tapping cannot be used concurrently with the following functions. • Twin-table control • Tool center point control • W...

  • Page 1316

    B-64483EN-1/03 - 1286 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL 11425 Acceleration change time of bell-shaped acceleration/deceleration in optimum acceleration/deceleration for rigid tapping (gear 1) 11426 Acceleration change time of bell-shaped acceleration/deceleration in ...

  • Page 1317

    B-64483EN-1/03 - 1287 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL11438 Spindle speed at P1 in optimum acceleration/deceleration for rigid taping (gear 4) 11439 Spindle speed at P2 in optimum acceleration/deceleration for rigid taping (gear 4) 11440 Spindle speed at P3 in o...

  • Page 1318

    B-64483EN-1/03 - 1288 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL 11460 Permissible acceleration at P4 in optimum acceleration/deceleration for rigid tapping (gear 4) [Input type] Parameter input [Data type] Byte spindle [Unit of data] % [Valid data range] 0 to 100 These pa...

  • Page 1319

    B-64483EN-1/03 - 1289 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROLThese parameters set the permissible decelerations at acceleration setting points P0 to P4 as ratios to the maximum acceleration (parameters Nos. 11421 to 11424). At any acceleration setting points where 0 is set, 100...

  • Page 1320

    B-64483EN-1/03 - 1290 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL NOTE When enabling acceleration/deceleration after interpolation for rapid traverse acceleration/deceleration before interpolation, be sure to set the same time constant for all axes except a special purpose. Other...

  • Page 1321

    B-64483EN-1/03 - 1291 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL(2) Set an acceleration change time of bell-shaped acceleration/ deceleration in optimum torque acceleration/deceleration (time for changing from the state of constant feedrate (A) to the state of acceleration/deceler...

  • Page 1322

    B-64483EN-1/03 - 1292 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL 7.3 JERK CONTROL 7.3.1 Speed Control with Change of Acceleration on Each Axis Overview In portions in which acceleration changes largely, such as a portion where a programmed figure changes from a straight line to ...

  • Page 1323

    B-64483EN-1/03 - 1293 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL Y X Y-axis acceleration AccelerationTimeFrom straight line to arcSpecified feedrate: 6000 mm/min Acceleration change amount: 1000 mm/s2 Arc radius: 10 mm Fig. 7.3.1 To suppress the change of acceleration to 300...

  • Page 1324

    B-64483EN-1/03 - 1294 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL When linear interpolation is followed by circular interpolation, speed control is performed using the permissible acceleration change amount set in parameter No. 1788. Linear interpolation Circular interpolation F...

  • Page 1325

    B-64483EN-1/03 - 1295 - 7.FEEDRATE CONTROL/ACCELERATIONAND DECELERATION CONTROL Note NOTE To use feedrate control based on an acceleration change of each axis, the acceleration control option and AI contour control II option are required. 7.3.2 Look-Ahead Smooth Bell-Shaped Acceleration/Decele...

  • Page 1326

    B-64483EN-1/03 - 1296 - 7. FEEDRATE CONTROL/ACCELERATION AND DECELERATION CONTROL Explanation - Setting the jerk change time The jerk change time is set in parameter No. 1790 by using the percentage to the acceleration change time. The actual jerk change time is represented by the percentage to...

  • Page 1327

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1297 - 8 MULTI-PATH CONTROL Chapter 8, “MULTI-PATH CONTROL”, consists of the following sections: 8.1 MULTI-PATH CONTROL ..........................................................................................................1297 8.2 WAITING M CODES......

  • Page 1328

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1298 - - For a system with four paths Program directory forpath 1Program directory forpath 2Program directory forpath 3Path 1programanalysisPath 2programanalysisPath 3programanalysisPath 1positioncontrolPath 2positioncontrolPath 3positioncontrolPath 1 axisc...

  • Page 1329

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1299 - Machine control type Description Machining center system System that controls all paths as a machining center. Specifiable G codes are compatible with those of the Series 16i/18i/21i-M, and the G code system for a machining center is used. Combined sy...

  • Page 1330

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1300 - (That number is subject to restriction by the system software series.) You can specify which path each controlled axis is to be assigned, using parameter No. 981. You can assign each path to any controlled axis, provided that you follow the maximum al...

  • Page 1331

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1301 - Example 2) For a system with 3 paths and a total of 6 spindles: Settings that cause the system to become a 3-path system with the first path consisting of 2 spindles, the second of 2 spindles, and the third of 3 spindles Parameter No. 982 Setting va...

  • Page 1332

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1302 - Example - Example of a system configuration (3 path and loader path) - Configuration example Front spindle C1 Milling head 3 linear axes + 1 rotation axis X3 Z3 Y3 B3Rear spindle 1 linear axis + 1 rotation axis C21st turret 3 linear axes X1 ...

  • Page 1333

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1303 - Machine Group to Which Each Path Is to Belong (Parameter No. 980) Setting valuePath 1 1 Path 2 1 Path 3 1 Path 4 (Loader control) 2 Number of the Path to Which Each Axis Is to Belong (Parameter No. 981) Number of the Path to Which Each Spindle Is t...

  • Page 1334

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1304 - - DI/DO In a multi-path system, the interface signal address relations between the CNC and the PMCs are as shown in the figure. You can control all paths with a single PMC (Ladder program), or control each path with a PMC (Ladder program), using the ...

  • Page 1335

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1305 - Specific Setting Example for the Previous Example X0000~Y0000~CNCPMCI/Odevicefor firstPMCPath 1Path 2Path 3First PMCSecond PMC(optional)Third PMC(optional)G0000~F0000~G1000~F1000~G2000~F2000~G3000~F3000~G4000~F4000~G5000~F5000~G6000~F6000~G7000~F7000~...

  • Page 1336

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1306 - Parameter No. Setting value Application 11929 0 In general, the address for each path as seen from the NC section is assigned as in the table below. Signal Address for Each Path Signal address Description G0000 to G0767 Signal for path 1 (PMC to CN...

  • Page 1337

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1307 - 8.1.1 CNC Data Display, Setup, and Input/Output There are offsets and custom macro variables for each path. For the path selected from the display unit, you can perform data display, setup, and input/output using a medium such as a memory card. As for...

  • Page 1338

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1308 - - Balance cutting If turning a thin workpiece, you can machine it from both of its sides at the same time by using a cutting tool, thereby preventing the workpiece from deflection, which can occur if it is machined from a single side only, and achiev...

  • Page 1339

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1309 - - Path single block check function If one path enters the single block stop state, this function allows another path to enter the feedhold stop state, enabling single block operation with the path machining programs being nearly synchronized. For det...

  • Page 1340

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1310 - CAUTION 2 When there are nine or more axes for one path The X address of the reference position return deceleration signal (*DECx) for each axis is assigned to up to three paths (up to eight axes for each path). Therefore, when there are four or mor...

  • Page 1341

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1311 - NOTE When 0 is set, each spindle is assumed to belong to path 1. 0983 Path control type of each path NOTE When this parameter is set, the power must be turned off before operation is continued. [Input type] Parameter input [Data type] Byte pa...

  • Page 1342

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1312 - NOTE This parameter is valid when bit 2 (XSG) of parameter No. 3008 is set to 1. Depending on the configuration of the I/O Link, the actually usable X addresses are: <X0000 to X0127>, <X0200 to X0327>, <X0400 to X0527>, <X0600...

  • Page 1343

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1313 - NOTE When this parameter is set, the power must be turned off before operation is continued. [Input type] Parameter input [Data type] Word path [Valid data range] 0 to 727 Set an X address to which the PMC axis control skip signal ESKIP and the m...

  • Page 1344

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1314 - Value of parameter No. 3021 (the second digit) Setting value Input signal address Output signal address 0 G0000 to G0767 F0000 to F0767 1 G1000 to G1767 F1000 to F1767 : 9 G9000 to G9767 F9000 to F9767 Value of parameter No. 3021 (the first digit) ...

  • Page 1345

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1315 - So, operations are performed as indicated in the example below. [Example] Suppose that the following 3-path system is used. CNC Machine group 1 Path 1Path 2Machine group 2Path 3Axis AxisAxisAxisAxisAxis (1) When RST (machine group 1) = 0 and RST (ma...

  • Page 1346

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1316 - #6 DSB The inter-path single block check function is: 0: Disabled. When a single block stop occurs with a path, no single block stop occurs with the other path(s). 1: Enabled. When a single block stop occurs with a path, a feed hold stop occurs with...

  • Page 1347

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1317 - Selected path Path 1Path 2 Path 3 Path 4No. Bit 0 (RST) of parameter No. 8100(Machine group 1) Bit 0 (RST) of parameter No. 8100 (Machine group 2) Path(s) to be reset 1 0 0 1, 2 1, 2 3, 4 3, 4 2 0 1 1, 2 1, 2 3 4 3 1 0 1 2 3, 4 3, 4 4 1 1 1 2 3 4 Sig...

  • Page 1348

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1318 - 8.2 WAITING M CODES Overview Control based on M codes is used to cause one path to wait for the other during machining. When an M code for waiting is specified in a block for one path during automatic operation, the other path waits for the same M cod...

  • Page 1349

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1319 - All of the five paths can be made to wait for one another by specifying P341 together with an M code for waiting. - Waiting specified with a combination of path numbers When bit 1 (MWP) of parameter No. 8103 is set to 1, the value specified at addr...

  • Page 1350

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1320 - O0300;G50 X Z ;G00 X Z T0303;M102 P7; ................. <2>O0100;G50 X Z ;G00 X Z T0101;M03 S1000;..M101 P3; .................. <1>G01 X Z F ;..M102 P7; .................. <2>M103 P7; ...................

  • Page 1351

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1321 - O0300;G50 X Z ;G00 X Z T0303;M102 P123; ............. <2>O0100;G50 X Z ;G00 X Z T0101;M03 S1000;..M101 P12; ................ <1>G01 X Z F ;..M102 P123; .............. <2>M103 P123; .............. <...

  • Page 1352

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1322 - Waiting signal WATO<F0063.6>(for path common signal interface) WATO<Fn063.6>(for path individual signal interface) [Classification] Output signal [Function] Indicates that the M code is waiting for a path. [Output cond.] These signals ...

  • Page 1353

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1323 - 8110 Waiting M code range (minimum value) 8111 Waiting M code range (maximum value) [Input type] Parameter input [Data type] 2-word [Valid data range] 0 ,100to99999999 A range of M code values can be set by specifying a minimum waiting M code va...

  • Page 1354

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1324 - Reference item Manual name Item name OPERATOR’S MANUAL (B-64484EN) Waiting for paths

  • Page 1355

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1325 - 8.3 PATH INTERFERENCE CHECK T Overview When tool posts on individual paths machine the same workpiece simultaneously, the tool posts can approach each other very closely. If the tool posts interfere with each other due to a program error or any other...

  • Page 1356

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1326 - Tool post 2Tool post 1+X+ZζεReference pointReference point Fig. 8.3 (b) In the ZX plane coordinate system at the origin of which the reference point of tool post 1 is set, set the X coordinate (ε) of the reference point of tool post 2 in parameter...

  • Page 1357

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1327 - Tool post 2<1> When TY1=0 and TY0=0Tool post 1+X+Z<2> When TY1=0 and TY0=1+X+Z+X+ZTool post 1Tool post 2<3> When TY1=1and TY0=0Tool post 1Tool post 2+X+Z+Z+X<4> When TY1=1 and TY0=1+X+XTool post 1Tool post 2+Z+Z Fig. 8.3 (c...

  • Page 1358

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1328 - In the example, Fig. 8.3 (d), there are the tool posts for four paths belonging to the same machine group. In the ZX plane coordinate system in which the reference point of tool post 1 on path 1 belonging to the same machine group is used as the origi...

  • Page 1359

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1329 - Tool post 2+X+Z+X+ZTool post 2Tool post 1+X+Z+X+Z+X+Z+X+Z+Z+X<1>Parameter No. 8158 for tool post 1 is set to 0.Parameter No. 8158 for tool post 2 is set to 0.<2>Parameter No. 8158 for tool post 1 is set to 1.Parameter No. 8158 for tool pos...

  • Page 1360

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1330 - Tool post 3Tool post 2Three-path machine configurationTool post 1Operation rangeof tool post 1Operation rangeof tool post 2Operation rangeof tool post 3Safety pocket fortool post 1 Fig. 8.3 (g) For example, Fig. 8.3 (g), when the operation range of t...

  • Page 1361

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1331 - - Setting the interference forbidden area (setting common to conventional and multipath specifications) An interference forbidden area is set using a combination of two rectangular areas. The examples are shown below. (Example 1) Area 1Area 2Area 2A...

  • Page 1362

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1332 - <4> Display the screen including a tool number for which data is to be set. Method 1: Switch the screen display by pressing the page key or cursor key. Method 2: Enter a tool number to be set then press the [NO.SRH] soft key. Fig. 8.3 (k) <...

  • Page 1363

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1333 - (1) Common conditions • Bit 4 (IFE) of parameter No. 8140 for enabling the path interference check function is set to 0. • The X- and Z-axes of the three basic axes are set for parameter No. 1022 for individual paths for which a path interferenc...

  • Page 1364

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1334 - - A path interference check is not performed (the path interference check signal TICHK is 0) - For a multi-path interference check Path interference check association signal ITF01 to ITF08 <Gn406>, ITF09 to ITF10 <Gn407.0, 1> [Classifi...

  • Page 1365

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1335 - This signal goes to 0 when: - While a path interference check is in progress on the tool posts of the paths associated by means of the Gn406 and Gn407 signals and of the local path, none of the associated paths is judged to have interfered. - A path i...

  • Page 1366

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1336 - - Item for a 2-path interference check only NOTE Besides the common items, there is a note on a 2-path interference check only. If, during a path interference check, the tool posts of the two paths are judged to have interfered with each other, bot...

  • Page 1367

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1337 - Tool post 2Tool post 1+X+ZTool post 2Tool post 1+X+ZTool post 2Tool post 1+X+Z+X+ZTool post 2Tool post 1+X+Z+X+Z+Z+X(1) When TY1=0 and TY0=0(2) When TY1=0 and TY0=1(3) When TY1=1 and TY0=0(4) When TY1=1 and TY0=1 Fig. 8.3 (m) #2 IT0 When offset num...

  • Page 1368

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1338 - 8141 Distance along the X axis between the reference positions of tool post 1 and tool post n in the same machine group 8143 Distance along the Z axis between the reference positions of tool post 1 and tool post n in the same machine group [Input...

  • Page 1369

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1339 - WARNING Measure (ε1, ζ1), (ε2, ζ2), and (ε3, ζ3) in the state where reference position return operation is completed for all axes (the tool is at the reference position.) After modifying parameters Nos. 8141 and 8143 for each path, be sure to ...

  • Page 1370

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1340 - Coordinate system pattern with the reference position based on the tool post of path 1 in the same machine group 8158 [Input type] Parameter input [Data type] Byte path [Valid data range] 0 to 3 This parameter is used for checking the interferen...

  • Page 1371

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1341 - Reference item Manual name Item name OPERATOR’S MANUAL (B-64484EN) Path interference check

  • Page 1372

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1342 - 8.4 BALANCE CUTTING T Overview When a thin workpiece is to be machined as shown below, a precision machining can be achieved by machining each side of the workpiece with a tool simultaneously; this function can prevent the workpiece from warpage that...

  • Page 1373

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1343 - Table 8.4 (a) Path number Binary value (decimal number)Path number Binary value (decimal number)1 1 6 32 2 2 7 64 3 4 8 128 4 8 9 256 5 16 10 512 The bit position of each path in binary representation is shown below. 15 14 13 12 1110 9 8 76543210 ...

  • Page 1374

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1344 - P123, P132, P213, P231, P312, P321 Path numbers specified in combination in different orders for different paths are effective as long as the numbers of the relevant paths are specified. Example) The following are treated as the same P value and thes...

  • Page 1375

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1345 - <2> G68 P5; (balance cut for paths 1 and 3) Performs balance cutting for paths 1 and 3. Balance cutting is performed according to the cutting feed commands between <2> and <2>'. <3> G68 P7; (balance cut for paths 1, 2, and ...

  • Page 1376

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1346 - NOTE When this parameter is set, the power must be turned off before operation is continued. #1 MWP To specify a P command for the waiting M code/balance cut: 0: A binary value is used as conventionally done. 1: A path number combination is used. ...

  • Page 1377

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1347 - 8.5 SYNCHRONOUS CONTROL AND COMPOSITE CONTROL Overview Multi-path control, which has multiple independent control paths built in, is used for such purposes as controlling multiple turrets of a complex lathe. The axes (such as X1-and Z1-axes) belonging...

  • Page 1378

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1348 - • Synchronization of an axis in one path with another axis in the same path (Example) Synchronization of the Z1-axis (master) with the B1-axis (slave) Workpiece B1 (synchronized with the Z1-axis) Z1 Turret 1 X1Tail stock Fig. 8.5 (c) - Composit...

  • Page 1379

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1349 - Explanation - Setting Specify which axis is to be the synchronous master axis, with parameter No. 8180, using the path number and the axis number. (Example) For an axis configuration in which all paths consist of X, Z, and Y axes To synchronize the...

  • Page 1380

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1350 - Example 2) Synchronizing the X2- and Z2-axes (master) with the X1- and Z1-axes (slave) (balanced cutting) Turret 1 X1Turret 2 X2Z2Z1 Fig. 8.5.1 (b) Example 3) Synchronizing the B1-axis (slave) (tail stock axis) with the Z1-axis (master) Workpiec...

  • Page 1381

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1351 - Example 4) Sharing one motor with the Z1- and Z2-axes (assuming that the motor is linked to the Z1-axis) Master axis parking Turret 1 X1 Z1Turret 2 X2 The X2- and Z1-axes are moved by commands in a path 2 program (by synchronizing the Z1-axis (sl...

  • Page 1382

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1352 - If more than one slave axis belongs to one master axis, a reference position return command is executed so that the lowest-numbered slave axis returns to its reference position. If the master axis in one path is subjected to both synchronization with...

  • Page 1383

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1353 - This synchronous control can be specified using the synchronous control axis selection signals (SYNC1 to SYNC8) similarly to the ordinary synchronous control. When the signals are raised to start synchronous control, a workpiece coordinate system for...

  • Page 1384

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1354 - To set up coordinate systems automatically when composite control begins or ends, set bits 4 (MPMx) and 5 (MPSx) of parameter No. 8162 to 1, and specify the positional relationship between the coordinate systems in parameter No. 8184. - Programming ...

  • Page 1385

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1355 - (2) Composite control Turret 1 Turret 2 Workpiece 2Workpiece 1 X2 X1Z1 Z2 Machining is performed by a path 1 program.Machining is performed by a path 2 program. Fig. 8.5.2 (b) During composite control, the X2- and Z1-axes are moved by a path 1 progra...

  • Page 1386

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1356 - - Automatic workpiece coordinate system setting By parameter setting, a workpiece coordinate system to be used during composite control can be automatically set when composite control is started. When composite control is terminated, the workpiece co...

  • Page 1387

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1357 - (Example) Composite control where the X1-axis and X2-axis are replaced with each other X1Path-1 reference position ΔZ2mX1mZ1mΔX2mX2Z1Z2Path-1 workpiece coordinate system origin Path-2 workpiece coordinate system origin ΔZ1mZ2mX2m Path-2 referencep...

  • Page 1388

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1358 - Signals Synchronous control axis selection signals SYNC1 to SYNC8<Gn138> [Classification] Input signal [Function] These signals perform synchronous control. [Operation] When one of these signals becomes 1, the control unit: Begins synchronous...

  • Page 1389

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1359 - Synchronous master axis confirmation signals SYCM1 to SYCM8<Fn341> [Classification] Output signal [Function] These signals notify whether the corresponding axes are synchronous master axes. [Output cond.] These signals become 1 under the foll...

  • Page 1390

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1360 - #7 #6 #5 #4 #3 #2 #1 #0 Fn118 SYN8O SYN7O SYN6O SYN5O SYN4O SYN3O SYN2O SYN1O Fn341 SYCM8 SYCM7 SYCM6 SYCM5 SYCM4 SYCM3 SYCM2 SYCM1 Fn342 SYCS8 SYCS7 SYCS6 SYCS5 SYCS4 SYCS3 SYCS2 SYCS1 Fn343 MIXO8 MIXO7 MIXO6 MIXO5 MIXO4 MIXO3 MIXO2 MIXO1 F...

  • Page 1391

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1361 - #0 NMR When an axis subject to composite control is placed in servo-off state: 0: Composite control is stopped 1: Composite control is not stopped, provided bit 0 (FUP) of parameter No. 1819 is set to 1 to disable follow-up for the axis. #5 CRZ...

  • Page 1392

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1362 - NOTE 3 With an axis specified in the 3-dimensional coordinate conversion mode, set this parameter to 1. If this parameter is set to 0, the alarm PS0367 is issued. #4 MPMx When composite control is started, the workpiece coordinate system is: 0: Not...

  • Page 1393

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1363 - MCDz MCDx 0 0 Z1X1 Z2X2MCDz MCDx 0 1 Z1X1 Z2MCDz MCDx 1 0 X2MCDz MCDx 1 1 Z1X1 Z2X2X2Z1X1 Z2 Fig. 8.5.2 (d) #7 MUMx In composite control, a move command for the axis: 0: Can be specified. 1: Cannot be specified. N...

  • Page 1394

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1364 - #2 SPSx When synchronous control terminates, automatic workpiece coordinate system setting for the master axis is: 0: Not performed. 1: Performed. NOTE When a workpiece coordinate system is automatically set at the end of synchronous control, the ...

  • Page 1395

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1365 - #7 NUMx When neither synchronous control nor composite control is applied, a move command for the axis is: 0: Not disabled. 1: Disabled. NOTE If a move command is specified for an axis with NUMx set to 1 when neither synchronous control nor compos...

  • Page 1396

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1366 - #3 MCEx In automatic workpiece coordinate system setting, performed when composite control is canceled: 0: Parameter No. 1250 and the machine coordinate system of the composite control target path are used. 1: The absolute coordinate system of the c...

  • Page 1397

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1367 - NOTE SGSx is enabled when bit 2 (SPSx) of parameter No. 8163 or bit 6 (SPVx) of parameter No. 8167 is set to 1. #4 SWMx In automatic workpiece coordinate system setting at the start of synchronous control, a workpiece shift is: 0: Not considered....

  • Page 1398

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1368 - 0: The synchronous or composite control mode is canceled and follow-up operation is not performed. For the operation to be performed when the servo-off signal is turned on, however, the setting of bit 7 (NSR) of parameter No. 8161 is used in synchron...

  • Page 1399

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1369 - #0 MDMx As machine coordinates in composite control: 0: Coordinates for the local path are displayed. 1: Coordinates for the other path in composite control are displayed. #1 MVMx In composite control, machine coordinates (#5021 and above) to be...

  • Page 1400

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1370 - NOTE When the two-path interface is used (bit 1 (MIX) of parameter No. 8166 is set to 1), set this parameter for path 2. 8184 Coordinates of the reference point of an axis on the coordinate system of another axis under composite control [Input ty...

  • Page 1401

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1371 - - P/S alarm Number Message Description PS0350 PARAMETER OF THE INDEX OF THE SYNCHRONOUS CONTROL AXIS SET ERROR. An illegal synchronization control axis number (parameter No. 8180) is set. PS0351 BECAUSE THE AXIS IS MOVING, THE SYNC CONTROL IS CAN'T ...

  • Page 1402

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1372 - - Servo alarm Number Message Description SV0407 EXCESS ERROR The difference value of the amount of positional deviation for the synchronization axis exceeded the setting value. (during synchronization control only) Caution - Items common to synch...

  • Page 1403

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1373 - CAUTION 9 The following functions cannot be used in synchronous or composite control: - Electronic gear box - Parallel axis control - Chopping function - Twin table control - Spindle positioning - Tool retract and recover 10 In synchronous or composi...

  • Page 1404

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1374 - - Items related to composite control only CAUTION 1 If you want to place a tapping axis under composite control, place it under composite control first, then issue a rigid tapping command. In rigid tapping mode, you must not switch the composite con...

  • Page 1405

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1375 - Function In synchronous control In composite control Handle interruption See bit 5 (SMI) of parameter No. 8163.Possible with bit 6 (MMI) of parameter No. 8163 Mirror image See bit 5 (SMI) of parameter No. 8163.Signals in the specified path are effecti...

  • Page 1406

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1376 - (6) Alarm related to synchronous or composite control (7) Alarm PW0000 If one of the above events occurs in either path, all paths will be released from synchronous or composite control. If one of the above events occurs in either path in synchronous ...

  • Page 1407

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1377 - Examples of Use - Examples of independent control and of synchronous control on the Z1 and Z2 axes (1) Machine configuration (a) Independent control Separate machining operations are performed in path 1 (X1-Z1) and in path 2 (X2-Z2) Z1Spindle S1 Turr...

  • Page 1408

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1378 - (4) Program example Path 1 Path 2 N1000 . . . N2000 . . . Independent machining of each path N1010 Z80. ; N2010 Z150. ; Move the workpiece and the chuck to position N1020 M200 P12 ; N2020 M200 P12 ; Waiting N2030 M61 ; Workpiece cl...

  • Page 1409

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1379 - There are two ways to perform interpolation on the X1 and Z2 axes. 1. Use the program of path 2 to issue a command to the X2 and Z2 axes to synchronize the X1 (slave) axis to the X2 (master) axis and to park the X2 (master) axis. For path 1, do not i...

  • Page 1410

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1380 - If using composite control (1) Parameter settings • To perform composite control by letting the X1 and X2 axes interchange, set parameter No. 8183x of path 2 to "101". • Because the direction of the coordinates on the X1 axis is oppos...

  • Page 1411

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1381 - where M55 is an M code to start the control of turret 1 with the program of path 2, and M56 is an M code that cancel the control of turret 1 with the program of path 2. NOTE 1 At the start and end of composite control, you do not necessarily perfor...

  • Page 1412

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1382 - - Examples of independent control and of interpolation on X1-Z2 and X2-Z1 (1) Machine configuration (a) Independent control Workpiece 1 and turret 1 are controlled with program of path 1 Z1X1Spindle S1 Z2X2Spindle S2 Workpiece 2 and turret 2 are con...

  • Page 1413

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1383 - • Assuming that the relations between the workpiece coordinates of each path and the reference position are as shown in the figure below, set parameter No. 8184x of path 1 to "200000" and No. 8184x of path 2 to "180000". Referenc...

  • Page 1414

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1384 - NOTE At the start and end of composite control, you do not necessarily perform automatic setup of the coordinate system. If you do not perform automatic setting, the program will set an appropriate one internally. Others • In the preceding explana...

  • Page 1415

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1385 - • Overtravel 2. An attempt to raise a synchronous or composite start signal results in an alarm. (1) An attempt is made to use an axis already under synchronous or composite control for another synchronous or composite signal operation. (Alarms PS0...

  • Page 1416

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1386 - → Servo alarm SV0407 will occur in a synchronous error check. In general, this alarm occurs if the difference between the synchronous master and slave axes in acceleration/deceleration time constant or servo parameter is large. It can also occur if ...

  • Page 1417

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1387 - 8.5.3 Hypothetical Cs Axis Control Overview This function allows you to add a hypothetical Cs axis to a path to which no serial spindle is actually connected. Usually, performing composite control on Cs axes in multi-path control requires that both of...

  • Page 1418

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1388 - Tool post 2C1 C2Composite control Z2X2Z1X1Tool post 1Hypothetical Cs axis Fig. 8.5.3 (a) Axis configuration Path 1 Path 2 X1 (servo axis) X2 (servo axis) Z1 (servo axis) Z2 (servo axis) C1 (Cs-axis) C2 (hypothetical Cs axis) Parameter setting Par...

  • Page 1419

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1389 - C1 B2 Composite control Hypothetical Cs axis Tool post 2C1 C2Composite control Z2X2Z1X1Tool post 1Hypothetical Cs axis B1 Fig. 8.5.3 (b) Axis configuration Path 1 Path 2 X1 (servo axis) X2 (servo axis) Z1 (servo axis) Z2 (servo axis) C1 (Cs-axis) C2...

  • Page 1420

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1390 - [Valid data range] 0 to 80 This parameter associates each control axis with a specific servo axis. Specify values 1+8n, 2+8n, 3+8n, 4+8n, 5+8n, and 6+8n (n = 0, 1, 2, …, 9) like 1, 2, 3, 4, 5, …, 77, and 78. The control axis number is the order nu...

  • Page 1421

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1391 - Note NOTE This function requires the following options. - Serial spindle - Cs contour control - Synchronous/composite control In a number of controlled axes specification and a number of controlled spindles specification, you must include the hypoth...

  • Page 1422

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1392 - 8.6 SUPERIMPOSED CONTROL Overview The superimposed control function adds the amount of movement of an axis (superimposed control master axis) in one path to an axis (superimposed control slave axis) on the other path for which ordinary move commands a...

  • Page 1423

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1393 - Explanation - Setting Specify which axis is to be the master axis to be under superimposed control, with parameter No. 8186, using the path number and the axis number. Example) For an axis configuration in which all paths consist of X, Z, and Y axes...

  • Page 1424

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1394 - - Feedrate Because the amount of movement of the master axis is added to that of the slave axis, the resulting speed of the slave axis may become much larger than a normal speed. - Differences between superimposed control and ordinary synchronou...

  • Page 1425

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1395 - [Output cond.] These signals become 1 under the following condition: - The corresponding axes are superimposed slave axes. These signals become 0 under the following condition: - The corresponding axes are released from superimposed control. Signal ...

  • Page 1426

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1396 - #7 #6 #5 #4 #3 #2 #1 #0 8164 SOKx OPSx [Input type] Parameter input [Data type] Bit axis #5 OPSx When superimposed control is canceled, control in which an amount of movement along a master axis subject to superimposed control is added...

  • Page 1427

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1397 - In this case, a movement along the child is made by its travel distance plus the travel distance of the parent, and a movement along the grandchild is made by its travel distance plus the travel distance of the child plus the travel distance of the pa...

  • Page 1428

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1398 - Caution CAUTION 1 At the start or end of superimposed control, the tool must be stopped on the axis subject to that control. 2 Before or after an M code for starting or canceling superimposed control during automatic operation, be sure to specify a w...

  • Page 1429

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1399 - CAUTION 10 During superimposed control, reference position establishment based on "linear scale with absolute address reference mark" or "linear scale with absolute address zero point" is impossible. (*) Please refer the section o...

  • Page 1430

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1400 - Example) If X1 is a master axis, and X2 is a slave axis Path 1 Path 2 M120P12; M120P12; Waiting G01Z100.; G53X50.; X1 (master axis)-X2 (slave axis) superimposed control M121P12; M121P12; Waiting In this case, alarm PS0364 is not issued because ...

  • Page 1431

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1401 - (2) Using bit 4 (AXS) of parameter No. 8160, you can switch the slave axis state output between results with superimposed control pulses added and results of individual axial movements. Examples of Use - Examples of independent control and of superi...

  • Page 1432

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1402 - (4) Program example Path 1 Path 2 N1000 . . . N2000 . . . N1010 M200 P12 ; N2010 M200 P12 ; N2020 M55 ; N1030 M201 P12 ; N2030 M201 P12 ; N2040 T0414 ; N1050 S1000 M3 ; N1060 G0 X20.0 Z15.0 ; N2060 G0 X18.0 Z120.0 ; N1070 G1 F0.5 W-...

  • Page 1433

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1403 - (4) Superimposed control cannot be started if the NC unit is one of the following states: • Emergency stop • Reset • Servo alarm • Alarm PW0000 • Alarm related to superimposed control Superimposed control cannot be started, either, if the ...

  • Page 1434

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1404 - • Servo alarm • Alarm PW0000 • Alarm related to superimposed control In addition, if at least one of the axes on which superimposed control is in progress enters either of the following states: • Servo off • Overtravel 7. Alarm DS1933 occu...

  • Page 1435

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1405 - 8.7 SUPERIMPOSED CONTROL (WITH SPEED CONTROL) For a slave axis under superimposed control, a travel distance specified by the program for the master axis path is added to a travel distance specified by the program for the slave axis path. So, the actu...

  • Page 1436

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1406 - [Valid data range] 0 to 4000 This parameter specifies the linear acceleration/deceleration time constant in rapid traverse for each of the axes (master and slave axes) under superimposed control. 8194 Maximum cutting feedrate in superimposed control...

  • Page 1437

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1407 - 8.8 SYNCHRONOUS, COMPOSITE, AND SUPERIMPOSED CONTROL BY PROGRAM COMMAND Overview Synchronous control, composite control, and superimposed control can be started or canceled using a program command instead of a DI signal. Synchronous control, composite...

  • Page 1438

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1408 - - Superimposed control Superimposed control is exercised by the G51.6/G50.6 commands instead of the superimposed control axis selection signals (OVLS1 to OVLS8<Gn190.0-7>, n=0 to 9). Parameter 12600 Identification Number for synchronous, comp...

  • Page 1439

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1409 - 8.9 SUPERIMPOSED CONTROL AVAILABLE IN THE AI CONTOUR CONTROL MODE Overview This function enables superimposed control in the AI contour control mode. Moreover, advance preview feed forward function becomes effective by the AI contour control when the ...

  • Page 1440

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1410 - Set the AI contour control permission signal OVLN to 1 and confirm that the advanced superimposition mode signal OVLNS is changed to 1. (b) Starts superimposed control. Set the superimposed control axis selection signal OVLS1 to OVLS8 for the ...

  • Page 1441

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1411 - : ------ Master axis move commands ~ ~ M106P12; ----- Waiting M213; ----- Advanced superimposition mode off. M107P12; ----- Waiting ~ M106P12; ----- Waiting M61; ----- Cancels superimposed control. M213; ----- Advanced superimposition mode off. M10...

  • Page 1442

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1412 - 4. When the M code for starting superimposed control is specified, and the superimposed control axis selection signal OVLS is set to 1, superimposed control starts. And, the superimposed control under way signal SYN becomes 1. 5. When the superimposed...

  • Page 1443

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1413 - Parameter #7 #6 #5 #4 #3 #2 #1 #0 8008 PFE [Input type] Parameter input [Data type] Bit axis #1 PFE If an AI contour control permission signal (such as the advanced superimposition signal or inter-path flexible synchronous mode select ...

  • Page 1444

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1414 - Advanced superimposition mode signal OVLNS <Fn545.1> [Classification] Output signal [Function] This signal indicates the advanced superimposition mode. [Output cond.] This signal becomes 1 under the following condition: - The corresponding pa...

  • Page 1445

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1415 - 8.10 PATH SPINDLE CONTROL Overview This function allows a workpiece attached to one spindle to be machined simultaneously with two tool posts and each of two workpieces attached to each of two spindles to be machined simultaneously with each of two to...

  • Page 1446

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1416 - NOTE 2 When multiple paths share one analog spindle, during execution of a thread cutting command for a path, a function (such as thread cutting or feed per revolution) which uses the feedback pulses from the spindle on another path cannot be executed...

  • Page 1447

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1417 - - When multiple spindles belong to individual paths Multispindle control can be used simultaneously to issue spindle commands to any spindle belonging to individual paths. When multispindle control is not used, path spindle control is valid only for ...

  • Page 1448

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1418 - Path 2SpindlecommandSpindlefeedback 1 0SLSPB #1SLPCB #1 1 0Spindle commandfor path 1Path 1Spindle PC forpath 1SpindlecommandSpindlefeedback SLSPA #1 0 1SWS1 #1 0 1SWS2 #1 0 1Spindle 1Spindle 2PC for spindle 1PC for spindle 2PC2SLC#1 0 1Se...

  • Page 1449

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1419 - Path spindle feedback selection signal [Function] You need not control the path spindle feedback selection signal because the spindle feedback signal of path 1 is always effective to paths 1 and 2. Path spindle command confirmation signal COSP <...

  • Page 1450

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1420 - - Signal type B Path spindle command selection signal SLSPA<G0063.2>,SLSPB<G0063.3> [Classification] Input signal [Function] This signal specifies the path of the program commands to be effective to the spindles belonging to paths 1 and...

  • Page 1451

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1421 - 1st spindle (path 2)Spindle commandfor path 1Path 1Spindle PC forpath 11st spindle (path 1)SpindlecommandSpindlefeedbackPath 2SpindlecommandSpindlefeedbackSpindle PC forpath 2 0 1 SLSPA #1 SLPCA #1 0 1 1 0 SLSPB #1Spindle commandfor path 2...

  • Page 1452

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1422 - By placing the path spindle command selection signal of path 1 in the state in which the spindle commands of path 2 are effective, you can control the spindles belonging to both 1 and 2 at the same time, using the commands of path 1. Path spindle fee...

  • Page 1453

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1423 - In the state in which spindle commands for both paths 1 and 2 are effective to the spindles belonging to path 1, this signal allows you to determine which path the spindle command last specified came from. Spindle command for path m Path m Spindle PC...

  • Page 1454

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1424 - #7 #6 #5 #4 #3 #2 #1 #0 3703 MPP MPM 2P2 [Input type] Parameter input [Data type] Bit NOTE When at least one of these parameters is set, the power must be turned off before operation is continued. #0 2P2 When a multi-path system is use...

  • Page 1455

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1425 - When bit 3 (PCS) of parameter No. 3706 is set to 0 Selected path Position coder selection signals (path x)Selecting path Position coder selection signals (path m)Position coder selected in path m PC2SLC <Gy028.7> PC3SLC <Gy026.0>PC4SLC <...

  • Page 1456

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1426 - Alarm and message Number Message Description PS5305 ILLEGAL SPINDLE NUMBER In a spindle select function by address P for a multiple spindle control, 1) Address P is not specified. 2) Parameter No. 3781 is not specified to the spindle to be selected. 3...

  • Page 1457

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1427 - 8.11 MEMORY COMMON TO PATHS Overview In a multipath system, this function enables data within the specified range to be accessed as data common to all paths. The data includes tool compensation memory and custom macro common variables. Explanation -...

  • Page 1458

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1428 - NOTE 1 If the value of parameter No. 6036 or 6037 exceeds the maximum number of macro common variables, the maximum number of macro common variables is assumed. 2 To use common variables #150 to #199, #150 to #499, and #600 to #999, an option is requi...

  • Page 1459

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1429 - NOTE 1 When a multi-path system involving the machining center system and lathe system is used, memories are made common in each system. 2 In each of the machining center system and lathe system, the same unit of tool compensation values needs to be u...

  • Page 1460

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1430 - NOTE 1 To use up to #999, the option for adding custom macro common variables is required. 2 When 0 or a negative value is set, the memory common to paths is not used. Reference item Manual name Item name OPERATOR’S MANUAL (B-64484EN) Memory common...

  • Page 1461

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1431 - CAUTION No operations such as synchronous processing on paths are performed. In an example such as that shown above, therefore, path 2 enters the feedhold stop state after the completion of the movement by "X10.0", but the stop position wi...

  • Page 1462

    8.MULTI-PATH CONTROL B-64483EN-1/03 - 1432 - Signal address #7 #6 #5 #4 #3 #2 #1 #0 G062 HEAD2 G063 HEAD G408 HEAD4 HEAD3 Parameter #7 #6 #5 #4 #3 #2 #1 #0 8100 IAL RST [Input type] Parameter input [Data type] Bit machine group #0 RST The pressing of th...

  • Page 1463

    B-64483EN-1/03 8.MULTI-PATH CONTROL - 1433 - [Data type] Word path [Valid data range] See the "CHARACTER CODE LIST". Specify a path name with codes. Any character string consisting of alphanumeric characters, katakana characters, and special characters with a maximum length of seven c...

  • Page 1464

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1434 - 9 5-AXIS MACHINING FUNCTION Chapter 9, “5-AXIS MACHINING FUNCTION”, consists of the following sections: 9.1 TOOL CENTER POINT CONTROL ...........................................................................................1434 9.2 HIGH-...

  • Page 1465

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1435 - X'Y'Z'BAX'Y'Z'Tool center point pathY'X'Z'Table rotation type machine Fig. 9.1 (b) Path of the tool center point When a coordinate system (table coordinate system) fixed on the table is used as the programming coordinate system, programming c...

  • Page 1466

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1436 - By setting the relevant parameter, the workpiece coordinate system can also be employed as the programming coordinate system. In this case, as the table turns, the position and direction of the workpiece fixed on the table change with respect t...

  • Page 1467

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1437 - <2> Table rotation type machine <3> Composite type machine <1> Tool rotation type machineXCBZYBCXZYBYXZC Fig. 9.1 (d) Three types of 5-axis machine There are two types, as described below, one of which is used depending on ho...

  • Page 1468

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1438 - The CNC calculates an end point of the rotation axes where the tool will face the specified direction, performs tool length compensation by the specified amount in the tool axis direction that is calculated from the position of the rotation ax...

  • Page 1469

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1439 - • When TFD = 0: The actual feedrate at the control point is displayed. • When TFD = 1: The actual feedrate at the tool center point is displayed. Note that the correct feedrate may not be displayed in the event of manual intervention or ...

  • Page 1470

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1440 - O0002 N01G90G00X0Y0Z200.0B0C0 N02G5.1Q1 N03G43.4H1 N04X100.0Y0Z0B0C0 N05C90.0 Tool X axis Y axisWorkpiece coordinate system (Start position of N05 block on table coordinate system) Z axis X' axisY' axisZ' axis Table End position...

  • Page 1471

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1441 - Start point End point Manual intervention Manual absolute off (*ABSM=1) If an operation restart is performed after manual intervention in manual absolute off state, the tool is positioned at the end point to which the amount of manual inter...

  • Page 1472

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1442 - X Y G90 X100. Y-100.0 Z0 C0 X Y G91 X0.0 Y200.0 Z0 C90.0 Operation restart Positive direction along the C-axisTable coordinate system Manual intervention after single block stop NOTE If manual intervention is performed in an incremental comm...

  • Page 1473

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1443 - Master and slave B axis = slave =second axis A axis = master = first axis Second rotary axis First rotary axis Fig. 9.1 (f) Relationships between master and slave - When the rotation axes of the table do not intersect Explained below is a m...

  • Page 1474

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1444 - A axis = 0degreesB axis = 0 degreesRotary table positionIntersection offset vector between first andsecond rotary axes of tableXZYMachinecoordinatesystemMachine in which table rotary axes do not intersect Fig. 9.1 (g) Mechanism in which the mas...

  • Page 1475

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1445 - First rotary axis of tool Intersection offset vector between second and first rotary axes of tool Intersection offset vector between tool axis and second rotary axis of tool Second rotary axis of tool Tool axis CBMachine in w...

  • Page 1476

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1446 - Tool center point Controlled point Parameter No. 19666 Datum plane Parameter No. 19666Tool holder Tool length offset value Setting distance from datum plane Directly setting tool length Tool length offset value Fig. 9.1 (i) Example: ...

  • Page 1477

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1447 - Machine coordinate system Xm-Ym-Zm CTool rotation type machine Intersection offset vector between tool axis and second rotary axis of tool (Parameters Nos. 19709,19710,19711) Tool holder offset value (Parameter No. 19666) B Intersection offset...

  • Page 1478

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1448 - Parameter No. Setting example Description 19704 0 Intersection offset vector between the first and second rotation axes of the table (Y-axis)19705 0 Intersection offset vector between the first and second rotation axes of the table (Z-axis)1970...

  • Page 1479

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1449 - Parameter No. Setting example Description 19667 X0.0 Y0.0 Z0.0 Controlled-point shift vector 19680 12 Mechanical unit type 19681 4(A) Controlled axis number for the first rotation axis 19682 1(X) Axis direction of the first rotation axis 19684 ...

  • Page 1480

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1450 - Composite type machine ZXIntersection offset vector between tool axis and tool rotary axis (Parameters Nos. 19709,19710,19711) Tool holder offset value (Parameter No. 19666) Rotary table position (Parameters Nos. 19700,19701,19702) Rotation c...

  • Page 1481

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1451 - Parameter No. Setting example Description 19700 5.0 Rotary table position (X-axis) 19701 2.0 Rotary table position (Y-axis) 19702 -15.0 Rotary table position (Z-axis) 19703 0.0 Intersection offset vector between the first and second rotation ax...

  • Page 1482

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1452 - As a result of speed reduction, the path error may be smaller than a parameter-set value due to a calculation error. - Functions that automatically enable AI contour control If tool center point control is used, it is recommended to use AI co...

  • Page 1483

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1453 - During tool center point control, however, if there is movement along the rotation axis, the path between blocks is curved even during rapid traverse and, therefore, the above speed control functions. If bit 3 (TAR) of parameter No. 19754 and ...

  • Page 1484

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1454 - If bit 5 (INZ) of parameter No. 19754 is 0, the workpiece coordinate system is fixed on the table in the state in which tool center point control is started, and subsequently, the coordinate system becomes a table coordinate system that rotates...

  • Page 1485

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1455 - Example of operation performed if bit 5 (INZ) of parameter No. 19754 is 1: Assume that the table rotation axis rotating about the Z-axis is the C-axis. If bit 5 (INZ) of parameter No. 19754 is 1, and tool cent...

  • Page 1486

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1456 - As with the case in which bit 5 (WKP) of parameter No. 19696 is 0, when the X, Y, or Z command is executed, the tool center performs linear movement (in G01 or G00 mode) or circular movement (in G02 or G03 mode) in relation to the table (object...

  • Page 1487

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1457 - In the start block of tool center point control during tilted working plane indexing, or in the start block of tilted working plane indexing during tool center point control, the rotary axis does not move mechanically and the absolute coordinat...

  • Page 1488

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1458 - Reset In case that tilted working plane indexing and tool center point control are used at the same time, the tool center point control mode, the tool length compensation vector, and the tilted working plane indexing are canceled by a reset no...

  • Page 1489

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1459 - Signal Manual absoluter signal *ABSM<Gn006.2> [Classification] Input signal [Function] This signal selects between the manual absolute on or off states. [Operation] If 0, this signal selects the manual absolute on state. If 1, this...

  • Page 1490

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1460 - #1 ABS For the move command after manual intervention in the manual absolute on state: 0: Different paths are used in the absolute (G90) and incremental (G91) modes. 1: The same path (path in the absolute mode) is used in the absolute (G90) ...

  • Page 1491

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1461 - This parameter is used for the time constant of acceleration/deceleration before rapid traverse interpolation. Be sure to specify the same time constant value for all axes except for a special application. If different time constants are set, a...

  • Page 1492

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1462 - NOTE This parameter is regarded as being set to 0 in the following modes: 1) 3-dimensional coordinate system conversion 2) Tilted working plane indexing 3) Workpiece setting error compensation 4) Cutting point command If 1 is set in this para...

  • Page 1493

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1463 - NOTE - It is not necessary to set this parameter for the basic three axes. Even if this parameter for the basic three axes is set, it makes no effect. - In case that expansion of axis move command in tool center point control is used and parame...

  • Page 1494

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1464 - #2 DET When the programming coordinate system is fastened to the table in tool center point control or 3-dimensional tool compensation, the relative position and absolute position of a specified path are: 0: Displayed in the programming coord...

  • Page 1495

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1465 - Shift of controlled point Tool length offset Tool holder offset Controlled-point shift vector DE Tool center pointControlled point Second rotary axis of tool F First rotary axis of tool Fig. 9.1 (m) Controlled-point shift vector when automatic...

  • Page 1496

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1466 - Set the shift vector for the controlled point. This value becomes valid when bit 5 (SVC) of parameter No. 19665 is set to 1, and bit 4 (SPR) of parameter No. 19665 is set to 1. NOTE Set a radius value. 19680 Mechanical unit type [Input ty...

  • Page 1497

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1467 - Set the controlled-axis number for the first rotation axis. For a hypothetical axis (when bit 0 (IA1) of parameter No. 19696 is 1), set 0. [Example] Assuming that the axis configuration in path 1 is X,Y,Z,B,C and the axis configuration in path...

  • Page 1498

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1468 - Parameter No.19682YZX 546 Parameter No.19683 19684 Rotation direction of the first rotation axis [Input type] Parameter input [Data type] Byte path [Valid data range] 0 to 1 Set the direction in which the first rotation axis rotates as a...

  • Page 1499

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1469 - 19687 Axis direction of the second rotation axis [Input type] Parameter input [Data type] Byte path [Valid data range] 0 to 6 Specify the axis direction of the second rotation axis. 1: On X-axis 2: On Y-axis 3: On Z-axis 4: On an axis tilte...

  • Page 1500

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1470 - #7 #6 #5 #4 #3 #2 #1 #0 19696 RFC WKP IA2 IA1 [Input type] Parameter input [Data type] Bit path #0 IA1 0: The first rotation axis is an ordinary rotation axis. 1: The first rotation axis is a hypothetical axis. If IA1 is 1, set 0 a...

  • Page 1501

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1471 - Reference tool axis direction XYZTool axis direction is positive X-axis direction.Tool axis direction is positive Y-axis direction. Tool axis direction is positive Z-axis direction. 19698 Angle when the reference tool axis direction is tilt...

  • Page 1502

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1472 - Tool axis direction when the reference tool axis direction is Z-axis RAX Y Z XYZRBX ZTool holder offset Tool length offset Y 19700 Rotary table position (X-axis of the basic three axes) 19701 Rotary table position (Y-axis of the basic thre...

  • Page 1503

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1473 - 19703 Intersection offset vector between the first and second rotation axes of the table (X-axis of the basic three axes) 19704 Intersection offset vector between the first and second rotation axes of the table (Y-axis of the basic three axe...

  • Page 1504

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1474 - If parameter No. 19680 is 21, set the vector from point D on the tool axis to point E determined on the tool rotation axis as the intersection offset vector in the machine coordinate system when the rotation axes for controlling the tool are al...

  • Page 1505

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1475 - When tool axis and tool rotary axis do not intersect Tool length offset Tool holder offset Intersection offset vector between tool axis and second rotary axis of tool DE Tool center point Controlled pointSecond rotary axis of tool F First rota...

  • Page 1506

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1476 - [Min. unit of data] Depend on the increment system of the reference axis [Valid data range] 9 digit of minimum unit of data (refer to standard parameter setting (When the increment system is IS-B, -999999.999 to +999999.999) This parameter sets...

  • Page 1507

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1477 - When 0 is set, the least input increment is assumed to be the limit of the deviation from the path. If a negative value is set, the rapid traverse rate is not decreased. NOTE The error generated after the rate is decreased may be smaller than...

  • Page 1508

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1478 - #5 INZ If, in tool center point control and 3-dimensional cutter compensation, a table coordinate system command is issued, 0: In the state in which each function is started, the workpiece coordinate system is fixed to the rotary table, and b...

  • Page 1509

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1479 - [Min. unit of data] Depend on the increment system of the applied axis [Valid data range] Refer to the standard parameter setting table (D) (For a millimeter machine, 0.0 to +100000.0, for an inch machine, 0.0 to +10000.0) This parameter sets t...

  • Page 1510

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1480 - - Deceleration at a corner Under tool center point control, the controlled point may move along a curve even if a straight-line command is issued. Some commands may cause a corner movement. When AI contour control is not used, a shock can be a...

  • Page 1511

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1481 - - Plane selection (G17/G18/G19) - Cutter compensation : cancel (G40) - 3-dimensional cutter compensation (G41.2/G42.2/G41.4/G42.4/G41.5/G42.5) - Tool length compensation cancel (G49,G49.1) - Scaling (G50/G51) - Programmable mirror image (G50.1/...

  • Page 1512

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1482 - - Linear axes under tool center point control The basic three axes set in parameter No. 1022 are regarded as the three linear axes for tool center point control. Axes parallel to the basic three axes cannot be used as the linear axes for tool...

  • Page 1513

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1483 - No. Message Description PS5421 ILLEGAL COMMAND IN G43.4/G43.5 An illegal command was specified in tool center point control. - A rotation axis command was specified in tool center point control (type 2) mode. - With a table rotary type or compo...

  • Page 1514

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1484 - No. Message Description PS5459 MACHINE PARAMETER INCORRECT - The parameters Nos. 19665 to 19667 and 19680 to 19744 for configuring the machine are incorrect. - The axis specified with parameter No. 19681 or No. 19686 is not a rotary axis. - In ...

  • Page 1515

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1485 - 9.2 HIGH-SPEED SMOOTH TCP 9.2.1 High-speed Smooth TCP General Tool center point control (referred to as TCP in the remainder of this manual) is a 5-axis machining function whereby the tool center point moves along a specified path even if the ...

  • Page 1516

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1486 - NOTE 4 Each rotation axis is compensated from the original value within the compensation tolerance. The tolerance can be specified by the parameters (No. 10486, 10487) or the G code (G10.8L1). - Smooth control (G43.4 P3, G43.5P3) Under tool po...

  • Page 1517

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1487 - NOTE The option of "High-speed Smooth TCP" is necessary to use Smooth control (G43.4 P3, G43.5P3). It can be used in Series 30i -B/31i -B5. Explanation There are two types, as described below, one of which is used depending on how...

  • Page 1518

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1488 - - Compensation tolerance High-speed Smooth TCP compensates the rotation axis positions in every block in TCP mode. Depending on the machining program, as a result of compensation calculations with this function, large compensation may be decid...

  • Page 1519

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1489 - ± ParameterNo.10487 ± ParameterNo.10486 Fig.9.2.1.1 (d) Compensation area for a tool head rotation type machine NOTE If the tool posture varies due to compensation with High-speed Smooth TCP while a corner is being machined at the tool ...

  • Page 1520

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1490 - For example, Rotation axes compensation is canceled if the following blocks are specified. Example) On a 5-axis machine with three linear axes (X, Y, Z) and two rotation axes (B, C) M55; (no axis command) G91 G01; (no axis command) G00 X10.0; (...

  • Page 1521

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1491 - - For machining with a ball end mill If TCP machining is to be performed with a ball end mill, the tool center point in the program may be specified as the coordinates of the tool tip center or as the coordinates of the tool center point. At p...

  • Page 1522

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1492 - Tool center points and Tool postures are commanded as follows Fig.9.2.1.2 (a). Tool center pointsTool posture N1N2N3N4N5ZYX Fig.9.2.1.2 (a) Commanded Tool center points and Tool postures In case of machining with tool posture control (G43....

  • Page 1523

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1493 - N1N2N3N4N5ZYXTolerance (Parameter No.11776, or Command G10.8 L2 Q_) Paths generated by this feature Paths generated by the traditional Tool posture control Fig.9.2.1.2 (d) Path of Tool center points (Tool postures) The generated tool postu...

  • Page 1524

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1494 - Conditions for Smooth control to be effective 1) Modes are as follows. - Cutting mode - Linear interpolation (G01) - Feed per minute (G94, however G98 in G code system A of T series ) - Polar coordinate interpolation cancel (G13.1) - Polar coor...

  • Page 1525

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1495 - On a 5-axis machine, one rotary axis tilts the tool against the work-piece. This rotary axis is called "Tool-side rotary axis", and the other is called "Work-piece side rotary axis". According to the mechanical unit type, t...

  • Page 1526

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1496 - Movement to cross over a singular position When the commanded positions of the tool side rotary axis are opposite in relation to the singular position at the starting point and at the ending point of a block, in other words, when a movement to...

  • Page 1527

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1497 - 9.2.2 Tolerance Change in High-speed Smooth TCP mode 9.2.2.1 Tolerance change in Rotation axes compensation (G43.4L1, G43.5L1) This function is designed to change the compensation tolerance for each rotation axis in Rotation axes compensation ...

  • Page 1528

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1498 - Character string “TCP” blinks while compensation is temporarily interrupted. <1> Fig.9.2.3 (a) Status display during execution of High-speed Smooth TCP - Maximum compensation of Rotation axes compensation In Rotation axes compensat...

  • Page 1529

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1499 - Parameter Bit 6 (CLR) of parameter No. 3402 Bit 0 (C08) of parameter No. 3407 Bit 6 (LVK) of parameter No. 5003 Setting 2 0 - 1 - TCP type 2 There are the following limitations. - The inclination angle of the tool cannot be specified by us...

  • Page 1530

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1500 - If the first rotation axis is compensated in Rotation axes compensation (G43.4L1, G43.5L1), the maximum change from the specified value before compensation is limited by this setting. The first rotation axis is the axis specified for parameter ...

  • Page 1531

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1501 - #7 #6 #5 #4 #3 #2 #1 #0 11775 TP2 [Input type] Setting input [Data type] Bit path #0 TP2 At the TCP starting block(G43.4, G43.5), when the address P is omitted, in accordance with the parameter TPC(No.19604#0), 0: Tool center p...

  • Page 1532

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1502 - 11779 Maximum angle between blocks to enable Smoothing of High-speed Smooth TCP (G43.4P3, G43.5P3) [Input type] Setting input [Data type] Real path [Unit of data] degree (input unit) [Min. unit of data] Depend on the increment system of the...

  • Page 1533

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1503 - 6505 Maximum compensation actually applied by High-speed Smooth TCP (G43.4L1, G43.5L1) to the first rotation axis [Data type] Real path [Unit of data] degree [Min. unit of data] Depend on the increment system of the first rotary axis [Vali...

  • Page 1534

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1504 - Number Message Description PS0521 ILLEGAL USAGE OF G10.8L1 Modal information used when specifying G10.8L1 contains an error.• The system is not in Rotation axes compensation mode (G43.4L1). - G10.8L1 can be specified in Rotation axes compensa...

  • Page 1535

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1505 - Number Message Description PS5421 ILLEGAL COMMAND IN G43.4/G43.5 An illegal command was specified in tool center point control. - A rotation axis command was specified in tool center point control (type 2) mode. - With a table rotary type or m...

  • Page 1536

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1506 - 9.3 EXPANSION OF AXIS MOVE COMMAND IN TOOL CENTER POINT CONTROL Overview This function makes it possible to specify commands for axes other than the five axes subject to tool center point control during tool center point control. Details In th...

  • Page 1537

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1507 - Using this dt, the feedrate of tool center point becomes dtdZdYdX222++ . In case parameter ADF(No.11269#2)=1, all the non 5-axis machining control axes are included in commanded feedrate regardless of the setting of parameter ADXx. - Interp...

  • Page 1538

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1508 - NOTE - It is not necessary to set this parameter for the basic three axes. Even if this parameter for the basic three axes is set, it makes no effect. - In case that expansion of axis move command in tool center point control is used and parame...

  • Page 1539

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1509 - Alarm and message Number Message Description PS5421 ILLEGAL COMMAND IN G43.4/G43.5 An illegal command was specified in tool center point control. - A rotation axis command was specified in tool center point control (type 2) mode. - With a tabl...

  • Page 1540

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1510 - 9.4 TOOL POSTURE CONTROL Overview Under tool center point control, the tool tip moves along a specified path even when the tool direction relative to the workpiece changes. Usually, however, the two rotary axes are controlled independently of e...

  • Page 1541

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1511 - Table 9.4 (a) "Tool-side rotary axis" and "workpiece-side rotary axis" Mechanical unit type (No. 19680) Tool-side rotary axis Workpiece-side rotary axis Tool rotation type (2) Slave axis Master axis Table rotation type (12)...

  • Page 1542

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1512 - C=0 C=60 B=0 (Singular point) XZSingular point posture B=0 (Singular point) Fig. 9.4 (d) Singular point and singular point posture There is no singular point and singular point posture on some types of machines as in the case where the refer...

  • Page 1543

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1513 - However, if the value of parameter No. 19738 is 0, the tool posture at the block end point is not changed. If the tool posture at the start point or end point of a block is a singular point posture or the tool posture becomes a singular point p...

  • Page 1544

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1514 - So, if a block specifies such a tool posture during tool posture control, alarm PS0432, “UNAVAILABLE POSTURE IN TPC” is issued before execution of the block. O0010 … G43.5 H1 P1; … N10 X_ Y_ Z_ I1 J0 K2;N20 X_ Y_ Z_ I-1 J0 K2;… G49; ...

  • Page 1545

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1515 - O0020 … G43.4 H1 P1; … N10 X_ Y_ Z_ B90.0 C0.0; N20 X_ Y_ Z_ B-90.0 C-90.0;… G49; M30; O0021 … G43.4 H1 P1; … N10 X_ Y_ Z_ B90.0 C0.0;N20 X_ Y_ Z_ B90.0 C90.0;… G49; M30; XYB=90.0, C=0.0 B=90.0, C=90.0 or B=-90.0, C=-90.0 At the N20...

  • Page 1546

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1516 - For other restrictions, those described for tool center point control are applicable. Parameter #7 #6 #5 #4 #3 #2 #1 #0 19604 TPC [Input type] Setting input [Data type] Bit path #0 TPC In the case that there is no address P at...

  • Page 1547

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1517 - When an appropriate value is set in parameter No. 19738 in tool posture control for tool center point control (type 2), a tool posture near the singular point may occur during the execution of a block. If this happens, change the tool posture a...

  • Page 1548

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1518 - Alarm and message Number Message Description PS5421 ILLEGAL COMMAND IN G43.4/G43.5 An illegal command was specified in tool center point control. - A rotation axis command was specified in tool center point control (type 2) mode. - With a table...

  • Page 1549

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1519 - Reference item Manual name Item name OPERATOR’S MANUAL (B-64484EN) Tool center point control Tool posture control CONNECTION MANUAL (FUNCTION) (B-64483EN-1) Tool center point control 9.5 CUTTING POINT COMMAND Overview While the operation of ...

  • Page 1550

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1520 - Format There are two types, as described below, one of which is used depending on how the direction of the tool axis is specified. (1) Type 1 The block end position of the rotation axis is specified (e.g. A, B, C). The CNC performs tool lengt...

  • Page 1551

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1521 - Tool length, radius and corner-R compensation value is set to the offset memory corresponding to an tool offset number beforehand. To the setting and the display of the compensation value, the specification of each tool compensation memory is ...

  • Page 1552

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1522 - And, if D code is specified in G43.8/G43.9 block, alarm PS5464, "ILLEGAL COMMAND IN G43.8/G43.9", occurs. Example) G43.8 H10; (when parameter No. 11419 is 0) Tool length compensation value Tool offset number 10 Tool radius compens...

  • Page 1553

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1523 - Tool length, radius and corner-R compensation value is set to the offset memory corresponding to an tool offset number beforehand. To the setting and the display of the compensation value, the specification of tool offset for milling and turni...

  • Page 1554

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1524 - specified by parameters Nos. 19697, 19698, and 19699. If, after the block of G43.8/G43.9, a part of (I, J, K) following “,L2” is omitted, the omitted value is regarded as 0, and if all are omitted, the direction is specified by (I, J, K) fo...

  • Page 1555

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1525 - Less than parameter No.11262 Control pointCutting point Workpiece Control point Cutting point Workpiece Greater than parameter No.11262 Fig. 9.5 (c) Near-singular posture (right) : Cutting point vector Regarded as a near-singular postureC...

  • Page 1556

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1526 - - Wrong operation prevention functions By using the wrong operation prevention functions, it is possible to check whether data is in the valid range or not when the tool offset data is set. In machining center system (tool offset memory C), a...

  • Page 1557

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1527 - - Type 2 When a type 2 command (G43.9 command) is specified on a machine of table rotation type or composite type (parameter No. 19680 = 12 or 21), the table coordinate system needs to be set as the programming coordinate system (by setting bi...

  • Page 1558

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1528 - • Workpiece setting error compensation cancel (G54.4P0) • Cutting mode (G64) • Macro modal code cancel (G67) • Coordinate system rotation / 3-dimensional coordinate system conversion cancel (G69) • Canned cycle cancel (G80) • Feed p...

  • Page 1559

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1529 - #3 ON1 When cutting point command is used with tool compensation memory C of machining center system, the specification method of tool length, radius and corner-R is: 0: Specified individually by two tool offset numbers. 1: Specified collect...

  • Page 1560

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1530 - No. Message Description PS5421 ILLEGAL COMMAND IN G43.4/G43.5 An illegal command was specified in tool center point control. - A rotation axis command was specified in tool center point control (type 2) mode. - With a table rotary type or compo...

  • Page 1561

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1531 - No. Message Description PS5459 MACHINE PARAMETER INCORRECT - The parameters Nos. 19665 to 19667, 19680 to 19744 for configuring the machine are incorrect. - The axis specified with parameter No. 19681 or No. 19686 is not a rotary axis. - In par...

  • Page 1562

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1532 - 9.6 3-DIMENSIONAL MANUAL FEED Overview This function enables the use of the following functions. • 3-dimensional manual feed - Tool axis direction handle feed/tool axis direction JOG feed/tool axis direction incremental feed - Tool axis righ...

  • Page 1563

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1533 - For those parameters for configuring the machine, Nos. 19680 to 19714, that depend on the coordinate on a rotation axis, set the values assumed when the workpiece coordinate on the rotation axis is 0. For the functions below, values in the w...

  • Page 1564

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1534 - CBZYXWorkpieceCBTool axis direction Fig. 9.6.1 (a) Tool axis direction - Tool axis direction feed in the tilted working plane indexing mode If bit 0 (TWD) of parameter No. 12320 is set to 1, the feed direction of the tool axis direction feed ...

  • Page 1565

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1535 - <3> The feed axis direction selection signal (+Jn <Gn100>, -Jn <Gn102> (where n = 1 to the number of controlled axes)) is set to 1 for the axis corresponding to the direction specified by parameter No. 19697. (Even when the ...

  • Page 1566

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1536 - CBZYXWorkpieceCBTool axisdirectionTool axis right-angle direction Fig. 9.6.2 (a) Tool axis direction (Example)When the tool rotation axes are B-axis and C-axis and the tool axisdirection is the Z-axis directionCBZYXTool axis right-angle direct...

  • Page 1567

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1537 - When the tool axis direction vector ( Tr) is parallel to the normal axis direction vector ( Pr) (parameter No. 12321) (when the angle between them is not greater than the setting of parameter No. 12322), tool axis right-angle direction 1 and t...

  • Page 1568

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1538 - - Amount of movement When the manual pulse generator is rotated, the tool is moved in the tool axis right-angle direction by the amount of rotation. - Feedrate clamp The feedrate is clamped so that the speed of each moving axis dose not exce...

  • Page 1569

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1539 - Workpiece Tool tip position Fig. 9.6.3 (a) Example where the tool is rotated • The Fig. 9.6.3 (b) shows an example where the table is rotated on the rotation axis. As in the previous case, the linear axes are moved so that the position of...

  • Page 1570

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1540 - 9.6.3.2 Tool tip center rotation JOG feed/tool tip center rotation incremental feed The tool tip center rotation JOG feed or tool tip center rotation incremental feed is enabled when the following three conditions are satisfied: <1> JOG ...

  • Page 1571

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1541 - 9.6.4 Table Vertical Direction Handle Feed/Table Vertical Direction JOG Feed/Table Vertical Direction Incremental Feed Overview In the table vertical direction handle feed, table vertical direction JOG feed, and table vertical direction incre...

  • Page 1572

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1542 - 9.6.4.2 Table vertical direction JOG feed/table vertical direction incremental feed The table vertical direction JOG feed or table vertical direction incremental feed is enabled when the following three conditions are satisfied: <1> JOG...

  • Page 1573

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1543 - B BZY X Table horizontal direction 2 Table horizontal direction 1 Fig. 9.6.5 (a) Table horizontal direction (Example) When the table rotation axis is the B-axis, and the table vertical direction is the Z-axis direction BZY X Table horizo...

  • Page 1574

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1544 - Table 9.6.5 (b) Latitude and longitude directions Parameter No. 12321 Normal axis direction Table horizontal direction 1 Table horizontal direction 21 +X direction +Y direction +Z direction 2 +Y direction +Z direction +X direction 3 +Z direct...

  • Page 1575

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1545 - 9.6.5.2 Table horizontal direction JOG feed/table horizontal direction incremental feed The table horizontal direction JOG feed or table horizontal direction incremental feed is enabled when the following three conditions are satisfied: <1&...

  • Page 1576

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1546 - In the handle mode, the tool axis right-angle direction handle feed mode is selected. In the jog feed mode, the tool axis right-angle direction jog feed mode is selected. In the incremental feed mode, the tool axis right-angle direction increm...

  • Page 1577

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1547 - NOTE This signal has no influence on the tool tip center rotation handle feed mode, tool tip center rotation jog feed mode, and tool tip center rotation incremental feed mode. Parameter 12310 States of the manual handle feed axis selection...

  • Page 1578

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1548 - If parameter No. 12323 is set to 2 to 5, replace 1 in HS1A to HS1E and HS1IA to HS1IE above with 2 to 5. 12311 States of the manual handle feed axis selection signals when a movement is made in the first axis direction in tool axis normal dir...

  • Page 1579

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1549 - This parameter sets the states of the manual handle feed axis selection signals (HS1A to HS1E for the first manual handle) or the manual handle interrupt axis selection signals (HS1IA to HS1IE for the first manual handle) when the first rotati...

  • Page 1580

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1550 - #7 #6 #5 #4 #3 #2 #1 #0 12320 JFR FLL TWD [Input type] Setting input [Data type] Bit path #0 TWD The directions of 3-dimensional machining manual feed (other than tool tip center rotation feed) when the tilted working plane indexi...

  • Page 1581

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1551 - [Unit of data] deg [Min. unit of data] Depend on the increment system of the reference axis [Valid data range] 0 to 90 When a tilted working plane indexing (G68.3) is issued to perform 3-dimensional machining manual feed in the latitude direc...

  • Page 1582

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1552 - #7 #6 #5 #4 #3 #2 #1 #0 19665 SVC SPR [Input type] Parameter input [Data type] Bit path #4 SPR The controlled point is shifted by: 0: Automatic calculation. 1: Using parameter No. 19667. Bit 5 (SVC) of parameter No. 19665 Bit 4 ...

  • Page 1583

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1553 - 19666 Tool holder offset value [Input type] Parameter input [Data type] Real path [Unit of data] mm, inch (machine unit) [Minimum unit of data] Depend on the increment system of the reference axis [Valid data range] 9 digit of minimum un...

  • Page 1584

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1554 - First rotary axis (master)Second rotary axis (slave)First rotary axis (master)Second rotary axis (slave)Tool rotary axes Table rotary axes NOTE A hypothetical axis is also counted as a controlled rotary axis. <Hypothetical axi...

  • Page 1585

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1555 - YZX231 Parameter No.19682 19683 Inclination angle when the first rotation axis is an inclined axis [Input type] Parameter input [Data type] Real path [Unit of data] Degree [Min. unit of data] The increment system of the reference axis ...

  • Page 1586

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1556 - 0: Clockwise direction as viewed from the negative to positive direction of the axis specified in parameter No. 19682 (right-hand thread rotation) 1: Counterclockwise direction as viewed from the negative to positive direction of the axis speci...

  • Page 1587

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1557 - If parameter No. 19687 is set to a value 1 to 3, set 0 degrees. If parameter No. 19687 is set to a value 4 to 6, set the inclination angle. 19689 Rotation direction of the second rotation axis [Input type] Parameter input [Data type] Byte...

  • Page 1588

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1558 - 2: Positive Y-axis direction 3: Positive Z-axis direction When the reference tool axis direction is neither the X-, Y-, nor Z-axis direction, set the reference direction in this parameter, then set appropriate angles as the reference angle RA a...

  • Page 1589

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1559 - Tool axis direction when the reference tool axis direction is Z-axis RAX Y Z XYZRBX ZTool holder offset Tool length offsetY 19700 Rotary table position (X-axis of the basic three axes) 19701 Rotary table position (Y-axis of the basic thre...

  • Page 1590

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1560 - 19703 Intersection offset vector between the first and second rotation axes of the table (X-axis of the basic three axes) 19704 Intersection offset vector between the first and second rotation axes of the table (Y-axis of the basic three axe...

  • Page 1591

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1561 - If parameter No. 19680 is 21, set the vector from point D on the tool axis to point E determined on the tool rotation axis as the intersection offset vector in the machine coordinate system when the rotation axes for controlling the tool are a...

  • Page 1592

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1562 - When tool axis and tool rotary axis do not intersect Tool length offsetTool holder offset Intersection offset vector between tool axis and second rotary axis of tool D E Tool center point Controlled point Second rotary axis of tool F First rot...

  • Page 1593

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1563 - Alarm and message No. Message Description PS5459 MACHINE PARAMETER INCORRECT A machine configuration parameters Nos.19665 to 19667 or Nos.19680 to 19744 is illegal. Reference item Manual name Item name OPERATOR’S MANUAL (B-64484EN) 3-dimens...

  • Page 1594

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1564 - 9.7 TILTED WORKING PLANE INDEXING 9.7.1 Tilted Working Plane Indexing Overview Programming for creating holes, pockets, and other figures in a datum plane tilted with respect to the workpiece would be easy if commands can be specified in a coor...

  • Page 1595

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1565 - Coordinate system origin shift (xo,yo,zo) Xc YcZcWorkpiece coordinate system X-Y-Z Feature coordinate system Xc-Yc-Zc XYZ • Only G68.2 is specified • G53.1 is specified after G68.2 Xc YcZc Control point shift (by another command) G53.1 a...

  • Page 1596

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1566 - <2> Table rotation type machine <3> Composite type machine<1> Tool rotation type machine XCBZYACXZYBYXZC Fig. 9.7.1 (d) Three types of 5-axis machine 9.7.1.1 Tilted working plane indexing based on Eulerian angle - Coordinate ...

  • Page 1597

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1567 - The figure also gives examples of displacement on the X-Y plane. γ zc yc xcx' y''γ Conversion from workpiece coordinate system X-Y-Z to coordinate system 1 X'-Y'-Z x z yx' y'α β X'z y''z'' y'β Conversion from coordinate system 1 X'-Y'-Z ...

  • Page 1598

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1568 - For acceleration/deceleration after interpolation When parameter D3R is set to 1 (for the rapid traverse mode), rapid traverse in the drilling direction in a canned cycle for drilling during the tilted working plane indexing mode, 3-dimensiona...

  • Page 1599

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1569 - Program coordinate systemMachine coordinate system G54 G55Program coordinate system Fig. 9.7.1 (f) Workpiece coordinate system selection command during the tilted working plane indexing - Minimum command unit of rotation angles The minimum ...

  • Page 1600

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1570 - "Coordinate system 1" rotated by angle β about the Y-axis is "coordinate system 2". "Coordinate system 2" rotated by angle γ about the Z-axis then shifted by (X0,Y0,Z0) from the workpiece coordinate system origin...

  • Page 1601

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1571 - Explanation - Determination of a feature coordinate system Three entered points are named P1, P2, and P3 in the order of entry. The P1-to-P2 direction is defined as the X-axis of a feature coordinate system. Among the directions that are on ...

  • Page 1602

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1572 - 9.7.1.5 Tilted working plane indexing based on two vectors Overview With the tilted working plane indexing, a tilted working plane can be specified by specifying an X-axis direction vector and a Z-axis direction vector in the feature coordinate...

  • Page 1603

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1573 - Xc (first vector) Zc Second vector Plane P normal to the first vector Fig. 9.7.1 (g) When the first and second vectors are not normal 9.7.1.6 Tilted working plane indexing based on projection angles Overview With the tilted working plane i...

  • Page 1604

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1574 - Vector A rotated by γ about the Z-axis of the feature coordinate system is defined to be the X-axis direction of the feature coordinate system. The Y-axis of the feature coordinate system is defined according to the right-handed system. X Y Z...

  • Page 1605

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1575 - 9.7.1.7 Tilted working plane indexing by tool axis direction Overview By specifying G68.3, a coordinate system (feature coordinate system) where the tool axis direction is the +Z-axis direction can be automatically specified. When a feature co...

  • Page 1606

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1576 - When R is commanded, a coordinate system rotated by R around Zc from the above-mentioned coordinate system is the feature coordinate system. X-axis of feature coordinate system Y-axis of feature coordinate system Vertical axis direction: ...

  • Page 1607

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1577 - The reference coordinate system of feature coordinate system (the feature coordinate system that is defined when absolute coordinate system of tool rotation axes is zero) is as follows by the parameter (No.19697) for reference tool axis direct...

  • Page 1608

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1578 - Fig. 9.7.1 (d) Example that reference tool axis direction is Z direction - Machine of table rotation type On a machine of table rotation type, the tool direction remains unchanged. So, a feature coordinate system based on the...

  • Page 1609

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1579 - - Example of operation An example of operation on a machine of tool rotation type is given below. The machine configuration is "BC type reference tool axis Z-axis". B: 2nd rotation axis (slave) C: 1st rotation axis (master)Contro...

  • Page 1610

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1580 - XcYc Zc XYZXYZXYZMachine operation by sample program 1N3 command N6 command N5 command N4 command Workpiece coorditate system X-Y-Z Workpiece coorditate system X-Y-Z Feature coordinate system Xc-Yc-Zc Fig. 9.7.1 (g) Machine operatio...

  • Page 1611

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1581 - Fig.9.7.1 (h) N2 block: Tilts the tool. (B45 deg) N3 block: Tilts the tool. (C60 deg) N4 block: The direction of the reference coordinate system of feature coordinate system is the direction of workpiece coordinat...

  • Page 1612

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1582 - B: 2nd rotation axis (slave) C: 1st rotation axis (master)Control point Tool holder offset value = Parameter No. 19666 Tool length offset = H01 BC type tool axis Z-axis (Axes are intersecting.) Tool center point Fig. 9.7.1 (i) Example of o...

  • Page 1613

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1583 - N3 command N4 commandN6 commandN5 commandX Y Z Machine operation by sample program 2 XcYc ZcXc Yc Zc Feature coordinate system Xc-Yc-Zc X Y Z XcYc Zc X Y Z XcYcZcX Y Z Fig. 9.7.1 (j) Machine operation with sample program 2 N3 bloc...

  • Page 1614

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1584 - 9.7.2 Multiple Command of Tilted Working Plane Indexing 9.7.2.1 Absolute multiple command By additionally specifying G68.2 in the tilted working plane indexing mode, a feature coordinate system produced by additionally applying coordinate syste...

  • Page 1615

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1585 - N6 command XYZN4 command Machine operation by sample program 1 N7 command N5 command XYZXYZXcYcZcXYZFeature coordinate system Xc-Yc-Zc Feature coordinate system Xc-Yc-Zc Xc YcZcXc YcZcXcYcZcG55 Machine origin Fig. 9.7.2 (l) Machine...

  • Page 1616

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1586 - 9.7.2.2 Incremental multiple command By specifying G68.4, coordinate system conversion can be applied to the currently set feature coordinate system. This function is enabled by setting bit 0 (MTW) of parameter No. 11221. Format The format of ...

  • Page 1617

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1587 - N6 command XYZN4 command Machine operation by sample program 2 N7 command N5 command Xc1 Yc1Zc1XYZXYZXc2Yc2Zc2XYZFeature coordinate system Xc1-Yc1-Zc1 Feature coordinate system Xc2-Yc2-Zc2 Xc1 Yc1Zc1Xc2Yc2Zc2Xc1Yc1Zc1Xc1Yc1Zc1 Fig. ...

  • Page 1618

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1588 - 9.7.3 Tool Axis Direction Control 9.7.3.1 Tool axis direction control G53.1 automatically specifies the +Z direction of the feature coordinate system as the tool axis direction. Example of operation The following gives an operation example in ...

  • Page 1619

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1589 - The rotation center axis for the master is called the first rotation axis, while the rotation center axis for the slave is called the second rotation axis. (Fig. 9.7.3 (o)) First rotary axis Master and slave Master = first axis Second rotar...

  • Page 1620

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1590 - - When the rotation axes of the tool do not intersect Explained below is a mechanism in which the rotation axes of the tool do not intersect each other. The Fig. 9.7.3 (q) is an example of a mechanism in which the first and second rotation axe...

  • Page 1621

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1591 - ZXRotary table position (Parameters Nos. 19700,19701,19702) Rotation center of rotary table ABcomposite type machine Intersection offset vector between tool axis and tool rotary axis (Parameters Nos. 19709,19710,19711) Tool holder offset valu...

  • Page 1622

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1592 - Parameter No. Setting example Description 19703 0.0 Intersection offset vector between the first and second rotation axes of the table (X-axis)19704 0.0 Intersection offset vector between the first and second rotation axes of the table (Y-axis)...

  • Page 1623

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1593 - Table9.7.3 (c) Setting parameters for a tool rotation type machine Parameter No. Setting example Description 19665#4 0 Automatic calculation for controlled-point shifting 19665#5 0 Controlled-point shift 19666 2.0 Tool holder offset value 196...

  • Page 1624

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1594 - Rotary table position (Parameters Nos. 19700,19701,19702) Table rotation type machine ACenter of first rotary axis of table Center of second rotary axis of tableBIntersection offset vector between first and second rotary axes of table (Paramet...

  • Page 1625

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1595 - Parameter No. Setting example Description 19711 0.0 Intersection offset vector between the tool axis and the first rotation axis of the tool (Z-axis) 19712 0.0 Intersection offset vector between the second and first rotation axes of the tool (...

  • Page 1626

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1596 - When this function is enabled (bit 4 (CFW) of parameter No. 11221 = 1), the second rotation axis is controlled so that the direction of the second feature coordinate system matches that of the workpiece coordinate system. (Fig. 9.7.3 (c),Fig. 9...

  • Page 1627

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1597 - Control point Tool length vector Tool center pointZ X W orkpiece coordinate system Fig. 9.7.3 (a) Operation of tool center point retention type tool axis direction control (tool rotation type) Z X Z’ Y’ W orkpi...

  • Page 1628

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1598 - G53.6 H1 R200.0 (G53.6 D1 R200.0 for the T series) rr Control point Tool length vector Tool center point Rotation centerZ X Z’Y’Workpiece coordinate system Feature coordinate system r: Distance from the tool center point to the rotation ...

  • Page 1629

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1599 - 9.7.4 Tilted Working Plane Indexing in Tool Length Compensation Overview In tool length compensation (G43), G68.2/G68.4 (tilted working plane indexing) and G53.1 (tool axis direction control)/G53.6 (tool center point retention type tool axis d...

  • Page 1630

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1600 - X ZG54ZF XFN20N50N30Feature coordinate system N40 Fig. 9.7.4 (b) Example of operation 2 (tool rotation type) G54 N20 X Z ZF XFN30G54 N20 X Z ZF XFN50 Specify the tilted working plane in the B0 state in N40. The feature coordinate system speci...

  • Page 1631

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1601 - ZF1XF1N80 N50 N60ZF1XF1 Feature coordinate system N40 Feature coordinate system N70 Fig. 9.7.4 (d) Example of operation 3 (tool rotation type) N60N80 ZF1 XF1N50 Specify the tilted working plane in the B20 state in N70. The feature coordinate...

  • Page 1632

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1602 - N40 X100.0 Y0 Z0 ; X ZG54 ZF XFN10N4N30Feature coordinate system N20 Fig. 9.7.4 (f) Example of operation 4 (tool rotation type) G54 N10 X Z ZF XFN30G54 X Z ZFXFN40Feature coordinate system N20 Second feature coordinate system N30 Fig. 9.7.4...

  • Page 1633

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1603 - CAUTION Any tilted working plane indexing in tool length compensation cannot be used in workpiece setting error compensation. Restrictions - Basic restrictions The restrictions imposed on 3-dimensional coordinate conversion also apply to t...

  • Page 1634

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1604 - - Relationships with other modal commands G41, G42, and G40 (cutter compensation), G43, G49 (tool length compensation), G51.1 and G50.1 (programmable mirror image), and canned cycle commands must have nesting relationships with G68.2. In othe...

  • Page 1635

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1605 - (4) Feed per revolution (G94) T (1) Coordinate system rotation cancel or 3-dimensional coordinate system conversion mode off (G69.1) (2) Feed per minute (G98 (G94)) (3) Feed per revolution (G99 (G94)) - Modal G codes that allow specificatio...

  • Page 1636

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1606 - CAUTION When this parameter is 1, only G54 to G59 or G54.1 can be specified. Specifying G52 or G92 causes alarm PS5462. Specifying G54 to G59 or G54.1 suppresses buffering. Program example G90 G17 G54 G68.2 X_Y_Z_ I_ J_ K_ G53.1 G43H_ G55 ...

  • Page 1637

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1607 - This parameter sets a rapid traverse rate for canned cycle for drilling in the 3-dimensional coordinate system conversion mode, the tilted working plane indexing mode, or the workpiece setting error compensation mode. 11220 Minimum distance ...

  • Page 1638

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1608 - #7 #6 #5 #4 #3 #2 #1 #0 11630 TFR [Input type] Parameter input [Data type] Bit path #2 TFR The minimum command unit of the rotation angles of the tilted working plane indexing is: 0: 0.001 degree. 1: 0.00001 degree. 12321 Nor...

  • Page 1639

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1609 - #7 #6 #5 #4 #3 #2 #1 #0 19605 NSC [Input type] Parameter input [Data type] Bit path #0 NSC For the machine type that has no rotation axis for rotating the tool (when parameter No. 19680 is set to 12 to specify the table rotatio...

  • Page 1640

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1610 - Bit 5 (SVC) of parameter No. 19665 Bit 4 (SPR) of parameter No. 19665 Shift of controlled point 1 1 The controlled point is shifted. As the shift vector, the vector set in parameter No. 19667 is used. Shift of controlled point Tool length off...

  • Page 1641

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1611 - 19667 Controlled-point shift vector [Input type] Parameter input [Data type] Real axis [Unit of data] mm, inch (machine unit) [Min. unit of data] Depend on the increment system of the applied axis [Valid data range] 9 digit of minimum un...

  • Page 1642

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1612 - NOTE A hypothetical axis is also counted as a controlled rotary axis. <Hypothetical axis> In some cases, it is convenient to use an imaginary rotary axis whose angle is fixed to a certain value. For example, suppose that a tool is mount...

  • Page 1643

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1613 - YZX231 Parameter No.19682 19684 Rotation direction of the first rotation axis [Input type] Parameter input [Data type] Byte path [Valid data range] 0 to 1 Set the direction in which the first rotation axis rotates as a mechanical motio...

  • Page 1644

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1614 - 19687 Axis direction of the second rotation axis [Input type] Parameter input [Data type] Byte path [Valid data range] 0 to 6 Specify the axis direction of the second rotation axis. 1: On X-axis 2: On Y-axis 3: On Z-axis 4: On an axis tilt...

  • Page 1645

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1615 - #1 IA2 0: The second rotation axis is an ordinary rotation axis. 1: The second rotation axis is a hypothetical axis. If IA2 is 1, set 0 as the controlled-axis number for the second rotation axis (parameter No. 19686). Also, set parameters ...

  • Page 1646

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1616 - [Min. unit of data] Depend on the increment system of the applied axis [Valid data range] 9 digit of minimum unit of data (refer to standard parameter setting table (A)) (When the increment system is IS-B, -999999.999 to +999999.999) Set these ...

  • Page 1647

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1617 - When table rotary axes do not intersect Zm Ym Xm Second rotary axis of table First rotary axis of table Rotary table position Intersection offset vector between first and second rotary axes of table BA NOTE As point B, set a position that i...

  • Page 1648

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1618 - When tool axis and tool rotary axis do not intersect Tool length offsetTool holder offset Intersection offset vector between tool axis and tool rotary axis D E Tool center point Controlled point Tool rotary axis NOTE Point D is determined b...

  • Page 1649

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1619 - When tool axis and tool rotary axis do not intersect Tool length offsetTool holder offsetIntersection offset vector between tool axis and second rotary axis of tool D E Tool center pointControlled point Second rotary axis of tool F First rota...

  • Page 1650

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1620 - [Min. unit of data] Depend on the increment system of the reference axis [Valid data range] 9 digit of minimum unit of data (refer to standard parameter setting (When the increment system is IS-B, -999999.999 to +999999.999) This parameter sets...

  • Page 1651

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1621 - - External mirror image If an attempt is made to use this function and an external mirror image function simultaneously, this function takes effect before the external mirror image function. Actual pathY X Yc XcProgrammed pathFeature coordin...

  • Page 1652

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1622 - In other words, first issue G68.2 when the modes mentioned above are off, turn the modes on and off, then issue G69. - Manual reference position return Execution of manual reference position return in the tilted working plane indexing mode is...

  • Page 1653

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1623 - M - Tool offset increase (G45) - Tool offset decrease (G46) - Tool offset double increase (G47) - Tool offset double decrease (G48) - Programmable mirror image (G50.1/G51.1) - Coordinate system rotation cancel or 3-dimensional coordinate syste...

  • Page 1654

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1624 - Alarm and message Number Message Description PS0438 ILLEGAL PARAMETER IN TOOL DIRC CMP If, on a 5-axis machine, either of the two cases below applies, a parameter is illegal. <1> The setting is such that tool direction compensation is per...

  • Page 1655

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1625 - Reference item Manual name Item name OPERATOR’S MANUAL (B-64484EN) Tilted working plane indexing

  • Page 1656

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1626 - 9.8 INCLINED ROTARY AXIS CONTROL Overview The conventional tilted working plane indexing, tool center point control, 3-dimensional cutter compensation, and 3-dimensional manual feed can be used only for those machines whose tool rotation axis o...

  • Page 1657

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1627 - An example of a tool rotation type machine is explained below. (See Fig. 9.8 (b).) The machine shown in Fig. 9.8 (b) has rotation axis B (master) that turns around the Y-axis and rotation axis C (slave) whose Y-axis is inclined at an angle of ...

  • Page 1658

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1628 - An example of a composite type machine is explained below. (See Fig. 9.8 (d).) The machine shown in Fig. 9.8 (d) has table rotation axis B whose Y-axis is inclined at an angle of -45 degrees on the Y-Z plane and tool rotation axis C that turns ...

  • Page 1659

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1629 - Tool rotation type machineBC ZmYmXm Machine coordinate system Tool holder offset value (Parameter No. 19666) Controlled pointIntersection offset vector between tool axis and tool rotary axis (Parameters Nos. 19709,19710...

  • Page 1660

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1630 - Parameter No. Setting example Description 19713 0 Intersection offset vector between the second and first rotation axes of the tool (Y-axis) 19714 0 Intersection offset vector between the second and first rotation axes of the tool (Z-axis) &l...

  • Page 1661

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1631 - Parameter No. Setting example Description 19696#1 0 The second rotation axis is an ordinary rotation axis. 19697 3 Direction of the reference tool axis 19698 0 Reference angle RA 19699 0 Reference angle RB 19700 0 Rotary table position (X-axis...

  • Page 1662

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1632 - Parameter No. Setting example Description 19665#5 0 Controlled-point shift 19666 5.000 Tool holder offset value 19667 X0 Y0 Z0 Controlled-point shift vector 19680 21 Mechanical unit type 19681 5(B) Controlled axis number for the first rotation ...

  • Page 1663

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1633 - YZX231 Parameter No.19682 19683 Inclination angle when the first rotation axis is an inclined axis [Input type] Parameter input [Data type] Real path [Unit of data] Degree [Min. unit of data] The increment system of the reference axis ...

  • Page 1664

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1634 - 2: On Y-axis 3: On Z-axis 4: On an axis tilted a certain angle from the X-axis from the positive X-axis to positive Y-axis 5: On an axis tilted a certain angle from the Y-axis from the positive Y-axis to positive Z-axis 6: On an axis tilted a c...

  • Page 1665

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1635 - Parameter No. Description 19709 Intersection offset vector between the tool axis and the first rotation axis of the tool (X-axis) 19710 Intersection offset vector between the tool axis and the first rotation axis of the tool (Y-axis) 19711 Int...

  • Page 1666

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1636 - 9.9 3-DIMENSIONAL CUTTER COMPENSATION Overview For machines having multiple rotation axes for freely controlling the orientation of a tool axis, this function calculates a tool vector from the positions of these rotation axes. The function then...

  • Page 1667

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1637 - <2> Table rotation type machine<1> Tool rotation type machineXCBZYACXZY<3> Composite type machineBYXZC Fig. 9.9 (a) Three types of machine configuration 9.9.1 Cutter Compensation in Tool Rotation Type Machine Overview In a ...

  • Page 1668

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1638 - Workpiece coordinate system: A coordinatesystem used for creating programsBCZYXXYZ Workpiece coordinatesystem Fig. 9.9.1 (a) Machine having two tool rotation axes 9.9.1.1 Tool side offset Overview This type of cutter compensation performs 3-d...

  • Page 1669

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1639 - 9.9.1.2 Leading edge offset Overview Leading edge offset is a type of cutter compensation used when a workpiece is machined with the edge of a tool. The tool is automatically shifted by the amount of cutter compensation on the line where a pla...

  • Page 1670

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1640 - Programmed point (pivot point) WorkpieceTool center Tool side Distance from programmed point (pivot point) to cutting point (parameter setting) Vector from programmed point (pivot point) to cutting point Cutting point 3-dimensional cutter compe...

  • Page 1671

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1641 - Cutter compensation vector (VD') is calculated on a compensation plane perpendicular tothe tool axis direction.The cutter compensation vector (VD') on the compensation plane is converted to theoriginal Cartesian coordinate system, and the resu...

  • Page 1672

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1642 - Machine coordinate system Xm-Ym-Zm CTool rotation type machine Intersection offset vector between tool axis and second rotary axis of tool (Parameters Nos. 19709,19710,19711) Tool holder offset value (Parameter No. 19666) B Intersection offset...

  • Page 1673

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1643 - Parameter No. Setting example Description 19705 0 Intersection offset vector between the first and second rotation axes of the table (Z-axis)19709 5.0 Intersection offset vector between the tool axis and the first rotation axis of the tool (X-...

  • Page 1674

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1644 - Rotary table position (Parameters Nos. 19700,19701,19702)Machine coordinate system Xm-Ym-Zm Table rotation type machineACenter of first rotary axis of table Center of second rotary axis of table BIntersection offset vector between first and se...

  • Page 1675

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1645 - Parameter No. Setting example Description 19710 0.0 Intersection offset vector between the tool axis and the first rotation axis of the tool (Y-axis) 19711 0.0 Intersection offset vector between the tool axis and the first rotation axis of the...

  • Page 1676

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1646 - Fig. 9.9.3 (b) is an example of setting parameters for a composite type machine. Rotation axis A is a table rotation axis on the X-axis. Rotation axis B is a tool rotation axis on the Y-axis. ZXRotary table position (Parameters Nos. 19700,1970...

  • Page 1677

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1647 - Parameter No. Setting example Description 19699 0.0 Reference angle RB 19700 5.0 Rotary table position (X-axis) 19701 2.0 Rotary table position (Y-axis) 19702 -15.0 Rotary table position (Z-axis) 19703 0.0 Intersection offset vector between th...

  • Page 1678

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1648 - Accordingly, when a rotary axis is moved significantly, carry out programming to divide a block into small movement blocks to prevent the machining precision from being reduced. - Operation at cancellation In a block for canceling 3-dimension...

  • Page 1679

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1649 - In the 3-dimensional cutter compensation mode, the following functions cannot be used: - Twin table control - Flexible synchronous control - Sequence number comparison and stop (It is not possible to cause a stop by sequence number in the 3-d...

  • Page 1680

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1650 - - Combination with circular interpolation When circular interpolation is specified in a block, if a rotary axis is moved in the block, the previous block, or the next block, a cutter compensation vector may be created in the direction orthogon...

  • Page 1681

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1651 - Table 9.9.4.3 (a) TBP=0 TBP=1 WKP=0 WKP=1 WKP=0 WKP=1 Tool center point control Table coordinate system 3-dimensional cutter compensation Workpiece coordinate systemBoth specified together Alarm PS5460 Workpiece coordinate systemTable coordin...

  • Page 1682

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1652 - Specifiable G codes When the table coordinate system is used as the programming coordinate system, the G codes that can be specified in the 3-dimensional cutter compensation mode are listed below. Specifying a G code other than these codes r...

  • Page 1683

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1653 - 9.9.5 Parameters #7 #6 #5 #4 #3 #2 #1 #0 19605 NIC [Input type] Parameter input [Data type] Bit path #5 NIC When the compensation plane is changed in 3-dimensional cutter compensation, the interference check is: 0: Performed. ...

  • Page 1684

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1654 - #5 PRI Among multiple end point candidates that exist when a movement is made on a rotation axis by a command such as I, J, and K when a slanted surface machining command is specified under tool center point control (type 2) or 3-dimensional ...

  • Page 1685

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1655 - [Data type] Real axis [Unit of data] mm, inch (input unit) [Min. unit of data] Depend on the increment system of the reference axis [Valid data range] 9 digit of minimum unit of data (refer to standard parameter setting table (A)) (When the ...

  • Page 1686

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1656 - This parameter is valid when bit 1 (NI5) of parameter No. 19608 is set to 1. When the setting is 0, the angle is assumed to be 10.0 degrees. 19680 Mechanical unit type [Input type] Parameter input [Data type] Byte path [Valid data range] 0...

  • Page 1687

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1657 - [Example] Assuming that the axis configuration in path 1 is X,Y,Z,B,C and the axis configuration in path 2 is X,Z,C,Y,B, set the parameter to 5 in path 1 and to 3 in path 2 if C is the first rotation axis in each path. 19682 Axis direction ...

  • Page 1688

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1658 - Parameter No.19682YZX 546 Parameter No.19683 19684 Rotation direction of the first rotation axis [Input type] Parameter input [Data type] Byte path [Valid data range] 0 to 1 Set the direction in which the first rotation axis rotates as a...

  • Page 1689

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1659 - 19687 Axis direction of the second rotation axis [Input type] Parameter input [Data type] Byte path [Valid data range] 0 to 6 Specify the axis direction of the second rotation axis. 1: On X-axis 2: On Y-axis 3: On Z-axis 4: On an axis tilt...

  • Page 1690

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1660 - #7 #6 #5 #4 #3 #2 #1 #0 19696 WKP [Input type] Parameter input [Data type] Bit path #5 WKP For a 5-axis machine having a table rotation axis, as the programming coordinate system for tool center point control or 3-dimensional to...

  • Page 1691

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1661 - 19698 Angle when the reference tool axis direction is tilted (reference angle RA) 19699 Angle when the reference tool axis direction is tilted (reference angle RB) [Input type] Parameter input [Data type] Real path [Unit of data] Degree...

  • Page 1692

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1662 - Rotary table position Zm Ym Xm First rotary axis of table Rotary table position A NOTE As point A, set a position that is easy to measure on the first rotary axis of the table. Set a radius value. If the rotary table is moved along the X-,...

  • Page 1693

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1663 - NOTE As point B, set a position that is easy to measure on the second rotary axis of the table. Set a radius value. 19709 Intersection offset vector between the tool axis and tool rotation axis (X-axis of the basic three axes) 19710 Inte...

  • Page 1694

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1664 - [Input type] Parameter input [Data type] Real path [Unit of data] mm, inch (machine unit) [Min. unit of data] Depend on the increment system of the applied axis [Valid data range] 9 digit of minimum unit of data (refer to standard parameter ...

  • Page 1695

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1665 - [Valid data range] 9 digit of minimum unit of data (refer to standard parameter setting (When the increment system is IS-B, -999999.999 to +999999.999) This parameter sets the lower limit of the movement range of the first rotation axis in too...

  • Page 1696

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1666 - For the parameters listed in the following table, see the section describing cutter compensation: Cutter compensation parameters Allow a single block stop at an internally created block Bit 0 (SBK) of parameter No. 5000 Display relative and abs...

  • Page 1697

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1667 - No. Message Description PS5459 MACHINE PARAMETER INCORRECT - A machine configuration parameter (parameters Nos. 19665 to 19667, 19680 to 19714, or 12321) is incorrect. - The axis set in parameter No. 19681 or 19686 is not a rotation axis. - Th...

  • Page 1698

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1668 - No. Message Description PS5463 ILLEGAL PARAMETER IN 3-DIMENSIONAL CUTTER COMPENSATION A parameter related to 3-dimensional cutter compensation is illegal. - Acceleration/deceleration before interpolation is disabled. Set parameter No. 1660. - R...

  • Page 1699

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1669 - 9.10 THERMAL GROWTH COMPENSATION ALONG TOOL VECTOR Overview On a 5-axis machine with two rotary axes, compensation for thermal tool expansion or contraction can be applied in the direction of the tool axis that is turned with the rotary axes. ...

  • Page 1700

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1670 - 1. 2. 3. 4. 5. 6. THML <Gn356.0> MTHML <Fn356.0> THD0 to THD15 <Gn354,...

  • Page 1701

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1671 - (1) When compensation data is positive (the tool is "expanded") +X+ZDMachine coordinate system ε εx D : Thermal growth compensation data ε : Thermal growth compensation value εX : X-axis thermal growth compensation va...

  • Page 1702

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1672 - • When the bit 1 (CAT) of parameter No. 12319 = 0: Values in the machine coordinate system are used. For those parameters for configuring the machine, Nos. 19680 to 19714, that depend on the coordinate on a rotation axis, set the values ass...

  • Page 1703

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1673 - SPM (No.19754#7)=1 Example 2: The tool is assumed to face the Z-axis direction when it is in the following states. Position in the workpiece coordinate system B=0.0 Position in the machine coordinate system B=10.0 In this case, value...

  • Page 1704

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1674 - Notes NOTE 1 No thermal growth compensation value is canceled by a reset. 2 A thermal growth compensation value is invalidated by power-off. 3 The same detection unit needs to be used for all axes to which this function applies compensation. 4 ...

  • Page 1705

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1675 - Signal Thermal growth compensation data THD00 to THD15<Gn354,Gn355> [Classification] Input signal [Function] Specify thermal growth compensation data within -32768 to 32767 by using binary code in the detection unit. The detection unit...

  • Page 1706

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1676 - Parameter #7 #6 #5 #4 #3 #2 #1 #0 12319 CAT [Input type] Parameter input [Data type] Bit path #1 CAT If a workpiece coordinate system offset is set for the rotation axis, the coordinate system of the rotation axis used to calcu...

  • Page 1707

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1677 - NOTE A hypothetical axis is also counted as a controlled rotary axis. <Hypothetical axis> In some cases, it is convenient to use an imaginary rotary axis whose angle is fixed to a certain value. For example, suppose that a tool is moun...

  • Page 1708

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1678 - YZX231 Parameter No.19682 19683 Inclination angle when the first rotation axis is an inclined axis [Input type] Parameter input [Data type] Real path [Unit of data] Degree [Min. unit of data] The increment system of the reference axis i...

  • Page 1709

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1679 - 0: Clockwise direction as viewed from the negative to positive direction of the axis specified in parameter No. 19682 (right-hand thread rotation) 1: Counterclockwise direction as viewed from the negative to positive direction of the axis spec...

  • Page 1710

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1680 - If parameter No. 19687 is set to a value 1 to 3, set 0 degrees. If parameter No. 19687 is set to a value 4 to 6, set the inclination angle. 19689 Rotation direction of the second rotation axis [Input type] Parameter input [Data type] Byte ...

  • Page 1711

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1681 - 2: Positive Y-axis direction 3: Positive Z-axis direction When the reference tool axis direction is neither the X-, Y-, nor Z-axis direction, set the reference direction in this parameter, then set appropriate angles as the reference angle RA ...

  • Page 1712

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1682 - Tool axis direction when the reference tool axis direction is Z-axis RAX Y Z XYZRBX ZTool holder offset Tool length offsetY Alarm and message Number Message Description DS1931 MACHINE PARAMETER INCORRECTOne of parameters Nos. 19665 to 19667 a...

  • Page 1713

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1683 - 9.11 EXPANSION OF THE WAY TO SET 5-AXIS MACHINING FUNCTION PARAMETERS Overview By setting bit 7 (SPM) of parameter No. 19754 to 1, the parameters of the 5-axis machining functions can be set with reference to the machine coordinate of 0 on the...

  • Page 1714

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1684 - If the workpiece offset value (C,B) is changed to (90,90), the machine configuration with the absolute coordinates of C0 B0 (machine coordinates: C90B90) (Fig. 9.11 (b)) changes as below. • Second rotation axis: About the -X-axis • Referenc...

  • Page 1715

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1685 - Setting example (composite type) This function is explained below, using a composite type machine that looks like in Fig. 5, below, when the machine coordinates are B0C0. (B-axis (first rotation axis): About the Y-axis, C-axis (second rotation...

  • Page 1716

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1686 - Parameter #7 #6 #5 #4 #3 #2 #1 #0 19754 SPM [Input type] Parameter input [Data type] Bit path #7 SPM The rotation axis position used as the reference when the parameters related to the functions below, parameters Nos. 19681 to 1...

  • Page 1717

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1687 - Alarm and message Number Message Description PS5459 MACHINE PARAMETER INCORRECT - The parameters Nos. 19665 to 19667, 19680 to 19744 for configuring the machine are incorrect. - The axis specified with parameter No. 19681 or 19686 is not a rot...

  • Page 1718

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1688 - Fig.9.12.1 (a) Machine configuration selecting screen Screen structure I Parameter : Present parameter values in currently displayed path are displayed. II Active machine configuration set : The set number and the name of the active machine...

  • Page 1719

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1689 - [NO.SRH] : Input the searched data number and press this soft key. The cursor moves to the target data. [ON:1] : When the soft key is pressed ,'1' is set to the bit type data on cursor position. [OFF:0] : When the soft key is pressed ,'0' is s...

  • Page 1720

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1690 - NOTE 1 Bit 7 (MSF) of parameter No. 11269 decides Enabled (1)/ Disabled (0) of the G10.8L3 command. If G10.8L3 is specified in MSF = 0, the alarm PS0010 "IMPROPER G-CODE" is issued. 2 If G10.8L3 is specified in the following modes, ea...

  • Page 1721

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1691 - Parameter No. Description Data type 19702 Rotary table position (Z-axis of the basic three axes) Real path 19703 Intersection offset vector between the first and second rotation axes of the table (X-axis of the basic three axes) Real path 1970...

  • Page 1722

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1692 - 6 Press the continuous menu key until soft key [MACHINE CONFIG] appears. Press the soft key [MACHINE CONFIG]. 7 Move the cursor to the parameter number of a machine configuration data you want to set by pressing page keys and/or and cursor...

  • Page 1723

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1693 - Format G10 L25 ; I_ P_ N_ R_ ; I_ P_ N_ Q_ R_ ; I_ P_ N_ A_ R_ ; I_ P_ <***********>; G11 ; Machine configuration data entry mode Configuration data : Real path type, Byte path type Configuration data : Bit path type Configuration data :...

  • Page 1724

    9.5-AXIS MACHINING FUNCTION B-64483EN-1/03 - 1694 - G11 ; Parameter 11266 Active machine configuration set number NOTE When this parameter is set, the power must be turned off before operation is continued. [Input type] Parameter input [Data type] Byte path [Valid data range] 0 to 10 The...

  • Page 1725

    B-64483EN-1/03 9.5-AXIS MACHINING FUNCTION - 1695 - Number Message Description PS5462 ILLEGAL COMMAND (G68.2/G69)- The modal setting used when G68.2 or G69 is specified is incorrect. - An unspecificable G code was specified in the G68.2 mode. - The offset vector of tool radius/tool nose radius ...

  • Page 1726

    10.AUXILIARY FUNCTION B-64483EN-1/03 - 1696 - 10 AUXILIARY FUNCTION Chapter 10, "AUXILIARY FUNCTION", consists of the following sections: 10.1 AUXILIARY FUNCTION/2ND AUXILIARY FUNCTION ......................................................1696 10.2 AUXILIARY FUNCTION LOCK................

  • Page 1727

    B-64483EN-1/03 10.AUXILIARY FUNCTION - 1697 - When the second auxiliary function with a decimal point is specified, alarm PS0007 is issued. When the second auxiliary function is specified with a negative value, alarm PS0006 is issued. 2. When a command with a decimal point or a negative comm...

  • Page 1728

    10.AUXILIARY FUNCTION B-64483EN-1/03 - 1698 - CAUTION If a decimal fraction remains after multiplying the specified value with a decimal point by a magnitude in Table 10.1 (a), the fraction is truncated. Example: Specified value Output value B0.12345 1234 (When inch input is used, the referen...

  • Page 1729

    B-64483EN-1/03 10.AUXILIARY FUNCTION - 1699 - <8> When the completion signal is set to 0, the CNC sets all code signals to 0 and completes all sequences of the auxiliary function.(*2) <9> Once all other commands in the same block have been completed, the CNC executes the next block....

  • Page 1730

    10.AUXILIARY FUNCTION B-64483EN-1/03 - 1700 - b) Execution of a auxiliary function after move command completion <1> <2> <3> <4> <5> <6><7><8> <9>(*2)TMFTFINM commandMxxMove commandCode signalsM00 to M31Strobe signalMFPM...

  • Page 1731

    B-64483EN-1/03 10.AUXILIARY FUNCTION - 1701 - NOTE 1 Bit 5 (NCI) of parameter No. 1601 can specify, whether to only check if an acceleration/deceleration delay is eliminated, or to also check if a servo delay (error) has been reduced to within a certain range. 2 When the high-speed MSTB interfac...

  • Page 1732

    10.AUXILIARY FUNCTION B-64483EN-1/03 - 1702 - Spindle function code signals S00 to S31<Fn022 to Fn025> Spindle function strobe signal SF<Fn007.2> [Classification] Output signal [Function] These signals report that spindle functions have been specified. [Output cond.] For the outpu...

  • Page 1733

    B-64483EN-1/03 10.AUXILIARY FUNCTION - 1703 - Signal address #7 #6 #5 #4 #3 #2 #1 #0 Gn004 FIN Gn005 BFIN #7 #6 #5 #4 #3 #2 #1 #0 Fn001 DEN Fn007 BF TF SF MF Fn009 DM00 DM01 DM02 DM30 Fn010 M07 M06 M05 M04 M03 M02 M01 M00 Fn011 M15 M14 M13 M12 M11 M1...

  • Page 1734

    10.AUXILIARY FUNCTION B-64483EN-1/03 - 1704 - NOTE The time is counted in units of 4 ms. If the set value is not a multiple of four, it is raised to the next multiple of four Example When 30 is set, 32 ms is assumed. When 0 is set, 4 ms is assumed. The time count period may change, depen...

  • Page 1735

    B-64483EN-1/03 10.AUXILIARY FUNCTION - 1705 - Set the allowable number of digits for the second auxiliary function. When 0 is set, the allowable number of digits is assumed to be 8. To enable a decimal point to be specified, bit 0 (AUP) of parameter No. 3450 must be set to 1. In this case, the a...

  • Page 1736

    10.AUXILIARY FUNCTION B-64483EN-1/03 - 1706 - Increment system Parameter AUX=0 Parameter AUX=1 IS-A for reference axis 100 times 100 timesIS-B for reference axis 1000 times 1000 timesIS-C for reference axis 10000 times 10000 timesIS-D for reference axis 100000 times 100000 timesMetric input syst...

  • Page 1737

    B-64483EN-1/03 10.AUXILIARY FUNCTION - 1707 - NOTE M00, M01, M02, and M30 are M codes that do not perform buffering, regardless of parameter setting. M98, M99, M codes for calling subprograms, and M codes for calling custom macros are M codes that performs buffering, regardless of parameter se...

  • Page 1738

    10.AUXILIARY FUNCTION B-64483EN-1/03 - 1708 - 3460 Second auxiliary function specification address [Input type] Parameter input [Data type] Byte path [Valid data range] 65to67, 85to87 Specify which of A, B, C, U, V, and W is to be used as the address for specifying the second auxiliary funct...

  • Page 1739

    B-64483EN-1/03 10.AUXILIARY FUNCTION - 1709 - NOTE 5 When the automatic operation is stopped by M02 or M30, it is necessary to send the external reset signal from the machine side to the CNC, instead of the FIN signal. When the external reset signal is returned against the M02 or M30, the contro...

  • Page 1740

    10.AUXILIARY FUNCTION B-64483EN-1/03 - 1710 - (4) Among the auxiliary functions, even when this signal is 1, those functions (M98 and M99) that are executed in the control unit without outputting their execution results are executed in the ordinary manner. CAUTION Even when this signal is 1,...

  • Page 1741

    B-64483EN-1/03 10.AUXILIARY FUNCTION - 1711 - (2) The 1st M command (Maa) sends the code signals M00 to M31 in a manner similar to the conventional one-block single command. The strobe signal MF is set to 1 after a time TMF set by parameter No. 3010 (Standard setting: 16 msec). The second M com...

  • Page 1742

    10.AUXILIARY FUNCTION B-64483EN-1/03 - 1712 - Parameter #7 #6 #5 #4 #3 #2 #1 #0 3404 M3B [Input type] Parameter input [Data type] Bit path #7 M3B The number of M codes that can be specified in one block 0: One 1: Up to three Caution CAUTION 1 M00, M01, M02, M30, M98, M99, or M...

  • Page 1743

    B-64483EN-1/03 10.AUXILIARY FUNCTION - 1713 - Explanation - Basic procedure (1) Assume that the following program is given: Mxx; Myy; (2) In response to an M command, the CNC system sends out the code signals M00 to M31. The CNC system inverts the logical level of the strobe signal MF, that is...

  • Page 1744

    10.AUXILIARY FUNCTION B-64483EN-1/03 - 1714 - The procedure for sending and receiving these signals is identical to that for sending and receiving the strobe and completion signals of the auxiliary function (machining center system). Signal Auxiliary function completion signal MFIN<Gn005.0&g...

  • Page 1745

    B-64483EN-1/03 10.AUXILIARY FUNCTION - 1715 - #7 MHI Exchange of strobe and completion signals for the M, S, T, and B 0: Normal 1: High-speed #7 #6 #5 #4 #3 #2 #1 #0 3002 CHM [Input type] Parameter input [Data type] Bit path #0 CHM For high-speed M/S/T/B, the distribution end ...

  • Page 1746

    10.AUXILIARY FUNCTION B-64483EN-1/03 - 1716 - An M code group can be set for the following M codes: M00 to M99, and any 400 M codes selected from M100 and subsequent M codes. For details of how to add the 100th and subsequent M codes, see the explanation of parameters Nos. 3441 to 3444. In the ...

  • Page 1747

    B-64483EN-1/03 10.AUXILIARY FUNCTION - 1717 - (2) When <1> = 200, <2> = 0, <3> = 550, and <4> = 800 are set M code groups can be set for M0000 to M0099,M0200 to M0299, M0550 to M0649, and M0800to M0899. (The setting of parameter <2> is invalid because it is 0.) In ...

  • Page 1748

    10.AUXILIARY FUNCTION B-64483EN-1/03 - 1718 - 3441 Start number of M codes for which an M code group can be set (1) 3442 Start number of M codes for which an M code group can be set (2) 3443 Start number of M codes for which an M code group can be set (3) 3444 Start number of M codes for ...

  • Page 1749

    B-64483EN-1/03 10.AUXILIARY FUNCTION - 1719 - (2) Setting a range Set a range of M codes to protect in parameters Nos. 11641 to 11646. Up to three ranges of M codes can be set. Example of setting) 1st set 2nd set 3rd set M code No.11641=50 No.11643=150 No.11645=900 Number of codes No.1...

  • Page 1750

    10.AUXILIARY FUNCTION B-64483EN-1/03 - 1720 - NOTE 5 This function is invalid to the following M codes: - M00, M01, M02, M30, M98, M99 Parameter 11631 M code 1 to protect 11632 M code 2 to protect 11633 M code 3 to protect 11634 M code 4 to protect 11635 M code 5 to protect 11636 M ...

  • Page 1751

    B-64483EN-1/03 10.AUXILIARY FUNCTION - 1721 - Any sets in which either the M code number or the number of M codes is out of range are invalid. Example of setting) 1st set 2nd set 3rd set M code No.11641=50 No.11643=150 No.11645=900 Number of codes No.11642=10 No.11644=5 No.11646=30...

  • Page 1752

    10.AUXILIARY FUNCTION B-64483EN-1/03 - 1722 - NOTE 5 M code commands in MDI mode are also checked in the same way. 6 This function is invalid to the following M codes: - M00, M01, M02, M30, M98, M99 Alarm and message No. Message Description PS0501 THE COMMANDED M-CODE CAN NOT BE EXECUTED The...

  • Page 1753

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1723 - 11 SPINDLE SPEED FUNCTION Chapter 11, "SPINDLE SPEED FUNCTION", consists of the following sections: 11.1 SPINDLE SPEED FUNCTION (S CODE OUTPUT)..................................................................1723 11.2 SPINDLE SERIAL O...

  • Page 1754

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1724 - Note NOTE 1 When a move command and a spindle-speed function command are specified within the same block, the commands are executed in either of the following two ways: (1) The move command and spindle-speed function are started at the same time....

  • Page 1755

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1725 - Serial spindle (*1) Spindle Function First spindle Second spindleThird spindle Fourth spindleSpindle positioning Available Available(*3) Available(*3) Available(*3) Cs contour control Available Available Available Available Multi-spindle Availabl...

  • Page 1756

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1726 - 2. Setting method First FSSB LineCOP10A-1COP10A-2Servo card CNC main board Spindle amplifier(Number 1) Spindle motor Spindle amplifier(Number 2) Spindle motor Spindle amplifier(Number 3) Spindle motor Spindle amplifier(Number 4) Spindle motor Sp...

  • Page 1757

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1727 - Spindle ready signals SRSP1R<Fn034.6> : 1st spindle SRSP2R<Fn034.5> : 2nd spindle SRSP3R<Fn034.4> : 3rd spindle SRSP4R<Fn034.3> : 4th spindle [Classification] Output signal [Function] These signals post that a corres...

  • Page 1758

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1728 - Warning No. Description of warning Spindle operation 58 Overload on converter main circuit 59 Converter internal cooling fan stopped 113 Converter radiator cooling fan stopped A warning number is output according to the signal received from the P...

  • Page 1759

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1729 - For second spindle #7 #6 #5 #4 #3 #2 #1 #0 Gn074 MRDYB ORCMB SFRB SRVB CTH1B CTH2B TLMHB TLMLB Gn075 RCHB RSLB INTGB SOCNB MCFNB SPSLB *ESPB ARSTB Gn076 RCHHGB MFNHGB INCMDBOVRIDBDEFMDBNRROB ROTAB INDXB Gn077...

  • Page 1760

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1730 - For fourth spindle #7 #6 #5 #4 #3 #2 #1 #0 Gn266 MRDYD ORCMD SFRD SRVD CTH1D CTH2D TLMHD TLMLD Gn267 RCHD RSLD INTGD SOCND MCFND SPSLD *ESPD ARSTD Gn268 RCHHGD MFNHGD INCMDDOVRIDDDEFMDDNRROD ROTAD INDXD Gn269...

  • Page 1761

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1731 - 3717 Motor number to each spindle NOTE When this parameter is set, the power must be turned off before operation is continued. [Input type] Parameter input [Data type] Byte spindle [Valid data range] 0 to Maximum number of controlled axes S...

  • Page 1762

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1732 - - Connection of serial spindle control unit #7 #6 #5 #4 #3 #2 #1 #0 4019 PLD 4195 PLD [Input type] Parameter input [Data type] Bit spindle #7 PLD When power is turned on, spindle amplifier parameters for the serial spind...

  • Page 1763

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1733 - Number Message Description SP1245 to SP1247 COMMUNICATION DATA ERROR A communication data error was detected on the CNC. Inquire of FANUC, please. SP1969 to SP1972 SPINDLE CONTROL ERROR An error occurred in the spindle control software. Inquire o...

  • Page 1764

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1734 - NOTE Parameters for (MAIN) and (SUB) must be set when the spindle switching function is used. When the spindle switching function is not used, set the parameters for (MAIN). 445 Position data of position coder (pulse) [Data type] Word spindl...

  • Page 1765

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1735 - • N-th spindle (in a path): The n-th spindle to be controlled as counted within a path The terms "first spindle", "second spindle", "third spindle", and "fourth spindle" used herein refer to relative sp...

  • Page 1766

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1736 - 2. Setting method CNC Main board Amplifier No.1 Spindle motor Fig. 11.3 (a) Connection of analog spindle 3. Setting For each spindle, the type of the motor used is set in bit 0 (A/S) of parameter No. 3716, and the amplifier number, in paramete...

  • Page 1767

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1737 - 3717 Motor number to each spindle NOTE When this parameter is set, the power must be turned off before operation is continued. [Input type] Parameter input [Data type] Byte spindle [Valid data range] 0 to Maximum number of controlled axes S...

  • Page 1768

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1738 - 11.4 SPINDLE SPEED CONTROL Explanation This section explains the following in relation to spindle speed control: • Command flow in spindle speed control • Processing for gear change (M and T type gear selection methods) • Position coder fee...

  • Page 1769

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1739 - - S command The S command specifies the spindle speed entered from machining programs, etc. for the CNC. For constant surface speed control (during G96 mode), the CNC converts the specified surface speed to the spindle speed. M When the M type g...

  • Page 1770

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1740 - When the spindle speed control is performed but the spindle speed override is not used, set the override value to 100%. - Processing for gear changing Although the S command contains the spindle speed, the object that is actually controlled is ...

  • Page 1771

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1741 - • For the analog spindle, the speed commands are output to the analog voltage signal SVC as analog voltages 0 to 10 V. The following descriptions exemplify the analog spindle. However, they can be applied to the serial spindle on the assumption...

  • Page 1772

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1742 - (ii) Gear change point during tapping cycle mode (G84, G74) In case of G84 (tapping cycle) or G74 (counter tapping cycle) the gear shift speed is changed by bit 3 (SGT) of parameter No. 3705. In this case, gear shift is performed at the speed se...

  • Page 1773

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1743 - When using this function, set the following parameters: • Constant Vmax (Parameter No. 3736) related to the upper limit of spindle motor speed (min-1) Upper limit of spindle motor speed Vmax = 4095 × Spindle motor speed when the co...

  • Page 1774

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1744 - S1 S1 Maximum spindle speed Maximum speed of thespindle motor No.3736 Gear switching point Spindle speed clamp point of each gear Spindle motor speed when switching from gear 2 to gear 3 No.3752 Spindle motor speed when switching from gear 1 to...

  • Page 1775

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1745 - - Time chart When S code is commanded, the I/O signal time chart is : (i) When Gear select signal does not change To next block S code read VLSpindle speed command output0VVH In this case, the SF signal is not output and the CNC advances to th...

  • Page 1776

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1746 - The following descriptions apply to the analog spindle. Like the descriptions of the M type, they also apply to the serial spindle on the assumption that spindle motor speed with analog voltage 10 V corresponds to the maximum spindle motor speed....

  • Page 1777

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1747 - Table 11.4 (c) Bit 7 (TCW) of parameter No. 3706 Bit 6 (CWM) of parameter No. 3706Output polarity 0 0 +(M03/M04 command) 0 1 -(M03/M04 command) 1 0 +(M03 command), -(M04 command)1 1 -(M03 command), +(M04 command) Then, according to the selection ...

  • Page 1778

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1748 - Item No. 0000 (SPEED ARRIVAL ON) on the diagnosis screen is kept at 1 while this function is keeping the cutting feed block at a halt. - Analog spindle Gain and offset The analog spindle may require gain and offset voltage adjustment dependi...

  • Page 1779

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1749 - Spindle orientation signal SOR<Gn029.5> [Classification] Input signal [Function] The spindle or the spindle motor is rotated at a constant [Operation] When the spindle orientation signal turns to 1 and the spindle stop signal *SSTP turns...

  • Page 1780

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1750 - - Thread cutting (M series : G33 T series : G32, G92, G76) → When this function is not in use, specify an override of 100%; otherwise, an override of 0% becomes effective, thus disabling the spindle from rotating. Spindle speed arrival signal ...

  • Page 1781

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1751 - For details of this signal, see descriptions on the M type gear selection method in "Overview." Gear selection signals GR1,GR2<Gn028.1, .2> [Classification] Input signal [Function] This signal informs the CNC of the gear sta...

  • Page 1782

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1752 - Fn025 S31 S30 S29 S28 S27 S26 S25 S24 Fn034 GR30 GR20 GR10 Fn036 R08O R07O R06O R05O R04O R03O R02O R01O Fn037 R12O R11O R10O R09O Parameter #7 #6 #5 #4 #3 #2 #1 #0 EVS ESF 3705 SFA NSF SGT SGB GST ESF [Input type] ...

  • Page 1783

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1753 - #4 EVS When the spindle control function (Spindle analog output or Spindle serial output) is used, S codes and SF are: 0: Not output for an S command. 1: Output for an S command. The output of S codes and SF for an S command in constant surfa...

  • Page 1784

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1754 - #5 ORM Voltage polarity during spindle orientation 0: Positive 1: Negative #6 CWM #7 TCW Voltage polarity when the spindle speed voltage is output TCW CWM Voltage polarity 0 0 Both M03 and M04 positive 0 1 Both M03 and M04 negative 1 0 ...

  • Page 1785

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1755 - #7 #6 #5 #4 #3 #2 #1 #0 3712 GMB [Input type] Parameter input [Data type] Bit #6 GMB With type-M gear switching method B, the speed of each gear is clamped to: 0 : The maximum rotation speed (No. 3741 to No. 3743) of each gear or...

  • Page 1786

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1756 - 3717 Motor number to each spindle NOTE When this parameter is set, the power must be turned off before operation is continued. [Input type] Parameter input [Data type] Byte spindle [Valid data range] 0 to Maximum number of controlled axes S...

  • Page 1787

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1757 - 3730 Data used for adjusting the gain of the analog output of spindle speed [Input type] Parameter input [Data type] Word spindle [Unit of data] 0.1% [Valid data range] 700 to 1250 Set data used for adjusting the gain of the analog output o...

  • Page 1788

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1758 - For a serial spindle Spindle motor speed during spindle gear shiftSetting value = Maximum spindle motor speed × 16383 For an analog spindle Spindle motor speed during spindle gear shiftSetting value = Maximum spindle motor speed × 4095 3735 ...

  • Page 1789

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1759 - 3741 Maximum spindle speed for gear 1 3742 Maximum spindle speed for gear 2 3743 Maximum spindle speed for gear 3 3744 Maximum spindle speed for gear 4 [Input type] Parameter input [Data type] 2-word spindle [Unit of data] min-1 [Valid...

  • Page 1790

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1760 - 3751 Spindle motor speed when switching from gear 1 to gear 2 3752 Spindle motor speed when switching from gear 2 to gear 3 [Input type] Parameter input [Data type] Word path [Valid data range] 0 to 4095 For gear switching method B, set...

  • Page 1791

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1761 - 3761 Spindle speed when switching from gear 1 to gear 2 during tapping 3762 Spindle speed when switching from gear 2 to gear 3 during tapping [Input type] Parameter input [Data type] 2-word path [Unit of data] min-1 [Valid data range] ...

  • Page 1792

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1762 - CAUTION 2 When spindle speed command control is applied using the PMC, this parameter has no effect, and the spindle speed is not clamped. NOTE 1 For M series, this parameter is valid if the function of constant surface speed control is provide...

  • Page 1793

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1763 - 11.5 SPINDLE OUTPUT CONTROL BY THE PMC Overview The PMC can control the speed and polarity of each spindle motor, connected. The first to fourth spindles each have their own individual interfaces. By using a PMC ladder program, the user can contr...

  • Page 1794

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1764 - Specify the related bits of parameter No. 3705 according to the desired application, then use the S-code and SF signals. - Twelve code signals corresponding to the S value (output) Twelve code signals corresponding to S value R01O to R12O <F...

  • Page 1795

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1765 - [Function] The above signals enable the control of a spindle motor by issuing commands from the PMC. Both the speed and polarity of the spindle motor (direction of rotation) can be controlled. The speed command and polarity are usually specified...

  • Page 1796

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1766 - Twelve code signals corresponding to the S value R01O to R12O<Fn036.0 to Fn037.3> [Classification] Output signal [Function] The S value, specified in the CNC part program, is converted to the speed output of the spindle motor that is req...

  • Page 1797

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1767 - #0 ESF When the spindle control function (Spindle analog output or Spindle serial output) is used, and the constant surface speed control function is used or bit 4 (GTT) of parameter No. 3706 is set to 1: 0: S codes and SF are output for all ...

  • Page 1798

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1768 - #2 MSI In multi-spindle control, the SIND signal is valid 0: Only when the first spindle is valid (SIND signal for the 2nd, 3rd spindle becomes ineffective) (TYPE-A) 1: For each spindle irrespective of whether the spindle is selected (Each spi...

  • Page 1799

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1769 - 11.7 CONSTANT SURFACE SPEED CONTROL Overview When a surface speed (in m/min or feet/min) is specified with an S code (a numeric value following S), the spindle speed is controlled so that the surface speed is kept constant with respect to the cha...

  • Page 1800

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1770 - Here, S = 60 m/min is given as the surface speed; if the position of the present X-axis cutter is 16 mm from the center, the spindle speed N becomes 600 min-1 (S = 2πr⋅N). Therefore, V1 (for G1) or V1 (for G2) is calculated inside the CNC and ...

  • Page 1801

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1771 - ZXN3N4 Fig. 11.7 (c) Feed per revolution without position coder In this program, block N2 issues a constant surface speed control command (G96), a surface speed command (S12 m/min), and a feed-per-revolution command (G95). Block N3 causes the C...

  • Page 1802

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1772 - [Data type] Bit path #2 PCL The function for constant surface speed control without the position coder is: 0: Not used. 1: Used. NOTE The option for constant surface speed control is required. 3741 Maximum spindle speed for gear 1 3742 ...

  • Page 1803

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1773 - #0 ESF When the spindle control function (Spindle analog output or Spindle serial output) is used, and the constant surface speed control function is used or bit 4 (GTT) of parameter No. 3706 is set to 1: 0: S codes and SF are output for all ...

  • Page 1804

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1774 - NOTE 1 M type The gear selection signal is not input. The CNC selects a gear based on the speed range of each gear set by a parameter beforehand according to S codes, and the selected gear is posted by outputting the gear selection signal. Moreo...

  • Page 1805

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1775 - #4 CSA When the constant surface speed control command (G96S_) is issued, if no command for maximum spindle speed clamping (G92S_; in system M or G50S_; in system T) has been executed since power turn-on: 0 : No alarm is issued (conventional s...

  • Page 1806

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1776 - When a command specifying a speed exceeding the maximum speed of the spindle is specified , or the speed of the spindle exceeds the maximum speed because of the spindle speed override function, the spindle speed is clamped at the maximum speed se...

  • Page 1807

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1777 - 11.8 ACTUAL SPINDLE SPEED OUTPUT Overview The PMC can read actual spindle speed. Signal Actual spindle speed signals AR00 to AR15<Fn040,Fn041> : First spindle AR002 to AR152<Fn202,Fn203> : Second spindle AR003 to AR153<Fn206,Fn...

  • Page 1808

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1778 - 11.9 SPINDLE POSITIONING Overview This function positions the spindle using the spindle motor and position coder. The function has a coarser least command increment compared with the Cs contour control function and has no interpolation capability...

  • Page 1809

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1779 - The least command increment (detection unit) for each gear ratio is as follows (Table 11.9 (a)): Table 11.9 (a) Gear ratio of spindle to position coder Least command increment (detection unit) deg 1 : 1 0.088 (1×360/4096) 1 : 2 0.176 (2×360/40...

  • Page 1810

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1780 - Orientation speed When an analog spindle is used, a movement is made at the rapid traverse rate used for reference position return, which is set in parameter No. 1428, until the orientation enable speed is attained, and after the one-rotation ...

  • Page 1811

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1781 - M code (Example) β=α+5 Indexing angle (Example) β=30° Mα β 30° M (α+1) 2β 60° M (α+2) 3β 90° M (α+3) 4β 120° M (α+4) 5β 150° M (α+5) 6β 180° When the number (γ) of M codes used is specified in parameter No. 4964, M codes...

  • Page 1812

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1782 - 180°90°BAProgram origin G code system A for T seriesG code system B, C for T series M series Command method Address used Command of A-B on the above FigureAddress used and G-code Command of A-B on the above FigureAbsolute command Direct the...

  • Page 1813

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1783 - 00010008 Wait for completion of orientation operation 00010009 Wait for completion of preset processing after orientation 0001000A Wait until *SCLPFs is turned on (1->0) 2) Spindle positioning sequence Indication Description 00020004 Wait unt...

  • Page 1814

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1784 - 3) Spindle positioning mode cancellation sequence Indication Description 000B0001 Wait until SPSTPs is turned on (0->1) 000B0002 Wait until *SUCPFs is turned on (1->0) 000B0004 Wait for completion of spindle positioning mode cancellation F...

  • Page 1815

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1785 - [Function] These signals indicate that clamping the spindle is complete in response to the spindle clamp signal SCLPs. Spindle positioning mode signals MSPOSA<Fn039.0> : First spindle MSPOSB<Fn402.1> : Second spindle MSPOSC<Fn...

  • Page 1816

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1786 - NOTE 1 With a machining system, GR1 and GR2 need not be input if the constant surface speed control option is not provided, and bit 4 (GTT) of parameter No. 3706 is 0. When the CNC outputs gear selection signals GR3O, GR2O, and GR1O to make a ge...

  • Page 1817

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1787 - - For third serial spindle #7 #6 #5 #4 #3 #2 #1 #0 Gn204 CTH1C CTH2C - For fourth serial spindle #7 #6 #5 #4 #3 #2 #1 #0 Gn266 CTH1D CTH2D - Sequence (Time chart) Switching to the spindle positioning mode The operation of c...

  • Page 1818

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1788 - Timing chart for switching to spindle positioning mode M code command Strobe signal MF Spindle stop complete signals SPSTPs Spindle position control Spindle positioning mode signals MSPOS Spindle enabled Spindle unclamp signals ...

  • Page 1819

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1789 - CAUTION 2 When the spindle is clamped on the machine side (by using a device such as a clutch or shot pin), the spindle must be disabled. Enabling or disabling the spindle means to separately instruct the spindle control unit to enable or disabl...

  • Page 1820

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1790 - <10>When spindle clamp completion signal*SCLPs is set to 0, the CNC sets spindle clamp signal SCLPs to 0 to post that the CNC has received *SCLPFs <11>When spindle clamp signal SCLPs is set to 0, the PMC sets spindle clamp completion ...

  • Page 1821

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1791 - <3> When strobe signal MF is set to 1, the PMC must read the code signal and perform corresponding processing. After completing the corresponding processing, the PMC sets spindle stop complete signal SPSTPs to 1 when the spindle is stopped...

  • Page 1822

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1792 - Timing chart for spindle positioning (specification B) M code command Strobe signal MF Spindle stop complete signals SPSTPs Spindle position control Spindle positioning mode signals MSPOS Spindle enabled Spindle unclamp signals S...

  • Page 1823

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1793 - <4> As soon as setting strobe signal MF to 1, the CNC checks whether spindle stop complete signal SPSTPs is set to 1. When the SPSTPs signal is set to 1, the CNC sets spindle unclamp signal SUCLPs to 1. <5> When spindle unclamp signal...

  • Page 1824

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1794 - [Data type] Bit axis #0 ZRNx If a move command other than G28 is specified by automatic operation when no reference position return is performed yet after the power is turned on: 0: The alarm PS0224, "PERFORM REFERENCE POSITION RETURN.&...

  • Page 1825

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1795 - ROSx ROTx Meaning Except for the above. Setting is invalid (unused) #3 DIAx The move command for each axis is based on: 0: Radius specification 1: Diameter specification #5 ZMIx The direction of manual reference position return is: 0: + dir...

  • Page 1826

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1796 - Setting Meaning 7 Axis parallel to the Z axis In general, the increment system and diameter/radius specification of an axis set as a parallel axis are to be set in the same way as for the basic three axes. 1023 Number of the servo axis for eac...

  • Page 1827

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1797 - [Valid data range] Refer to the standard parameter setting table (C) (When the increment system is IS-B, 0.0 to +999000.0) Set the rapid traverse rate when the rapid traverse override is 100% for each axis. 1620 Time constant T or T1 used for l...

  • Page 1828

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1798 - Set 2 for spindle positioning. 1821 Reference counter size for each axis NOTE When this parameter is set, the power must be turned off before operation is continued. [Input type] Parameter input [Data type] 2-word axis [Unit of data] Dete...

  • Page 1829

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1799 - [Unit of data] Detection unit [Valid data range] 0 to 99999999 Set the positioning deviation limit in the stopped state for each axis. If, in the stopped state, the positioning deviation exceeds the positioning deviation limit set for stopped st...

  • Page 1830

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1800 - [Data type] Word spindle [Valid data range] 0 to 9999 Set the number of gear teeth on the position coder side in speed control (such as feed per revolution). 3722 Number of gear teeth on the spindle side [Input type] Parameter input [Data t...

  • Page 1831

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1801 - 4067 Position gain in servo mode (MEDIUM LOW) 4068 Position gain in servo mode (LOW) [Data type] Word spindle [Unit of data] 0.01 sec-1 [Valid data range] 0 to 32767 These parameters set a servo loop gain on servo mode. (spindle positioning...

  • Page 1832

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1802 - #1 IDMs The direction of spindle positioning (half-fixed angle positioning based on M codes) is: 0: Plus direction. 1: Minus direction. #2 ISZs When an M code for switching to the spindle positioning mode is specified for spindle positionin...

  • Page 1833

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1803 - Set an M code for switching to the spindle positioning mode. NOTE 1 Do not set an M code that duplicates other M codes used for spindle positioning. 2 Do not set an M code used with other functions (such as M00-05, 30, 98, and 99, and M codes fo...

  • Page 1834

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1804 - NOTE 1 Do not set an M code that duplicates other M codes used for spindle positioning. 2 Do not set an M code used with other functions (such as M00-05, 30, 98, and 99, and M codes for calling subprograms). 4963 Basic angle for half-fixed angl...

  • Page 1835

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1805 - Set a position gain multiplier for an analog spindle in spindle positioning. Position gain multiplier GC is obtained from the following equation: LSPPLSEPCGC×××××=3602048000 PLS Number of pulses output from the position coder (pulses/rev) ...

  • Page 1836

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1806 - Number Message Description SP1234 GRID SHIFT OVERFLOW Grid shift overflowed. SP1240 DISCONNECT POSITION CODER The analog spindle position coder is broken. SP1243 ILLEGAL SPINDLE PARAMETER SETTING(GAIN) The setting for the spindle position gain is...

  • Page 1837

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1807 - Note NOTE 1 M code commands related to spindle positioning must each be specified in an independent block. A block for specifying such an M code must not contain any other command. (An M command related to spindle positioning for another spindle ...

  • Page 1838

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1808 - 11.10 Cs CONTOUR CONTROL 11.10.1 Cs Contour Control Overview The Cs contour control function positions the serial spindle using the spindle motor in conjunction with a dedicated detector mounted on the spindle. This function can perform more accu...

  • Page 1839

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1809 - The axis used as the Cs contour control axis must be set as a rotation axis (bit 0 (ROTx) of parameter No. 1006 and parameter No. 1022) - Command Address The address for the move command in Cs contour control is the axis name specified in para...

  • Page 1840

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1810 - When bit 7 (ALG) of parameter No. 1814 is set to 1, the loop gain can be set automatically at the time of switching between spindle speed control and Cs contour control. • Automatic setting of the loop gain at the time of switching between spin...

  • Page 1841

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1811 - (ii) G28 command After the serial spindle is put in the Cs contour control mode, issuing the G28 command stops the spindle motor, then moves the spindle to the midpoint. The spindle then returns to the reference position. At this point, the refe...

  • Page 1842

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1812 - Cs contour control change completion signal FSCSL<Fn044.1> [Classification] Output signal [Function] This signal posts that the first spindle has switched to the Cs contour control mode. This signal is set to 1 when: The spindle switch...

  • Page 1843

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1813 - - Other signals Gear select signals GR1O,GR2O,GR3O<Fn034.0 to 2> [Classification] Output signal [Function] This signal is output to the PMC to specify the gear stage. For information about this signal, see "SPINDLE SPEED CONTROL&...

  • Page 1844

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1814 - ZPx x : 1 ..... Reference position return completion signal of 1st spindle 2 ..... Reference position return completion signal of 2nd spindle 3 ..... Reference position return completion signal of 3rd spindle : : : : If a manual refere...

  • Page 1845

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1815 - - For fourth serial spindle #7 #6 #5 #4 #3 #2 #1 #0 Gn266 MRDYD SFRD SRVD CTH1D CTH2D TLMHD TLMLD Fn266 LDT2D LDT1D Parameter Major related parameters are described below. In addition to the parameters described below, axis...

  • Page 1846

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1816 - NOTE 1 Inch/metric conversion is not performed on rotation axes. 2 For rotation axes, the machine coordinate system is normalized to the range from 0 to 360 degrees. Automatic reference position return (G28, G30) is done in the direction of manu...

  • Page 1847

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1817 - Setting Meaning 7 Axis parallel to the Z axis In general, the increment system and diameter/radius specification of an axis set as a parallel axis are to be set in the same way as for the basic three axes. For a Cs contouring control, set 0. 1...

  • Page 1848

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1818 - Set the rapid traverse rate when the rapid traverse override is 100% for each axis. 1620 Time constant T or T1 used for linear acceleration/deceleration or bell-shaped acceleration/deceleration in rapid traverse for each axis [Input type] Par...

  • Page 1849

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1819 - #7 #6 #5 #4 #3 #2 #1 #0 1814 ALGx [Input type] Parameter input [Data type] Bit axis #7 ALGx The servo axis loop gain in the Cs contour control mode is: 0: Not matched with the Cs contour control loop gain. 1: Matched with the Cs c...

  • Page 1850

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1820 - [Data type] 2-word axis [Unit of data] Detection unit [Valid data range] 0 to 99999999 The in-position width is set for each axis. When the deviation of the machine position from the specified position (the absolute value of the positioning dev...

  • Page 1851

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1821 - #7 #6 #5 #4 #3 #2 #1 #0 3700 NRF [Input type] Parameter input [Data type] Bit path #1 NRF With the first move command (G00) after switching the series spindle to Cs contour control mode: 0: A reference position return operation is...

  • Page 1852

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1822 - 3717 Motor number to each spindle NOTE When this parameter is set, the power must be turned off before operation is continued. [Input type] Parameter input [Data type] Byte spindle [Valid data range] 0 to Maximum number of controlled axes S...

  • Page 1853

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1823 - 3901 Loop gain for servo axis for interpolation with Cs contour control axis (HIGH gear) 3902 Loop gain for servo axis for interpolation with Cs contour control axis (MEDIUM HIGH gear) 3903 Loop gain for servo axis for interpolation with Cs ...

  • Page 1854

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1824 - 3921 Loop gain for servo axis for interpolation with Cs contour control axis (HIGH gear) 3922 Loop gain for servo axis for interpolation with Cs contour control axis (MEDIUM HIGH gear) 3923 Loop gain for servo axis for interpolation with Cs ...

  • Page 1855

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1825 - 3941 Loop gain for servo axis for interpolation with Cs contour control axis (HIGH gear) 3942 Loop gain for servo axis for interpolation with Cs contour control axis (MEDIUM HIGH gear) 3943 Loop gain for servo axis for interpolation with Cs ...

  • Page 1856

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1826 - 4069 Position gain in Cs contour control (HIGH gear) 4070 Position gain in Cs contour control (MEDIUM HIGH gear) 4071 Position gain in Cs contour control (MEDIUM LOW gear) 4072 Position gain in Cs contour control (LOW gear) [Input type] ...

  • Page 1857

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1827 - Caution CAUTION 1 The M codes to specify Cs contour control mode switching must be assigned to M codes not buffered. (Parameters Nos. 3411 to 3420 and 11290 to 11299) 2 Avoid changing spindle gears in Cs contour control mode. When a gear change ...

  • Page 1858

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1828 - With this function, if load detection signal LDT1 of a serial spindle operated under Cs contour control is set to 1 when a torque limit skip is specified (G31 P98/P99), skip processing is performed. To use this function, make the following setti...

  • Page 1859

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1829 - Load detection signal (serial spindle) LDT1A <Fn045.4> : First spindle LDT1B <Fn049.4> : Second spindle LDT1C <Fn168.4> : Third spindle LDT1D <Fn266.4> : Fourth spindle [Classification] Output signal [Function] These...

  • Page 1860

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1830 - #0 CSTx On a Cs contour control axis, torque limit skip operation is: 0: Not performed. 1: Performed. Torque limit skip operation is performed using the torque limit command signal TLMH and the load detection signal LDT1 of the serial spindle. ...

  • Page 1861

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1831 - 11.10.3 Arbitrary Reference Position Setting Function Overview When bit 0 (CRF) of parameter No. 3700 is set to 1, any position can be set as the reference position by the first reference position return command (G28 or a manual reference positio...

  • Page 1862

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1832 - Alarm and message Number Message Description PS0303 REFERENCE POSITION RETURN IS NOT PERFORMED When the setting of a reference position at any position was possible in Cs contour control (bit 0 (CRF) of parameter No. 3700 = 1), a G00 command was...

  • Page 1863

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1833 - NOTE 2 In an emergency stop or servo alarm condition, no Cs axis coordinate system can be established. 3 Do not shift the Cs contour axis when Cs axis coordinate establishment is under way. - Case in which no Cs axis coordinate establishment ca...

  • Page 1864

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1834 - - Sequence (timing chart) Case in which Cs axis coordinate establishment has been completed normally CSFOx<F274.4 to 7>Coordinate establishedM code for turning the Cs contour mode ON <F010 to 013> FIN<G004.3> MF<F007.0> ...

  • Page 1865

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1835 - Case in which Cs axis coordinate establishment cannot be achieved FSCSL<F044.1> or FCSSx<F274.0 to 3>CSFOx<F274.4 to 7>Coordinate establishedM code for turning the Cs contour mode ON <F010 to 013> FIN<G004.3> MF<...

  • Page 1866

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1836 - Example sequence in which the Cs axis is under composite control in a 2-path system CSFOx<F1274.4 to 7> Coordinate establishedM code for turning the Cs contour mode ON <F010 to 013> FIN<G0004.3> MF<F0007.0> M code CSFIx&l...

  • Page 1867

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1837 - After disabling synchronization control, perform Cs coordinate establishment, and then start synchronization control again. - Composite control Disabling or enabling composite control during Cs axis coordinate establishment results in alarm PS5...

  • Page 1868

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1838 - Signal address #7 #6 #5 #4 #3 #2 #1 #0 Gn274 CSFI4 CSFI3 CSFI2 CSFI1 #7 #6 #5 #4 #3 #2 #1 #0 Fn048 CSPENA Fn052 CSPENB Fn171 CSPENC Fn269 CSPEND Fn274 CSFO4 CSFO3 CSFO...

  • Page 1869

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1839 - #5 CSPTRE Specifies whether to enable Cs axis positional data transfer, as follows: 0: Disable. 1: Enable. To use this function, reset bit 7 (RFCHK3) of parameter No. 4016 to 0. Alarm and message Number Message Description PS5346 REFERENCE P...

  • Page 1870

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1840 - Parameter #7 #6 #5 #4 #3 #2 #1 #0 3729 CHMs [Input type] Parameter input [Data type] Bit spindle #6 CHMs Manual reference position return after the reference position for the Cs contour control axis is established is performed as:...

  • Page 1871

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1841 - 11.11 MULTI-SPINDLE CONTROL Overview In addition to the first spindle, the second to fourth spindles can be controlled using an S command from the CNC. Spindle commands are specified using a single S command as conventionally done. A spindle is s...

  • Page 1872

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1842 - S commandSpindle 1Spindle 2Spindle 3Spindle 4 Multi-spindle control (TYPE-A) When bit 2 (MSI) of parameter No. 3709=0, TYPE-A is used. When the first spindle is selected with the SWS1 signal, the SIND signal <Gn033.7> is used to determi...

  • Page 1873

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1843 - Multi spindle control: when a spindle is selected by address P If bit 3 (MPP) of parameter No. 3703 is set to 1, a spindle is selected by address P. This control method is basically the same as TYPE-B. The first, second, third, and fourth spi...

  • Page 1874

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1844 - Spindle name 1st character (fixed) Spindle name 2nd character (No.3738) Spindle name 3rd character (No.3739) ‘0’ to ‘9’ ‘0’ to ‘9’ Setting value ‘S’ ‘A’ to ‘Z’ ‘0’ to ‘9’ ‘A’ to ‘Z’ Correct example <...

  • Page 1875

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1845 - NOTE Address S indicates a command for all spindles. When multiple spindles are used, and bit 3 (MPP) of parameter No. 3703 is 1, a particular spindle must be specified by using address P and so on. If spindle name S is set when extended spindle...

  • Page 1876

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1846 - NOTE 2. When the first spindle is SA, the second spindle is S, and 1 is set for the first spindle and 2 is set for the second spindle in parameter No. 3781 If bit 2 (MPA) of parameter No. 3706 is 0 N10 M03; N20 SA100; → 100 is specified ...

  • Page 1877

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1847 - SOV30 to 37: Override signal for the third spindle SOV40 to 47: Override signal for the fourth spindle • Because override is applied to individual axes separately, it is possible to use different values for each axis simultaneously. S command ...

  • Page 1878

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1848 - - When constant surface speed control is used, override is applied after the spindle rotation speed is clamped to the clamp speed specified by the spindle rotation speed clamp command (for the T series, G50S_, or for the M series, G92S_). Note, t...

  • Page 1879

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1849 - Path 1 S1000 P21; G99G01Z100 F1.; Path 2 CNC P commandP value First spindleSecond spindleSecond spindleFirst spindleS commandPosition coder feedback 11 22 21 12 - Relationship with other optional functions Constant surface speed control...

  • Page 1880

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1850 - Signal Spindle selection signals SWS1,SWS2,SWS3,SWS4<Gn027.0,1,2>,<Gn026.3> [Classification] Input signal [Function] Controls whether S command specified to the NC is output to the spindle or not in multi-spindle. SWS1 1 : Outputs...

  • Page 1881

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1851 - When the second, third, or fourth position coder is not installed, do not switch this signal. Always set 0 for first position coder. Spindle enable signals ENB<Fn001.4>,ENB2<Fn038.2>,ENB3<Fn038.3>,ENB4<Fn039.1> [Classifi...

  • Page 1882

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1852 - [Output cond.] The relationship between the spindle speed command output value (the value calculated by the CNC) and the value output to these signals is plotted in the graph shown below. Note that for either a serial or analog spindle, the outp...

  • Page 1883

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1853 - [Operation] If a command based on address P (bit 3 (MPP) of parameter No. 3703 = 1 and bit 1 (ESN) of parameter No. 3798 = 0) or a command based on an extended spindle name (bit 3 (MPP) of parameter No. 3703 = 1, bit 0 (EEA) of parameter No. 100...

  • Page 1884

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1854 - Fn161 MSP15 MSP14 MSP13 MSP12 MSP11 MSP10 MSP09 MSP08 Fn200 R08O2 R07O2 R06O2 R05O2 R04O2 R03O2 R02O2 R01O2 Fn201 R12O2 R11O2 R10O2 R09O2 Fn204 R08O3 R07O3 R06O3 R05O3 R04O3 R03O3 R02O3 R01O3 Fn205 R12O3 R11O3 R10O3 R09O3 Fn270 ...

  • Page 1885

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1855 - #7 #6 #5 #4 #3 #2 #1 #0 MPA 3706 GTT MPA [Input type] Parameter input [Data type] Bit path #2 MPA If a spindle is to be selected using a P command (with bit 3 (MPP) of parameter No. 3703 set to 1) in multi-spindle control,...

  • Page 1886

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1856 - NOTE During rigid tapping, the override is tied to 100%, irrespective of the setting of this parameter. #7 #6 #5 #4 #3 #2 #1 #0 3709 MRS MSI [Input type] Parameter input [Data type] Bit path #2 MSI In multi-spindle control, the ...

  • Page 1887

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1857 - #6 MPC When a spindle is selected with address P in a program during multi-spindle control (bit 3 (MPP) of parameter No. 3703 is set to 1), position coder feedback used for thread cutting, feed per revolution, and so forth is: 0: Not changed au...

  • Page 1888

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1858 - • The serial (analog) spindle function is enabled. • The multi-spindle function is enabled. • Bit 0 (EEA) of parameter No. 1000 is set to 1. • Bit 3 (MPP) of parameter No. 3703 is set to 1. • Bit 1 (ESN) of parameter No. 3798 is set to ...

  • Page 1889

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1859 - 3772 Maximum spindle speed [Input type] Parameter input [Data type] 2-word spindle [Unit of data] min-1 [Valid data range] 0 to 99999999 This parameter sets the maximum spindle speed. When a command specifying a speed exceeding the maximum...

  • Page 1890

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1860 - NOTE 1 This parameter is valid if bit 3 (MPP) of parameter No. 3703 is set to 1. 2 If this parameter is set to 0, the corresponding spindle cannot be selected by a P code. 3 Under multi-path control, the P code specified here is valid for each pa...

  • Page 1891

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1861 - NOTE 1 This parameter is valid when SPSP<Gn536.7> is set to 1. 2 If the setting is illegal, an alarm PS5305, “ILLEGAL SPINDLE NUMBER” is issued when a spindle command is issued from any one of the paths. 3 This setting does not apply to...

  • Page 1892

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1862 - Number Message Description PS5305 ILLEGAL SPINDLE NUMBER In a spindle select function by address P for a multiple spindle control, 1) Address P is not specified. 2) Parameter No. 3781 is not specified to the spindle to be selected. 3) An illegal ...

  • Page 1893

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1863 - 11.12 RIGID TAPPING Overview In a tapping cycle (Machining center system: G84/G74, Lathe system: G84/G88), synchronous control is applied to the tapping operation of a tapping axis and the operation of the spindle. This capability eliminates the ...

  • Page 1894

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1864 - M Rigid tapping of machining center system The tapping cycle G84 and the reverse tapping cycle G74 can be used to specify machining center system rigid tapping. A drilling axis can be arbitrarily selected from the basic axes X, Y, Z, as well ...

  • Page 1895

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1865 - Spindle control Spindle amplifier Spindle motor SpindlePosition coder Error counter Gear ratio n : m N : MThe number of pulses per positioncoderrevolution is set in parameter No. 3720. Fig. 11.12.1 (b) When a position coder is built into a spin...

  • Page 1896

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1866 - Parameter No. Set value Meaning 5232 50 Number of teeth of the 2nd gear for the position coder side 5233 70 Number of teeth of the 3rd gear for the position coder side For the lathe system, up to four gear stages can be set. (3) Rigid tapping ...

  • Page 1897

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1867 - NOTE Table 11.12.1 (a) shows an example of three gears. L% indicates a spindle motor protection constant (up to 100). L can be specified for each gear using method B for changing in M type gear selection method (bit 2 (SGB) of parameter No. 370...

  • Page 1898

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1868 - 11.12.2 Rigid Tapping Specification - Feed rate In rigid tapping mode, the drilling axis is fed at a rate specified by F. The spindle speed is specified by S 360 [deg/min]. A detailed description of commands for feed per minute and feed per revo...

  • Page 1899

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1869 - - C-axis clamp/unclamp T An M code can be specified to clamp/unclamp the C-axis mechanically in rigid tapping. By adding an M code for clamping to a block specifying G84/G88 (lathe system), both M codes are output. A description of timing is pr...

  • Page 1900

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1870 - 11.12.4 Acceleration/Deceleration after Interpolation Linear acceleration/deceleration or bell-shaped acceleration/ deceleration can be applied. When bit 2 (TDR) of parameter No. 5201 is set to 1, time constants for cutting and extraction can be ...

  • Page 1901

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1871 - min-1msecBell-shaped acceleration/deceleration (constant acceleration type) T2 T2T1Set time constants T1 and T2 in parameters. (Acceleration rate of linear portion <1> is constant fromsettings of maximum spindle speed and T1.) <1> N...

  • Page 1902

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1872 - : The following calculation is made for conversion to an actual override value: 100SJ×=command) ( speed Spindlecommand) ( extraction for speed Spindle(%) value Override So, the spindle speed at extraction time may not match the speed specifie...

  • Page 1903

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1873 - When the override cancel signal = 1 100% • At the time of extraction When the override cancel signal = 0 Value specified by the override signal When the override cancel signal = 1 When extraction override is disabled 100% When extr...

  • Page 1904

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1874 - G84.2 : Rigid tapping cycle G84.3 : Rigid reverse tapping cycle X,Y : Tapping position Z : Position of the bottom face of a tapped hole R : Position of a R point P : Dwell time at the bottom of a tapped hole and at R point return time ...

  • Page 1905

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1875 - - The M code for C-axis clamping cannot be specified. - The specification of a R point depends on the G code system and parameter setting as described below. 1. When the bit 3 (F16) of parameter No. 5102 is set 0. Bit 6 (RAB) of parameter No. 510...

  • Page 1906

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1876 - 11.12.10 Rigid Tapping with Spindle of Another Path Overview In multi-path system, rigid tapping with spindle of other path different from specified path can be executed by path spindle control function. The spindle which executes rigid tapping i...

  • Page 1907

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1877 - Path 1 Path 2 Rigid tapping command M29 S_ ; G84 Z_ F_; SP1 #1 SLSPA=1 SLSPB=1X #1 Z #1 X #2Z #2CNCSP1 #2 Parameter setting (common to the paths) Bit 4 (SPR) of parameter No. 3703 = "1"Bit 0 (2P2) of parameter No. 3703 = "1"...

  • Page 1908

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1878 - Path 1 Path 2 Rigid tapping command M29 S_ ; G84 Z_ F_; SP2 #1 SP1 #1 SP1 #2 SP2 #2 SLSPA=1 SLSPB=1X #1 Z #1 X #2Z #2SWS1#2=0 SWS2#2=1 CNCParameter setting (common to the paths) Bit 4 (SPR) of parameter No. 3703 = "1"Bit 0 (2P2) of ...

  • Page 1909

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1879 - SP1 #2 SP2 #2 SP2 #1 SP1 #1 Path 1 Path 2 Rigid tapping command M29 S_ P22; G84 Z_ F_; X #1 Z #1 X #2Z #2CNCPRM No.3781(S3) =21PRM No.3781(S4) =22PRM No.3781 (S1)=11 PRM No.3781(S2) =12 Parameter setting (common to the paths) Bit 4 (S...

  • Page 1910

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1880 - [Example] 2-path system with each path having 2 spindles (Rigid tapping is carried out on a spindle pointed to by an arrowhead) Path issuing commands Spindle on which rigid tapping is carried out MPP = 0 MPP = 1 First spindle Path 1 Second s...

  • Page 1911

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1881 - Example: The Cs contour control function (option) is executed on the first spindle in path 1. After that, a rigid tapping command is issued from path 2 to that spindle. Commands in path 1 Commands in path 2 : : M20 ; (Enter Cs contour control m...

  • Page 1912

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1882 - 11.12.11 Diagnosis Display For rigid tapping adjustment, the diagnosis screen displays information related to rigid tapping. - Display of command pulses and position deviation amounts • Spindle position deviation → Diagnosis display No. 045...

  • Page 1913

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1883 - The following figure shows the tapping axis as the Z axis. Z-axis error ZZc Zc = Speed 60 ×1Gain ×1Detection unit× 102 (Theoretical value) Ze = Z-axis error counts (measured value) Spindle error Se Sc Sc = Speed × 360 60 ×1Gain ×1Detection ...

  • Page 1914

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1884 - Diagnosis display - Spindle position data 0445 SPINDLE POSITION DATA Position coder signal pulse data from the spindle one-rotation signal of each spindle (serial spindle only) [Unit] Pulse - Spindle position deviation 0450 SPINDLE MOTION E...

  • Page 1915

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1885 - - Spindle-converted move command difference during rigid tapping (maximum value) 0460 SYNC. PULSE (MAX) Maximum spindle-converted move during command difference between the spindle and the drilling axis during rigid tapping [Unit] Pulse - S...

  • Page 1916

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1886 - Z : Position of the bottom face of a tapped hole R : Position of an R point (incremental command at all times) P : Dwell time at the bottom of a tapped hole F : Cutting feedrate K : Number of repeats M : M code for C-axis clamping 2. When the bi...

  • Page 1917

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1887 - - Method of specification The rigid tapping mode can be specified using one of three methods: • Specification of M29S_ before specifying a tapping cycle • Specification of M29S_ in the same block • Enabling rigid tapping to be performed wi...

  • Page 1918

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1888 - G84, G88 (Tapping cycle) Spindle stop Spindle stop, Mβ, Spindle stop Spindle CW P2Initial point R point P1 Z(X) point Motion 1Motion 2Motion 3Motion 4 Motion 5 Motion 6 Mα G84 (G88) (G98 mode) Spindle stop Spindle CWSpindle CCW Initial point R ...

  • Page 1919

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1889 - While a position control loop gain for rigid tapping is selected, the parameters dedicated to rigid tapping are used for the following parameters for the drilling axis: (1) In-position width (Parameters Nos.5300, 5302, 5304, and 5306) (2) Positio...

  • Page 1920

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1890 - This signal posts whether the PMC has entered rigid tapping mode. If this signal is not set to 1, even when M29 is specified, a P/S alarm is issued in a G84/G74(machining center system) or G84/G88(lathe system) block. Spindle rotation direction ...

  • Page 1921

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1891 - [2] T-type gear selection method SF output depends on the setting of bit 5 (NSF) of parameter No. 3705. Lathe system : The following parameter needs to be set to output S codes and SF: Bit 4 (EVS) of parameter No. 3705 is set to 1 In rigid ...

  • Page 1922

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1892 - GR1 GR2 1st (low) speed gear 0 0 2nd (medium) speed gear 1 0 3rd (high) speed gear 0 1 4th (high) speed gear 1 1 The serial spindle clutch/gear selection signals <G070.3,2> must be set in addition to the setting of the gear selection ...

  • Page 1923

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1893 - Spindle selection signals SWS1<Gn027.0>,SWS2<Gn027.1>,SWS3<Gn027.2>,SWS4<Gn026.3> Rigid tapping spindle selection signals RGTSP1<Gn061.4>,RGTSP2<Gn061.5>RGTSP3<Gn061.6>,RGTSP4<Gn061.7> T [Classifi...

  • Page 1924

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1894 - Spindle-by-spindle stop signals*SSTP1<Gn027.3>,*SSTP2<Gn027.4>,*SSTP3<Gn027.5>, *SSTP4<Gn026.6> [Classification] Input signal [Operation] These signals are used to stop each spindle when the multi-spindle control option...

  • Page 1925

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1895 - Fn023 S15 S14 S13 S12 S11 S10 S09 S08 Fn024 S23 S22 S21 S20 S19 S18 S17 S16 Fn025 S31 S30 S29 S28 S27 S26 S25 S24 Fn038 ENB3 ENB2 Fn039 ENB4 Fn065 RGSPM RGSPP Fn076 RTAP 11.12.14.5 Notes on interface with t...

  • Page 1926

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1896 - - When rigid tapping mode is specified M29 (miscellaneous function for preparation for rigid tapping) and S_ specify rigid tapping mode. When M29 is accepted by the PMC, the following processing must be performed: • Stop the spindle when it i...

  • Page 1927

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1897 - - C-axis clamp/unclamp T When an M code for C-axis clamping is specified in a block specifying G84/G88, the M codes for C-axis clamping/unclamping are output at the following timings: • The M code for clamping is output at the time of rapid tr...

  • Page 1928

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1898 - 11.12.15 Timing Charts for Rigid Tapping Specification The timing chart for rigid tapping specification depends on the method used to specify rigid tapping mode, the gear selection method (M-type or T-type), and whether to perform gear switching....

  • Page 1929

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1899 - 11.12.15.1 When M29 is specified before G84/G74 - M type gear selection method M29 RTAP Motion 1 Motion 2 G84/G74 ENB To be masked to the motion 2 Spindle output SF GR1O GR2O GR3O *SSTP SOR 250msor moreRGTAP FIN R...

  • Page 1930

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1900 - M29 RTAP Motion 1 Motion 2 G84/G74 ENB Spindle output SF GR1O GR2O GR3O *SSTP SOR 250msor moreRGTAP FIN Rotation Gear changeExcitation SFRPosition loop To be masked to the motion 2 *Gear change motion Fig. 11.12.15 (b)...

  • Page 1931

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1901 - - T type gear selection method M29 RTAP Motion 1 Motion 2 G84/G74 ENB Spindle output SF S code output GR1 GR2 SFRPosition loop To be masked to the motion 2 *SSTP SOR RGTAP FIN Rotation 250msor moreExcitation Fig....

  • Page 1932

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1902 - M29 RTAP Motion 1 Motion 2 G84/G74 ENB Spindle output SF S code output GR1 GR2 *SSTP SOR 250msor moreRGTAP FIN Rotation Gear changeExcitation SFRPosition loop To be masked to the motion 2 *Gear change motion Fig. 1...

  • Page 1933

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1903 - 11.12.15.2 M29 and G84/G74 are specified in the same block - M type gear selection M29 RTAP Motion 1 Motion 2 G84/G74 ENB To be masked to the motion 2 Spindle output SF GR1O GR2O GR3O *SST...

  • Page 1934

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1904 - M29 RTAP Motion 1 Motion 2 G84/G74 ENB Spindle output SF GR1O GR2O GR3O *SSTP SOR 250msor moreRGTAP FIN Rotation Gear change Excitation SFRPosition loop To be masked to the motion 2 Fig...

  • Page 1935

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1905 - - T type gear selection method M29 RTAP Motion 1 Motion 2 G84/G74 ENB Spindle output SF S code output GR1 GR2 *SSTP SOR 250msor moreRGTAP FIN Rotation Excitation SFRPosition loop To be ma...

  • Page 1936

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1906 - M29 RTAP Motion 1 Motion 2 G84/G74 ENB Spindle output SF S code output GR1 GR2 *SSTP SOR 250msor moreRGTAP FIN Rotation Gear change Excitation SFRPosition loop To be masked to the motion...

  • Page 1937

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1907 - 11.12.15.3 Specifying G84/G74 for rigid tapping by parameters - M type gear selection M29 RTAP Motion 1 Motion 2 G84/G74 M29 is commandedinternally. ENB To be masked to the motion 2 Spi...

  • Page 1938

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1908 - M29 RTAP G84/G74 ENB Spindle output SF GR1O GR2O 250msor moreRGTAP FIN Rotation Gear changeExcitation To be masked to motion 2 Position loop Motion 1 Motion 2 GR3O *SSTP SOR Fig. 11.12....

  • Page 1939

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1909 - - T type gear selection method M29 RTAP Motiion 1 Motion 2 G84/G74 M29 is commanded internally. ENB Spindle output SF S code output GR1 GR2 *SSTP SOR 250msor moreRGTAP FIN Rotation Exc...

  • Page 1940

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1910 - Position loop M29 RTAP Motion 1 Motion 2 G84/G74 M29 is commandedinternally. ENB Spindle output SF S code output GR1 GR2 *SSTP SOR 250msor moreRGTAP FIN Rotation Gear change Excitation S...

  • Page 1941

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1911 - 11.12.15.4 When M29 is specified before G84/G88 NC command Motion of servo axis RTAP S code output SF M code output MF FIN *SSTP SOR GR1/GR2 SFR/SRV RGTAP ENB Spindle output Spindle rotation Position loop M29G84/G88 Motion 1Mot...

  • Page 1942

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1912 - NC command Motion of servo axis RTAP S code output SF M code output MF FIN *SSTP SOR GR1/GR2 SFR/SRV RGTAP ENB Spindle output Spindle rotation Position loop M29 Motion Motion 2G84/G88 M29 C axis clampGear selectSFR=1 SRV=0 SFR=0...

  • Page 1943

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1913 - 11.12.15.5 M29 and G84/G88 are specified in the same block NC command Motion of servo axis RTAP S code output SF M code output MF FIN *SSTP SOR GR1/GR2 SFR/SRV RGTAP ENB Spindle output Spindle rotation Position loop G84/G88 M29 ...

  • Page 1944

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1914 - NC command Motion of servo axis RTAP S code output SF M code output MF FIN *SSTP SOR GR1/GR2 SFR/SRV RGTAP ENB Spindle output Spindle rotation Position loop G84/G88 M29 Motion 1Motion 2M29Gear selectSFR=1SRV=0SFR=0 SRV=0 Spindle...

  • Page 1945

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1915 - 11.12.15.6 Specifying G84/G88 for rigid tapping by parameters NC command Motion of servo axis RTAP S code output SF M code output MF FIN *SSTP SOR GR1/GR2 SFR/SRV RGTAP ENB Spindle output Spindle rotation Position loop G84/G88Mo...

  • Page 1946

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1916 - NC command Motion of servo axis RTAP S code output SF M code output MF FIN *SSTP SOR GR1/GR2 SFR/SRV RGTAP ENB Spindle output Spindle rotation Position loop Motion 1Motion 2G84/G88M29 is commanded internally. C axis clampGear s...

  • Page 1947

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1917 - 11.12.15.7 Timing of the M code for unclamping T After extraction from the hole bottom to the R point level (operation 5), the M code for unclamping is output. When FIN is returned, dwell or rapid traverse to the initial level (operation 6) start...

  • Page 1948

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1918 - CAUTION 1 If rigid tapping mode is canceled by a Group 01 G code, such as G00 or G01, the block containing the G code is executed at the same time the ENB signal is turned to 0. Therefore, if the block contains an M code for controlling the spin...

  • Page 1949

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1919 - 11.12.16 FSSB High-speed Rigid Tapping Outline By the FSSB communication between a CNC and a spindle amplifier, rotational position information of a spindle can be transmitted from a spindle amplifier to a servo control on CNC. The FSSB high-spee...

  • Page 1950

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1920 - In addition, set 1 to the parameters FHRSV (bit 1 of No.2429) and FEED (bit1 of No.2005) of Z axis and the parameter FHRSP (bit1 of No.4549) of S1 spindle axis. Ex.2) Two groups of FSSB high-speed rigid tapping with Z1 - S1 and Z2 - S2 in two p...

  • Page 1951

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1921 - NOTE 1 Adjust precision and machining time by setting of the time constant for acceleration/deceleration in rigid tapping. In the ordinal rigid tapping, if the time constant for acceleration/deceleration is extremely short, the spindle motor cann...

  • Page 1952

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1922 - NOTE 12 All of CNC, servo, and spindle software need to support this function. If even one of the software doesn't support it, the ordinal rigid tapping is executed or the excess error alarm is issued. Limitation Parallel axis control An axis o...

  • Page 1953

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1923 - NOTE Set 1 to the synchronizing servo axis of a spindle axis on FSSB high-speed rigid tapping. 2610 Position control loop gain for the tapping axis in FSSB high-speed rigid tapping [Input type] Parameter input [Data type] Word axis [Valid d...

  • Page 1954

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1924 - NOTE When this parameter is set to 1, set parameter No. 3781 at the same time. #4 SPR Rigid tapping with spindle of another path function is: 0: Not available. 1: Available. The "rigid tapping with spindle of another path" function ...

  • Page 1955

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1925 - The output of S codes and SF for an S command in constant surface speed control mode (G96), or for an S command used to specify maximum spindle speed clamping (G92 S_; (G50 for G code system A)) depends on the setting of bit 0 (ESF) of parameter ...

  • Page 1956

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1926 - 3720 Number of position coder pulses NOTE When this parameter is set, the power must be turned off before operation is continued. [Input type] Parameter input [Data type] 2-word spindle [Unit of data] Detection unit [Valid data range] 1 to...

  • Page 1957

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1927 - #7 #6 #5 #4 #3 #2 #1 #0 4000 RETSV [Input type] Parameter input [Data type] Bit spindle #4 RETSV Reference position return direction in the servo mode (rigid tapping, etc.) 0: The spindle returns to the reference position counterc...

  • Page 1958

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1928 - NOTE In the case of the lathe system, this parameter is valid only for the drilling canned cycle in the Series 15 format. #7 #6 #5 #4 #3 #2 #1 #0 SRS FHD PCP DOV SIG CRG G84 5200 FHD PCP DOV SIG CRG G84 [Input type] Parameter input [D...

  • Page 1959

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1929 - #2 TDR Cutting time constant in rigid tapping: 0: Uses a same parameter during cutting and extraction (Parameters Nos. 5261 to 5264) 1: Not use a same parameter during cutting and extraction Parameters Nos. 5261 to 5264: Time constant during cu...

  • Page 1960

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1930 - #4 OVS In rigid tapping, override by the feedrate override select signal and cancellation of override by the override cancel signal is: 0: Disabled. 1: Enabled. When feedrate override is enabled, extraction override is disabled. The spindle ove...

  • Page 1961

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1931 - The M code is judged to be 29 (M29) when 0 is set. 5211 Override value during rigid tapping extraction [Input type] Parameter input [Data type] Word path [Unit of data] 1% or 10% [Valid data range] 0 to 200 The parameter sets the override v...

  • Page 1962

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1932 - 5221 Number of gear teeth on the spindle side in rigid tapping (first gear) 5222 Number of gear teeth on the spindle side in rigid tapping (second gear) 5223 Number of gear teeth on the spindle side in rigid tapping (third gear) Number of...

  • Page 1963

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1933 - Each of these parameters is used to set a maximum spindle speed for each gear in rigid tapping. Set the same value for both parameters Nos. 5241 and 5243 for a one-stage gear system. For a two-stage gear system, set the same value as set in param...

  • Page 1964

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1934 - 5282 Position control loop gain for the spindle and tapping axis in rigid tapping (second gear) 5283 Position control loop gain for the spindle and tapping axis in rigid tapping (third gear) Position control loop gain for the spindle and tap...

  • Page 1965

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1935 - L = 360 deg (Note) On the assumption that the spindle motor used turns at 4500 min-1 at 10 V, 2.2 V is required to turn the spindle motor at 1000 min-1. NOTE These parameters are used for analog spindles. 5300 Tapping axis in-position width i...

  • Page 1966

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1936 - [Valid data range] 0 to 99999999 This parameter sets the limit value of a spindle positioning deviation during movement in rigid tapping. Find a value to be set from the following expression: CGPCSPPLSSvalueSetting××××××=60100 S Maximum sp...

  • Page 1967

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1937 - This parameter is used to set a positional deviation limit imposed while the spindle is stopped in rigid tapping. 5321 Spindle backlash in rigid tapping (first-stage gear) 5322 Spindle backlash in rigid tapping (second-stage gear) 5323 Spin...

  • Page 1968

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1938 - NOTE In addition, it is necessary to set parameter No.24204. 24204 The index number of the spindle axis that synchronizes to each servo axis NOTE When the parameter is set, the power must be turned off before operation is continued. [Input...

  • Page 1969

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1939 - Number Message Description PS0205 RIGID MODE DI SIGNAL OFF (1) Although a rigid M code (M29) is specified in rigid tapping, the rigid mode DI signal (G061.0) is not ON during execution of the G84 (or G74) block. Check the PMC ladder diagram to fi...

  • Page 1970

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1940 - Note NOTE 1 A spindle pitch error is not compensated for in rigid tapping mode. 2 The limits to the number of pulses assigned to each spindle are as follows (displayed with diagnosis display No. 0451): • Serial spindle: 32767 pulses every 8 ms...

  • Page 1971

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1941 - CAUTION 3 When the spindle positioning function is to be used at the same time When the Cs contouring control function for the serial spindle is used together with the rigid tapping function, the same motor is used for spindle rotation control, ...

  • Page 1972

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1942 - So, in order to perform rigid tapping with a serial spindle, the position control loop gain of the spindle must be set in the parameters for the serial spindle used for rigid tapping. When multi spindle control is used, a spindle other than the f...

  • Page 1973

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1943 - CTH1 CTH2 Gear selected Parameter No. to be used 0 0 HIGH 4065 0 1 MIDEUM HIGH 4066 4044 4052 1 0 MIDEUM LOW 4067 1 1 LOW 4068 4045 4053 Reference item Manual name Item name OPERATOR’S MANUAL (B-64484EN) Rigid tapping Spindle speed control CON...

  • Page 1974

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1944 - 11.13 INTERPOLATION TYPE RIGID TAPPING Overview In tapping, the feed amount along the Z-axis per spindle revolution must be equal to the thread pitch of a tapper. This means that the most desirable tapping satisfies the following condition at all...

  • Page 1975

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1945 - CAUTION 2 When M-type gear selection is used for the M series, the maximum spindle speed for rigid tapping (specified with parameters Nos. 5241 to 5244) must also be set for parameter No. 5243 regardless of the number of gear steps. (For a syste...

  • Page 1976

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1946 - Without multi spindle control Interpolation type rigid tapping can be performed with the first spindle only. With multi spindle control Interpolation type rigid tapping can be performed by selecting the second through fourth spindles in ad...

  • Page 1977

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1947 - Enter the clutch/gear selection signals CTH2 and CTH1 (G070.3 and 2 for the first spindle, G074.3 and 2 for the second spindle, G204.3 and 2 for the third spindle, G266.3 and 2 for the fourth spindle) from the PMC. Notify the serial spindle contr...

  • Page 1978

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1948 - NOTE This table show an example of three gears. For the basic spindle motor speed, refer to the spindle motor description manual. "+α" means that the spindle motor speed may slightly exceed the basic spindle motor speed. If the M typ...

  • Page 1979

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1949 - - Coordinate system The coordinates of the spindle used for interpolation type rigid tapping are displayed, and the coordinates (machine coordinates, relative coordinates, and absolute coordinates) are preset before drilling. - Machine lock Ma...

  • Page 1980

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1950 - - Dry run Dry run is valid. When the dry run is applied to the drilling axis speed, tapping is performed. The spindle speed will match the dry run speed. - Reset A reset performed in the interpolation type rigid tapping mode cancels the inter...

  • Page 1981

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1951 - - Linear acceleration/deceleration When bit 0 (CTLx) of parameter No. 1610 is set to 1 and bit 1 (CTBx) of parameter No. 1610 is set to 0, linear acceleration/deceleration of constant acceleration/deceleration type can be applied. Set a time con...

  • Page 1982

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1952 - 11.13.6 Reference Position Return When bit 0 (ORI) of parameter No. 5202 is set to 1, a spindle reference position return operation can be performed at the start of rigid tapping. When a movement is made to a R point in the rigid tapping mode, th...

  • Page 1983

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1953 - 11.13.12.2 Signals related to gear change Clutch/gear signals (series spindle) CTH1A,CTH2A<Gn070.3,Gn070.2> : First spindle CTH1B,CTH2B<Gn074.3,Gn074.2> : Second spindle CTH1C,CTH2C<Gn204.3,Gn204.2> : Third spindle CTH1D,CT...

  • Page 1984

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1954 - [Unit of data] Degree [Min. unit of data] Depend on the increment system of the applied axis [Valid data range] 0 or positive 9 digit of minimum unit of data (refer to the standard parameter setting table (B)) (When the increment system is IS-B,...

  • Page 1985

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1955 - Relationship between the increment system and the least command increment (1) T series Least input increment Least command increment0.001 mm (diameter specification) 0.0005 mm Millimeter input 0.001 mm (radius specification) 0.001 mm 0.0001 inch...

  • Page 1986

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1956 - Setting command multiply (CMR), detection multiply (DMR), and the capacity of the reference counter least command increment ×CMR Error counter DA Converter ×DMRPosition detectorReference counter Command pulse Feedback pulse Detection unit To ve...

  • Page 1987

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1957 - Generally, set the positioning deviation for rapid traverse plus some margin in this parameter. 1829 Positioning deviation limit for each axis in the stopped state [Input type] Parameter input [Data type] 2-word axis [Unit of data] Detectio...

  • Page 1988

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1958 - 4056 Gear ratio (HIGH) 4057 Gear ration (MEDIUM HIGH) 4058 Gear ratio (MEDIUM LOW) 4059 Gear ratio (LOW) [Data type] Word spindle [Unit of data] Motor speed per spindle revolution × 100 [Valid data range] 0 to 32767 These parameters se...

  • Page 1989

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1959 - #3 CHR Rigid tapping is: 0: Normal rigid tapping. 1: Interpolation type rigid tapping. NOTE 1 The rigid tapping function and interpolation type rigid tapping function cannot be used together within a path. 2 Before the interpolation type rigid...

  • Page 1990

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1960 - - Cautions when a function such as the spindle positioning function is used together CAUTION 1 When the spindle orientation function is to be used at the same time The spindle orientation function positions the spindle by using sensors and the ...

  • Page 1991

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1961 - CAUTION (6)When the Cs contouring control function based on a serial spindle is used together with rigid tapping, the rigid tapping mode must not be specified in the Cs contouring control mode, and the Cs contouring control mode must not be spec...

  • Page 1992

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1962 - 11.14 SPINDLE SYNCHRONOUS CONTROL Overview This function can exercise synchronous control on spindles. This function can also control the rotation phase of spindles, so that not only a round rod but also a non-standard workpiece can be grasped by...

  • Page 1993

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1963 - SpindleS1CNCSpindleS2SpindleS3SpindleS4Master spindle with which slave spindle is synchronized - Multiple slave spindles can be synchronized with one master spindle. Example) A combination of first spindle (master spindle)/second, third, and fo...

  • Page 1994

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1964 - Path 1Path 2Spindle S1(S11)Spindle S2(S12)Spindle S3(S13)Spindle S4(S14)Spindle S5(S21)Spindle S6(S22)Master spindle with which slave spindle is synchronized • When the bit 4 (SSS) of parameter No. 3704 is se to 1 Spindle synchronization can ...

  • Page 1995

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1965 - Example 1: Combining spindles of the same path for spindle synchronization Parameter setting Bit 4 (SSS) of parameter No. 3704 (PATH1)=1, (PATH2)=1 Parameter No. 4831(S1) =0, (S2) =0,(S3) =1,(S4) =2,(S5) =0,(S6) =1 Parameter No. 4832(ALL) =...

  • Page 1996

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1966 - • When the bit 5 (SCB) of parameter No. 4800 is set to 1 The configuration of synchronized spindles is as follows (regardless of the setting of bit 4 (SSS) of parameter No. 3704): Master spindle Slave spindle. First spindle of path 1 First s...

  • Page 1997

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1967 - • An S command specified for a master spindle and a speed specified for PMC-based spindle output control before the spindle synchronous control mode is set are valid even in the spindle synchronous control mode. A speed command for a master sp...

  • Page 1998

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1968 - Limitation • When spindles are placed in a mode other than a spindle rotation mode such as the Cs contouring control mode, rigid tapping, and simple synchronous control, the spindle synchronous control mode cannot be used. In the spindle rotat...

  • Page 1999

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1969 - When this signal is set to 0, the spindle synchronous control mode for the first/second spindles is canceled. This signal is valid only when bit 4 (SSS) of parameter No. 3704 is set to 0. When bit 5 (SCB) of parameter No. 4800 is set to 1, an ad...

  • Page 2000

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1970 - Spindle phase synchronization control signal of each spindle SPPHS1 to SPPHS4<Gn289.0-Gn289.3> [Classification] Input signal [Function] These signals specify the spindle phase synchronization control mode (phase matching) for each spindl...

  • Page 2001

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1971 - When bit 5 (SCB) of parameter No. 4800 is set to 1, an address of n = 0 is valid. NOTE Even if this signal is once set to 1, this signal is set to 0 when the speed difference exceeds the value set in parameter No. 4033 for a cause such as cutti...

  • Page 2002

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1972 - NOTE Even if this signal is once set to 1, this signal is set to 0 when the speed difference exceeds the value set in parameter No. 4810 for a cause such as cutting load variation. Spindle phase synchronization control completion signal of eac...

  • Page 2003

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1973 - Spindle phase error monitor signal for each spindle SYCAL1 to SYCAL4<Fn043.0 to Fn043.3> [Classification] Output signal [Function] These signals post that in the spindle synchronous control mode with each spindle set as a slave spindle, ...

  • Page 2004

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1974 - Signal address #7 #6 #5 #4 #3 #2 #1 #0 Gn038 SPPHS SPSYC SBRT Gn288 SPSYC4SPSYC3 SPSYC2 SPSYC1 Gn289 SPPHS4SPPHS3 SPPHS2 SPPHS1 Fn044 SYCAL FSPPH FSPSY Fn065 RSMAX Fn...

  • Page 2005

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1975 - Spindle synchronization errors are displayed on the side of the spindle that functions as a slave axis in spindle synchronization control. #7 #6 #5 #4 #3 #2 #1 #0 3704 SSS [Input type] Parameter input [Data type] Bit path NOTE Whe...

  • Page 2006

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1976 - [Data type] Byte spindle [Valid data range] 0 to Maximum number of controlled axes Set a spindle amplifier number to be assigned to each spindle. 0: No spindle amplifier is connected. 1: Spindle motor connected to amplifier number 1 is used. 2: ...

  • Page 2007

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1977 - #0 SNDs During spindle synchronization control, the rotation direction of each spindle motor is: 0: Same as the specified sign. 1: Opposite to the specified sign. #7 #6 #5 #4 #3 #2 #1 #0 4809 NSY [Input type] Parameter input [Data...

  • Page 2008

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1978 - This parameter is used to check a spindle synchronization error phase difference. When a spindle synchronization error equal to or greater than the value set in this parameter is detected, the phase error monitor signals SYCAL<F044.4> and S...

  • Page 2009

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1979 - 4832 Master spindle of each slave spindle under spindle synchronization control (spindle number common to the system) NOTE When this parameter is set, the power must be turned off before operation is continued. [Input type] Parameter input ...

  • Page 2010

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1980 - [Valid data range] 0 to 19999 The speed of the slave spindle under speed ratio control in spindle synchronization control is clamped so that the speed does not exceed the value set in this parameter. NOTE 1 This parameter is valid only when bit ...

  • Page 2011

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1981 - - Serial spindle orientation by a position coder Two methods of serial interface spindle orientation are available: • Spindle orientation by a magnetic sensor • Spindle orientation by a position coder Spindle orientation by a position coder...

  • Page 2012

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1982 - Signal address #7 #6 #5 #4 #3 #2 #1 #0 Gn070 ORCMA Gn078 SH07A SH06A SH05A SH04A SH03A SH02A SH01A SH00A Gn079 SH11A SH10A SH09A SH08A Gn074 ORCMB Gn080 SH07B SH06B SH05B SH04B SH03B SH02B SH01B SH00B Gn081 SH11...

  • Page 2013

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1983 - Each of these parameters specifies a stop position shift amount in orientation by a position coder. This parameter is valid no matter what the setting of bit 0 (ORT) of parameter No. 3729 is. Caution CAUTION 1 To perform spindle orientation by ...

  • Page 2014

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1984 - <3> Controlling the position loop including the spindle motor during rigid tapping, spindle positioning, Cs contour control, etc. For applications such as those in (1), we recommend switching the output characteristics for low speed and hi...

  • Page 2015

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1985 - 11.17 SPINDLE COMMAND SYNCHRONOUS CONTROL Overview Spindles can be synchronized with each other for control. Two spindles can be combined, one as a master spindle and the other as a slave spindle, so that Cs contouring control, rigid tapping, spi...

  • Page 2016

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1986 - Master spindle Slave spindle Second, third, or fourth spindle First spindle First, third, or fourth spindle Second spindle First, second, or fourth spindle Third spindle Spindle number First, second, or third spindle Fourth spindle • When four...

  • Page 2017

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1987 - - Parking function The parking function stops the rotation and movement of each of master and slave spindles placed in the spindle command synchronous control mode, regardless of the spindle control mode (spindle rotation control, Cs contouring ...

  • Page 2018

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1988 - NOTE 5 When using parking signal PK7 or PK8 for spindle synchronous control while both spindle command synchronous control and spindle synchronous control are being used, set the SPK bit (bit 7 of parameter No. 4800) to 1. This sets parking signa...

  • Page 2019

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1989 - Spindle control mode switching Switching when the spindle command synchronous control signal makes a transition from 0 to 1 in each spindle control mode selection state Master spindle SP → SP(ESY)CT → CT(ESY)SV → SV(ESY) Note 3 SY → SY No...

  • Page 2020

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1990 - - Spindle rotation direction In the spindle command synchronous control mode, the same speed command and move command are issued to the master spindle and slave spindle. The specified rotation direction of a spindle can be changed using a PMC s...

  • Page 2021

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1991 - When this signal is set to 0, the spindle command synchronous control mode for the first/second spindles is canceled. This signal is valid only when bit 5 (SSY) of parameter No. 3704 is set to 0. Spindle command synchronous control signal for ea...

  • Page 2022

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1992 - [Operation] When each of these signals is set to 1, the corresponding spindle is placed in the parking state. When each of these signals is set to 0, the parking state of the corresponding spindle is canceled. When PKESE1 is set to 1: The first ...

  • Page 2023

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1993 - When using the spindle command synchronous control function, exercise control on the spindle command synchronous control signals and also manipulate the signals for each spindle as required. (Such a signal state that the master spindle and slave ...

  • Page 2024

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1994 - #7 #6 #5 #4 #3 #2 #1 #0 4800 SPK EPZ [Input type] Parameter input [Data type] Bit NOTE When at least one of these parameters is set, the power must be turned off before operation is continued. #6 EPZ When the parking signal is sw...

  • Page 2025

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1995 - NOTE 1 When an analog spindle is used, the option for spindle analog output is required. 2 When a serial spindle is used, the option for spindle serial output is required. 3 The option for the number of controlled spindles needs to be specified. ...

  • Page 2026

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1996 - NOTE 1 This parameter is valid if bit 5 (SSY) of parameter No. 3704 is set to 1. 2 The setting of a slave spindle as a master spindle is invalid. Be sure to set 0 for a spindle that is to function as a master spindle. 3 In this parameter, set a s...

  • Page 2027

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1997 - 11.18 SPINDLE COMMAND SYNCHRONOUS CONTROL INDEPENDENT PITCH ERROR COMPENSATION FUNCTION Overview When Cs contouring control axes are placed under spindle command synchronous control, pitch error compensation can be exercised on the master spindle...

  • Page 2028

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 1998 - • Pitch error compensation data (master spindle side) Compensation number 60 61 62 63 64 65 66 67 68 Setting value +1 -2 +1 +3 -1 -1 -3 +2 +1 Compensation value +2 -4 +2 +6 -2 -2 -6 +4 +2 • Pitch error compensation data (slave spindle side) ...

  • Page 2029

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 1999 - 3666 Number of the pitch error compensation position at extremely negative position for each slave axis when independent pitch error compensation is performed under spindle command synchronous control NOTE When this parameter is set, the power...

  • Page 2030

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2000 - 3676 Number of the pitch error compensation position at extremely negative position for each slave axis when independent both-direction pitch error compensation is performed under spindle command synchronous control NOTE When this parameter is...

  • Page 2031

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2001 - Option configuration Number of pitch error compensation points Pitch error compensation rangeStored type pitch error compensation + bi-directional pitch error compensation 3072 0 to 1535 3000 to 4535 (Note) Stored type pitch error compensati...

  • Page 2032

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2002 - Sq : Tolerance within which the spindle is assumed to attain the programmed speed (parameter No. 4911) Parameter FLR= 0 Parameter FLR= 1 100qScSq×= 1000qScSq×= <2> When time p specified in parameter No. 4914 elapses after the specified s...

  • Page 2033

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2003 - Parameter FLR = 0 Parameter FLR = 1 100q 1000q Sr : (Specified spindle speed) × (Allowable variation (r)) Parameter No. 4912, address R Parameter FLR = 0 Parameter FLR = 1 100r 1000r Si : Allowable variation width Parameter No. 4913, address I I...

  • Page 2034

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2004 - NOTE 2 Under multi-path control, if the feedback pulse of a position coder mounted on a spindle belonging to a path is used, the selected path feedback must be considered in addition to the selection of the position coder. Great attention should ...

  • Page 2035

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2005 - Spindle specified Spindle FB 1st spindle command Spindle PC1 *SSTP1#1 0 1 *SSTP2#1 0 1 *SSTP3#1 0 1 *SSTP4#1 0 1 2nd spindle command Spindle PC23rd spindle commandSpindle PC34th spindle commandSpindle PC4PC2SLC#1 0 ...

  • Page 2036

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2006 - Spindle specified Spindle FB *SSTP#2 0 1 ×SOV#2 0% <>0%G26 This feedback is subjected to spindle speed fluctuation detection. Spindle specified Spindle FB 1st spindle command Spindle PC1 *SSTP#1 0 1 ×SOV#1 0% <>0% G26 ...

  • Page 2037

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2007 - Sharing a spindle between different paths Spindle specified Spindle FB *SSTP#1 0 1 ×SOV#1 0% <>0%G26 Path 1 SLSPA~D#1 1 2 ~ n 1st spindle command Spindle PC1 *SSTP1#1 0 1 *SSTP2#1 0 1 2nd spindle command Spindle P...

  • Page 2038

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2008 - Signal address #7 #6 #5 #4 #3 #2 #1 #0 Fn035 SPAL Parameter #7 #6 #5 #4 #3 #2 #1 #0 4900 FDTs FDEs FLRs [Input type] Parameter input [Data type] Bit spindle #0 FLRs When the spindle speed fluctuation detection function i...

  • Page 2039

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2009 - NOTE 2 When the parameter FDE is 0 for all spindles, setting the parameter FDE for the spindle selected with the position coder selection signal to 1 does not cause an immediate change to the target spindle, which stays as the target until the ne...

  • Page 2040

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2010 - 4914 Time (p) from the change of a specified speed until spindle speed fluctuation detection is started [Input type] Parameter input [Data type] 2-word spindle [Unit of data] msec [Valid data range] 0 to 999999 When the spindle speed fluctua...

  • Page 2041

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2011 - NOTE 5 If alarm OH0704 is raised, a single-block stop occurs in automatic operation. The spindle overheat alarm is displayed on the screen. In addition, the spindle speed fluctuation detection alarm signal SPAL is output (the signal is set to 1 i...

  • Page 2042

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2012 - 11.20 SPINDLE CONTROL WITH SERVO MOTOR Overview Servo motors can be controlled by spindle functions like spindle rotation commands or rigid tapping. (1) Spindle control with servo motor Rotation commands (S command) can be used to control the spe...

  • Page 2043

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2013 - Spindle motors and supported functions SpindleFunction Conventional spindle control Spindle control with servo motor Threading/feed per revolution ○ ○ Polygon machining ○ ×(*1) Spindle speed fluctuation detection ○ × Spindle synchronous...

  • Page 2044

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2014 - Format G96.4 P_ ; SV speed control mode ON M03 (M04) S_ P_ ; Rotation command S: Spindle speed [min-1] (numeric value of up to five digits) P: Spindle selection with multi-spindle control Using G96.4 and a spindle selection command P can turn th...

  • Page 2045

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2015 - Program command SV speed control mode ON/OFF Operation M03 S100 P1 ; ON The servo motor rotation axis C rotates in the normal direction at 100 [min-1]. : : : G96.1 P1 R0 ; OFF (SV speed control mode in-progress signal (C) = 0) The servo motor rot...

  • Page 2046

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2016 - - Operation (automatic/manual) of spindle control with servo motor axis Once a spindle control with servo motor axis has returned to its reference position, it can operate in the same manner as in the ordinary servo axis or spindle rotation cont...

  • Page 2047

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2017 - SV reverse signal ON Rotation speed (min-1) -S0 Time (sec) S1 S AaAbAc-S1 -S S0 AbAcAa0 - Reference position return Before issuing the first command, be sure to make a reference position return. - Display Bit 3 (NDF) of parameter No. 3115 ca...

  • Page 2048

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2018 - (Set up No. 3717 (S2) = 0.) Given below are the least command increment, detection unit, and the amount of movement per rotation for the C axis. Least command increment = DMRCMRL××Q Detection unit = DMRLCMR×=Qincrement commandLeast ...

  • Page 2049

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2019 - NOTE Even if these signals are 1, the spindle control function remains disabled when a program command turns the SV speed control modeOFF (the SV speed control mode in-progress signal Fn521 becomes 0). To enable it, re-set these signals to 1. ...

  • Page 2050

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2020 - Individual spindle stop signals *SSTP1<Gn027.3> *SSTP2<Gn027.4> *SSTP3<Gn027.5> *SSTP4<Gn026.6> [Classification] Input signal [Function] These signals are usable only during multi-spindle control. They cause the respec...

  • Page 2051

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2021 - Signal address #7 #6 #5 #4 #3 #2 #1 #0 Gn026 *SSTP4 Gn027 *SSTP3 *SSTP2 *SSTP1 Gn029 *SSTP Gn030 SOV7 SOV6 SOV5 SOV4 SOV3 SOV2 SOV1 SOV0 Gn521 SRVON8SRVON7 SRVON6SRVON5SRVON4SRVON3 SRVON2 SRVON1 Gn523 SVRVS8SVRVS7 S...

  • Page 2052

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2022 - • As for the axis used for spindle control with a servo motor, disable the setting of bit 7 (ALGx) of parameter No. 1814, which adjusts the loop gain in Cs contour control mode to the loop gain of the Cs contour control axis, and the setting of...

  • Page 2053

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2023 - To determine a plane for circular interpolation, cutter compensation, and so forth (G17: Xp-Yp plane, G18: Zp-Xp plane, G19: Yp-Zp plane) and a 3-dimensional tool compensation space (XpYpZp), specify which of the basic three axes (X, Y, and Z) is...

  • Page 2054

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2024 - [Input type] Parameter input [Data type] Real axis [Unit of data] Degree [Min. unit of data] Depend on the increment system of the applied axis [Valid data range] 0 or positive 9 digit of minimum unit of data (refer to the standard parameter s...

  • Page 2055

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2025 - [Unit of data] 0.01/sec [Valid data range] 1 to 9999 Set the loop gain for position control for each axis. When the machine performs linear and circular interpolation (cutting), the same value must be set for all axes. When the machine requires ...

  • Page 2056

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2026 - If, in the stopped state, the positioning deviation exceeds the positioning deviation limit set for stopped state, a servo alarm SV0410 is generated, and operation is stopped immediately (as in emergency stop). #7 #6 #5 #4 #3 #2 #1 #0 3702 ...

  • Page 2057

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2027 - #6 CWM #7 TCW Voltage polarity when the spindle speed voltage is output TCW CWM Voltage polarity 0 0 Both M03 and M04 positive 0 1 Both M03 and M04 negative 1 0 M03 positive, M04 negative 1 1 M03 negative, M04 positive 3717 Motor number t...

  • Page 2058

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2028 - 3741 Maximum spindle speed for gear 1 3742 Maximum spindle speed for gear 2 3743 Maximum spindle speed for gear 3 3744 Maximum spindle speed for gear 4 [Input type] Parameter input [Data type] 2-word spindle [Unit of data] min-1 [Valid...

  • Page 2059

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2029 - 3775 Default P command value for spindle selection in multi-spindle control NOTE When this parameter is set, the power must be turned off before operation is continued. [Input type] Parameter input [Data type] Word path [Valid data range] 0...

  • Page 2060

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2030 - #1 FSR The axis to be subjected to servo motor-based spindle control is of a: 0: Semi-closed system. 1: Full-closed system. #7 SRV Spindle control with servo motor are: 0: Not performed. 1: Performed NOTE When spindle control with servo m...

  • Page 2061

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2031 - [Min. unit of data] Depend on the increment system of the applied axis [Valid data range] 0 or positive 9 digit of minimum unit of data (refer to the standard parameter setting table (B)) (When the increment system is IS-B, 0.0 to +999999.999) Th...

  • Page 2062

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2032 - In spindle control with servo motor or spindle control with Cs contour control, set the time constant of acceleration/deceleration after interpolation in cutting feed for SV speed control mode. Set the time constant used for exponential accelerat...

  • Page 2063

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2033 - 11031 Individual acceleration / deceleration 2 (Leg 2) [Input type] Parameter input [Data type] 2-word axis [Unit of data] min-1/s [Valid data range] 0 to 100000 In spindle control with servo motor or spindle control with Cs contour control,...

  • Page 2064

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2034 - NOTE 1 When using G96.2, issue G96.3 before another spindle move command, to make sure that the spindle is at a complete halt. 2 To issue G96.1, G96.2, or G96.3, use an independent block. Spindle indexing command - Move command (1) Command wait...

  • Page 2065

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2035 - S0 Parameter No. 11020 setting (acceleration/deceleration is switched at a rotation speed of S0 (min-1).) S1 Parameter No. 11021 setting (acceleration/deceleration is switched at a rotation speed of S1 (min-1).) S Command-specified rotation spee...

  • Page 2066

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2036 - - Example program commands 1. A move command is issued to the spindle, using G96.2. The spindle starts moving, and the execution of the next block begins. The spindle keeps moving even when any other block is being executed. (The spindle indexin...

  • Page 2067

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2037 - Parameter #7 #6 #5 #4 #3 #2 #1 #0 11005 SIC [Input type] Parameter input [Data type] Bit #0 SIC Spindle indexing is: 0: Performed based on absolute coordinates. 1: Performed based on machine coordinates. 11012 Spindle indexing s...

  • Page 2068

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2038 - CAUTION Make the tapper thread pitch equal to one specified by the program (F, S). Otherwise, the tool or workpiece may be damaged. Acceleration/deceleration control - Acceleration/deceleration after interpolation In rigid tapping with servo m...

  • Page 2069

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2039 - The time constant (parameter No. 11052) for cutting feed acceleration/deceleration after interpolation usable in the "acceleration/deceleration before look-ahead interpolation" mode is a constant-time type. NOTE Specify the same time ...

  • Page 2070

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2040 - #0 SRBx Acceleration/deceleration after interpolation in cutting feed during rigid tapping with servo motor is: 0: Linear acceleration/deceleration. 1: Bell-shaped acceleration/deceleration. 11050 Maximum allowable acceleration rate in accele...

  • Page 2071

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2041 - Be sure to specify the same time constant value for all axes except for a special application. If different values are set, correct linear and circular figures cannot be obtained. 11060 Time constant for acceleration/deceleration after cutting ...

  • Page 2072

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2042 - Which detector to use is specified by bit 1 (OPTx) of parameter No. 1815. See Subsection 7.1.4, "Feed Per Revolution/Manual Feed Per Revolution," for explanations about feed per revolution. - Threading Threading can be performed by re...

  • Page 2073

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2043 - - Constant surface speed control Program command Operation M*** ; The C axis rotation control mode is set to ON. M03 S100 P2 ; The C axis rotates at 100 min-1. G96 S12 P2. ; The constant surface speed control mode is set to ON. The C axis rotat...

  • Page 2074

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2044 - System Np(pulse/rev) No.2455No.2456 Remarks Serial output type rotary encoder (RCN223,723,220) Np=8,000,000 16384 10 No.2275#0 No.2394 must be set. 5000λ/rev detector +High-resolution serial output circuit C or H Np=5000×512 =5000×29 5000 9 No...

  • Page 2075

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2045 - 11.20.6 Speed Arrival Signals and Speed Zero Signals Overview In the function of spindle control with a servo motor, output signals equivalent to the speed arrival signals SARx and the speed zero signals SSTx for serial spindles are added. In th...

  • Page 2076

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2046 - Parameter 2482 Speed arrival detection level [Input type] Parameter input [Data type] Word axis [Unit of data] 0.1% [Valid data range] 0 to 1000 [Recommended value] 0 (15%) This parameter sets the detection range for the speed arrival signal...

  • Page 2077

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2047 - If speed control is used for the SV rotation control mode, it is impossible to use spindle indexing (G96.1/G96.2/G96.3). When positioning the spindle at a specified location, previously turn the SV rotation control mode OFF. Even when this funct...

  • Page 2078

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2048 - Master spindle Slave spindle First spindle of path 1(S11) First spindle of path 2(S21) Acceleration/deceleration As for the acceleration/deceleration when the slave axis synchronizes with the master axis, the parameters Nos.11020 to ...

  • Page 2079

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2049 - - Phase matching 1. Spindle phase synchronization is executed by setting the spindle phase synchronization control signal to set to 1 in the spindle synchronous control mode (after the output of the spindle synchronous speed control completion s...

  • Page 2080

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2050 - 3. In spindle synchronous control, the spindle speed offset value (parameter No.3731) is invalid. 4. The slave axis moves whenever instructing in the spindle phase synchronization. Limitation 1. When both a master spindle and a slave spindle are...

  • Page 2081

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2051 - Signal Spindle synchronous control signal of each spindle SPSYCs1 to SPSYCs4<Gn288.0 to Gn288.3> [Classification] Input signal [Function] These signals turn on the spindle synchronous control mode. [Operation] When each of these signals ...

  • Page 2082

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2052 - - The spindle synchronization control mode is not set. These signals are valid only when bit 4 (SSS) of parameter No.3704 is set to 1 and bit 5 (SCB) of parameter No.4800 is set to 0. NOTE Even if this signal is once set to “1”, this signa...

  • Page 2083

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2053 - Signal address #7 #6 #5 #4 #3 #2 #1 #0 Gn288 SPSYC4SPSYC3 SPSYC2 SPSYC1 #7 #6 #5 #4 #3 #2 #1 #0 Gn289 SPPHS4SPPHS3 SPPHS2 SPPHS1 #7 #6 #5 #4 #3 #2 #1 #0 Fn043 SYCAL4SYCAL3 SYCAL2 SYCAL1 #7 #6 #5 #4 #3 #2 #1 #0 Fn288 FS...

  • Page 2084

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2054 - #1 CSC The coordinate of spindle phase synchronization control servo motor is: 0: Absolute coordinate. 1: Machine coordinate. #3 SSY Spindle synchronous control with servo motor is: 0: Disabled. 1: Enabled. NOTE This function is only a...

  • Page 2085

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2055 - 11070 Acceleration/deceleration switching speed (S0) of spindle synchronous 11071 Acceleration/deceleration switching speed (S1) of spindle synchronous [Input type] Parameter input [Data type] 2-word axis [Unit of data] min-1 [Valid data r...

  • Page 2086

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2056 - NOTE When bit 6 (DCSx) of parameter No.11001 and bit 6 (CSA) of parameter No.11005 are set to 1, this parameter becomes effective. #7 #6 #5 #4 #3 #2 #1 #0 3704 SSS [Input type] Parameter input [Data type] Bit path NOTE When this ...

  • Page 2087

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2057 - 1: Conventional 16TT system compatible specifications. The first spindle of path 1 and the first spindle of path 2 can be selected as the master spindle and slave spindle, respectively, for spindle synchronization. As control signals, the signa...

  • Page 2088

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2058 - NOTE 2 The setting of a slave spindle as a master spindle is invalid. Be sure to set 0 for a spindle that is to function as a master spindle. 3 In this parameter, set a spindle number within the same path. When a spindle not belonging to the loca...

  • Page 2089

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2059 - 11.20.9 Designation of servo axes for spindle use Overview Up to now, it was necessary to include a servo axis (servo motor spindle), which is used by spindle control with a servo motor, in both the number of control spindle axes and the number o...

  • Page 2090

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2060 - - The servo axes for spindle use are not set as a spindle control with servo motor axis. (Set bit 7 (SRVx) of parameter No.11000 to 1) - The servo axes for spindle use are not set as a rotation axis. (Set bit 0 (ROTx) of parameter No.1006 to 1) -...

  • Page 2091

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2061 - If the following functions are used, alarm DS2003 "ILLEGAL USE FOR SERVO MOTOR SPINDLE" is issued. - Chopping function - High precision oscillation function - PMC axis control If the following command is executed, the warning message &...

  • Page 2092

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2062 - #5 SOAx The servo axis used by the spindle control with servo motor is: 0: used as a control axis (move command is enabled). 1: used as a servo axes for spindle use (move command is disabled). This parameter is only effective on FANUC Series 32...

  • Page 2093

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2063 - Signal Total spindle revolution number reset signals SSR1, SSR2, SSR3, SSR4 <Gn533.0, 1, 2, 3> [Classification] Input signal [Function] Each of these signals resets the total revolution number for its corresponding spindle, returning dia...

  • Page 2094

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2064 - 11.22 SERVO/SPINDLE SYNCHRONOUS CONTROL T Overview This function provides the following functions to use a servo motor as a spindle: (a) Servo motor spindle control Can rotate the servo motor at the rotation speed specified with an input signal...

  • Page 2095

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2065 - - Configuration To use this function, the detection unit must be specified by setting the flexible feed gear (M/N) in such a way that the number of pulses per rotation of the spindle will be 4096. Thus, it is necessary to select a servo motor-to-...

  • Page 2096

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2066 - By setting SVSP to “0”, servo motor spindle control mode is canceled. If this occurs, SVSPM is set to “0”. NOTE In servo motor spindle control mode, coordinates will not be updated. Thus, the relationships between coordinates and actual...

  • Page 2097

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2067 - By setting SYSS to “0”, servo motor spindle synchronization mode is canceled. If a rotation command is being executed with servo motor spindle control, the sub-spindle accelerates or decelerates to the speed specified at that point. Upon comp...

  • Page 2098

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2068 - - Superimposition of the rotation speed from an input signal By setting the differential speed synchronization command signal DFSYC <Gn022.4> to “1” in servo motor spindle synchronization mode, SVR01I to SVR12I and SVGN become effective...

  • Page 2099

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2069 - When the system enters servo motor spindle synchronization mode, the sub-spindle accelerates or decelerates to the rotation speed of the main spindle. Then, the sub-spindle rotates in synchronization with the feedback pulses from the position cod...

  • Page 2100

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2070 - Parameter 3841 Servo motor spindle control axis number [Data type] Word [Valid data range] 1 to 24 This parameter sets the axis number of an axis to be subject to servo motor spindle control or servo motor spindle synchronization. Setting the ...

  • Page 2101

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2071 - WARNING 3 It is dangerous to set a value not matching the actually wire-connected combination as it prevents correct acceleration/deceleration. Be sure to set a value matching the actual wire connection. #7 #6 #5 #4 #3 #2 #1 #0 2003 PIEN...

  • Page 2102

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2072 - The rotation direction of the servo motor changes with the sign of the setting. 2068 Feed forward coefficient [Data type] Word [Valid data range] 0 to 100 Setting = α x 100 NOTE To use the feed forward function, this parameter must be set....

  • Page 2103

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2073 - Correspondence between connectors and connector numbers Connector Connector number JF101 1 JF102 2 JF103 3 JF104 4 JF105 5 JF106 6 JF107 7 JF108 8 (Setting example) Connector to which each separate detector interface unit is attached Parameter s...

  • Page 2104

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2074 - Servo off If follow-up is performed (bit 0 (FUPx) of parameter No. 1819 = 0), servo spindle control and servo spindle synchronization mode are canceled. If this occurs, SVSPM, SYSSM, SVAR, and SYAR (<Fn090> signals) are all cleared. If foll...

  • Page 2105

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2075 - S p eed of m a in sp in dle S V A R (output) S V S P M (output) S V S P (input) SY AR (o u tp u t) SYS SM (o u tp u t) M o to r sp eed D F S Y C (input) S Y S S (input) Fig. 11.22 (e) Timing chart of signals related to servo motor spindle cont...

  • Page 2106

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2076 - 11.23 THREAD START POSITION COMPENSATION IN CHANGING SPINDLE SPEED Overview In general, to make a screw, threading processes ranging from rough cutting to finishing are performed with the same path. During this time, the spindle speed must be kep...

  • Page 2107

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2077 - Threading cycle (G76/G92) In multiple repetitive threading cycle (G76) and in threading cycle (G92), steps <2> and <3> in the figure below make up a threading operation. Thus, in steps <2> and <3>, the spindle override can...

  • Page 2108

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2078 - 1448 Adjusting parameter 2 for threading start position compensation in changing spindle speed function (multiplier) [Data type] Word path [Unit of data] 1/10000 [Valid data range] -32768 to 32767 (Assumed to be 10000 when the setting is 0.) ...

  • Page 2109

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2079 - 5. Select in advance the spindle subject to threading by using a position coder selection signal. (For details, see Section 8.9, "PATH SPINDLE CONTROL" and Section 11.11, "MULTI-SPINDLE CONTROL".) If, however, the function to ...

  • Page 2110

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2080 - G50 S3.5 (Clamping the spindle speed at 3.5 [min-1]) Constant surface speed control (G96): G96 S44.5 (Making the spindle rotate at a surface speed of 44.5 [m/min]) Example) Using high-precision spindle speed control makes the spindle rotate...

  • Page 2111

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2081 - Actual spindle speed and S code command displays If high-precision spindle speed control is enabled, the actual spindle speed and S code commands are displayed using a decimal point. NOTE 1 When high-precision spindle speed control is enable...

  • Page 2112

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2082 - #3 SDP High-precision spindle speed control is: 0: Not used. 1: Used. #4 SSI The resolution enabled for the spindle speed command is: 0: Maximum spindle speed/4095 [min-1]. 1: Maximum spindle speed/16383 [min-1]. #7 #6 #5 #4 #3 #2 #1 #0 4...

  • Page 2113

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2083 - • Changing bit 3 (SDP) of parameter No. 3798 enables this function only after the power is turned off and on again. • If a decimal point is omitted, the desktop calculator decimal point setting is assumed regardless of the setting of bit 0 (D...

  • Page 2114

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2084 - Specification With the spindle EGB, the synchronous pulse is produced from the feedback pulse output by the position detector attached to the master axis, and the slave axis rotates according to the synchronous pulse. The feedback pulse sent from...

  • Page 2115

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2085 - Simple spindle EGB mode signals SSEGBM1<Fn351.0>: First spindle SSEGBM2<Fn351.1>: Second spindle SSEGBM3<Fn351.2>: Third spindle SSEGBM4<Fn351.3>: Fourth spindle [Classification] Output signal [Function] These sign...

  • Page 2116

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2086 - NOTE 1 When turning the simple spindle EGB mode ON or OFF, keep both the master and slave spindles at halt. 2 During the simple spindle EGB mode, the positional deviation of the Cs axis for the slave spindle from the master spindle is returned to...

  • Page 2117

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2087 - #4 FFALWS Feed-forward setting is enabled: 0: Only during cutting feed. 1: Always. Set this parameter 1 for the slave spindle. #6 SES The spindle EGB function for the slave spindle is: 0: Disabled. 1: Enabled. Set this parameter 1 for the sl...

  • Page 2118

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2088 - Reference item Manual name Item name FANUC AC SPINDLE MOTOR αi series FANUC AC SPINDLE MOTOR βi series FANUC BUILT-IN SPINDLE MOTOR βi series PARAMETER MANUAL (B-65280EN) Spindle EGB (Spindle electronic gear box) 11.26 SPINDLE SPEED COMMAND C...

  • Page 2119

    B-64483EN-1/03 11.SPINDLE SPEED FUNCTION - 2089 - NOTE 1 This function only effects for a spindle speed command (including spindle override, constant surface speed control), it doesn’t effect except spindle speed command (spindle orientation, rigid tapping and so on). 2 This function only eff...

  • Page 2120

    11.SPINDLE SPEED FUNCTION B-64483EN-1/03 - 2090 - NOTE 2 When value of parameter No. 3773 is zero, this function has no effect. Alarm and message Number Massage Description PW5390 R-ADDRESS SETTING IS ILLEGAL One of the R address range of the PMC set by parameters No. 3773, No. 13541 and No. 135...

  • Page 2121

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2091 - 12 TOOL FUNCTIONS Chapter 12, "TOOL FUNCTIONS", consists of the following sections: 12.1 TOOL FUNCTIONS OF LATHE SYSTEM................................................................................2091 12.2 TOOL FUNCTIONS OF MACHINING CENTER...

  • Page 2122

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2092 - NOTE 2 If 0 is set in parameter No. 5028, the length of the offset number specified in the T code depends on the number of tool offsets. Example: When the number of tool offsets ranges from 1 to 9: Lowest 1 digit When the number of tool offsets ranges ...

  • Page 2123

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2093 - 12.1.3 Offset T Explanation - Compensation methods Two methods are available to geometry compensation and wear compensation, compensation with tool movement and compensation with coordinate shift. Which compensation method to select can be specified wi...

  • Page 2124

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2094 - Programmed path after workpiece coordinate system shift The movement to this point is by an absolute command. Tool path after offsetProgrammed path before work coordinate system shiftOffset amount by offset in X, Z axis (offset vector) Fig. 12.1.3 (b) O...

  • Page 2125

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2095 - • 3-dimensional coordinate conversion (G68.1) If tool position offset is used, tool position offset with coordinate shift cannot be used. Offset with tool movement must be specified inside a nest of 3-dimensional coordinate conversion. Example) G68...

  • Page 2126

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2096 - #7 #6 #5 #4 #3 #2 #1 #0 WNP LWM LGC LGT ETC LWT LGN 5002 [Input type] Parameter input [Data type] Bit path #1 LGN Geometry offset number of tool offset 0: Is the same as wear offset number 1: Specifies the geometry offset number by th...

  • Page 2127

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2097 - NOTE 2 This parameter is dedicated to the lathe system. Tool change is available with the turret type setting (bit 3 (TCT) of parameter No. 5040 = 0). 3 If the number of digits in the offset number in a T-code command (parameter No. 5028) is set to 0, th...

  • Page 2128

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2098 - #7 #6 #5 #4 #3 #2 #1 #0 ORC 5004 [Input type] Parameter input [Data type] Bit path #1 ORC The setting of a tool offset value is corrected as: 0: Diameter value 1: Radius value NOTE This parameter is valid only for an axis based...

  • Page 2129

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2099 - For example, 64 tool compensation sets are used, 20 sets may be allocated to path 1, 30 sets to path 2, and 14 sets to path 3. All of 64 sets need not be used. Number of digits of an offset number used with a T code command 5028 [Input type] Parame...

  • Page 2130

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2100 - 12.1.4 Extended Tool Selection Function T Overview In lathe system machines, tools are changed mainly with the following two methods: (1) With a turret holding multiple tools, tools are changed by turning the turret (T command). (2) With an automatic t...

  • Page 2131

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2101 - (2) When bit 3 (TCT) of parameter No. 5040 is 1 The T command performs an auxiliary function only. In this case, the code signal issued to the machine is the T command value. For example, suppose that the following is specified: T0313 ; The T code si...

  • Page 2132

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2102 - - Tool compensation memory As the compensation amount used by the functions listed below, only the value set in Z on the tool compensation memory screen is used, Values such as values set for the X, R, and Y-axis offsets (optional function) are ignored....

  • Page 2133

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2103 - Parameter #7 #6 #5 #4 #3 #2 #1 #0 TLG TCT 5040 [Input type] Parameter input [Data type] Bit path #3 TCT The tool change method is based on: 0: Turret rotation. (Tool change operation is performed with a T command only.) With a T ...

  • Page 2134

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2104 - 12.1.5 Active Offset Value Change Function Based on Manual Feed Overview When rough machining/semifinish machining is to be performed using a single tool, you may make a fine adjustment of a tool offset value. Moreover, at setup time, you may want to mak...

  • Page 2135

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2105 - Example - Specified T code: T0110 - Value set with offset number 10: 54.700 mm - Travel distance on the Z-axis by manual feed: -2.583 mm In this example, the Z-axis value for tool offset value number 10 is: 54.700+(-2.583) = 52.117 mm NOTE A changed t...

  • Page 2136

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2106 - Signal Active offset value change mode signal CHGAO<Gn297.4> [Classification] Input signal [Function] Selects the active offset value change mode based on manual feed. [Operation] If all of the following conditions are satisfied, the active offs...

  • Page 2137

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2107 - Signal address - When bit 2 (MOP) of parameter No. 5040 is set to 0 #7 #6 #5 #4 #3 #2 #1 #0 Gn297 AOFS2 AOFS1 CHGAO Fn297 MCHAO - When bit 2 (MOP) of parameter No. 5040 is set to 1 #7 #6 #5 #4 #3 #2 #1 #0 Gn203 AOFS2 AOFS1 CHGAO...

  • Page 2138

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2108 - #7 #6 #5 #4 #3 #2 #1 #0 5000 ASG [Input type] Setting input [Data type] Bit axis #4 ASG When the tool geometry/wear compensation function is valid, the compensation amount to be modified by the active offset value change mode based on man...

  • Page 2139

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2109 - 1: By moving the tool along an arbitrary axis (other than rotation axes), the compensation value can be changed according to the selection of the output signals AOFS1 and AOFS2 (Gn297.5, Gn297.6). Output signal AOFS2 AOFS1 Selected offset value State di...

  • Page 2140

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2110 - Caution CAUTION 1 When bit 1 (ATP) of parameter No. 5041 is set to 0, a tool offset value change can be made by making a movement on any of the basic axes. When an offset value change for an axis is undesirable, interlock the axis. 2 When a movement is ...

  • Page 2141

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2111 - Four BCD digits are used to specify the manual tool compensation tool number MTLN <Gn068, Gn069>. If it is necessary to specify the manual tool compensation tool number with a number exceeding 4 digits, use MT8N <Gn525-Gn528> to specify it w...

  • Page 2142

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2112 - Manual tool compensation completion signal MTLA<Fn061.5> [Classification] Output signal [Function] Informs that manual tool compensation is completed. This signal becomes “1” when a compensation value is changed in manual tool compensation. ...

  • Page 2143

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2113 - Parameter #7 #6 #5 #4 #3 #2 #1 #0 MTL8D 11400 [Input type] Parameter input [Data type] Bit path #0 MTL8D The number of digits in the T code used for automatic change of tool position compensation is specified as follows: 0: 4 dig...

  • Page 2144

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2114 - 12.2 TOOL FUNCTIONS OF MACHINING CENTER SYSTEM M Overview Selection of tools can be done by commanding tool numbers with up to an 8-digit numeral after address T. Signal Refer to “AUXILIARY FUNCTION/2ND AUXILIARY FUNCTION” Parameter 3032 Allowabl...

  • Page 2145

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2115 - 12.2.1 Tool Compensation Memory M Overview Tool compensation values include geometry compensation values and wear compensation values. (Fig. 12.2.1 (a), “Geometric compensation and wear compensation”) Tool compensation values can also be used withou...

  • Page 2146

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2116 - (1) Tool compensation memory A There is no difference between geometry compensation memory and wear compensation memory in tool compensation memory A. Therefore, amount of geometry offset and wear offset together is set as the offset memory. There is a...

  • Page 2147

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2117 - #0 WOF Setting the tool offset value (tool wear offset) by MDI key input is: 0: Not disabled. 1: Disabled. (With parameters Nos. 3294 and 3295, set the offset number range in which updating the setting is to be disabled.) NOTE When tool offset memory...

  • Page 2148

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2118 - 5013 Maximum value of tool wear compensation [Input type] Parameter input [Data type] Real path [Unit of data] mm, inch (offset unit) [Min. unit of data] The increment system of a tool offset value is followed. [Valid data range] The settings of bit...

  • Page 2149

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2119 - Set the maximum allowable value for the tool wear compensation value, input as an incremental value. If the incremental input value (absolute value) exceeds the set value, the following alarm or warning message is output: Input from MDI Warning: DATA IS ...

  • Page 2150

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2120 - With a movement on a linear axis, a tool length compensation value change can be made. With a movement on a rotation axis, no tool length compensation value change can be made. While a tool length compensation value is being changed, a movement by manual...

  • Page 2151

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2121 - Example - Specified workpiece coordinate system : G56 - Workpiece origin offset of G56 (X axis) : 50.000 - Workpiece origin offset of G56 (Y axis) : -60.000 - Workpiece origin offset of G56 (Z axis) : 5.000 - Workpiece origin offset of G56 (A axis) : 5.0...

  • Page 2152

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2122 - NOTE If a tool length compensation value or cutter compensation value is selected as an offset value to be changed, no offset value change is made for a travel distance on a rotation axis moved by follow-up. Signal Active offset value change mode signa...

  • Page 2153

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2123 - Signal address - When bit 2 (MOP) of parameter No. 5040 is set to 0 #7 #6 #5 #4 #3 #2 #1 #0 Gn297 AOFS2 AOFS1 CHGAO Fn297 MCHAO - When bit 2 (MOP) of parameter No. 5040 is set to 1 #7 #6 #5 #4 #3 #2 #1 #0 Gn203 AOFS2 AOFS1 CHGAO ...

  • Page 2154

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2124 - #7 #6 #5 #4 #3 #2 #1 #0 5000 ASG [Input type] Setting input [Data type] Bit path #4 ASG When tool compensation memory B/C is valid, the compensation amount to be modified by the active offset value change mode based on manual feed is: 0: ...

  • Page 2155

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2125 - NOTE 2 The operation of this parameter set to 1 is valid even if a new compensation value is further changed by MDI input or a G10 command before the new compensation value becomes effective. 3 The operation of this parameter set to 1 is invalid if a res...

  • Page 2156

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2126 - 12.2.3 Spindle Unit Compensation, Nutating Rotary Head Tool Length Compensation M Overview For a machine with multiple spindle units, characteristic parameters, compensation amounts, tool axis directions, etc. can be set for each unit. By compensating a...

  • Page 2157

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2127 - By making either of the following parameter settings, G43.3 mode and H code are retained when the power is turned on or the system is reset. • Bit 6 (CLR) of parameter No. 3402 is set to 0. • Bit 6 (CLR) of parameter No. 3402 is set to 1, bit 0 (C08...

  • Page 2158

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2128 - (c) When the inclination angle is 0°, the rotation axis is as described below. • It rotates about the axis perpendicular to the plane formed by linear axis 1 and linear axis 2. • The positive direction of the rotation axis is the direction from the ...

  • Page 2159

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2129 - (3) Compensation amount of a rotation axis inclination (β) [Parameter No. 25888: (SU ANGLE OFFSET)] When the spindle unit is NUTATOR TYPE (see "Example of parameter setting" to be described later), the rotation axis inclination can be compensa...

  • Page 2160

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2130 - (Example) Linear axis 3 (Z) Linear axis 1 (X) Linear axis 2(Y) Linear axis 3 (Z) Linear axis 1 (X) Linear axis 2 (Y) When tool is in -X direction RA = 0 RB = 90.0 When tool is in -Z direction RA = 0 RB = 0 Fig. 12.2.3 (d) Compensation vector directi...

  • Page 2161

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2131 - (4) Bit 6 (CLR) of parameter No. 3402, bit 0 (C08) of parameter No. 3407, and bit 7 (CFH) of parameter No. 3409 Setting value CLR C08, CFH Meaning 1 0 G43.3 mode and H code are not retained when the power is turned on or the system is reset. 1 1 0 0/1 G4...

  • Page 2162

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2132 - (2) Type 2 Input: U1: Linear axis 1 component U2: Linear axis 2 component U3: Linear axis 3 component α: Inclination θ: Rotation axis current position Output W1: Linear axis 1 component of compensation vector to be created W2: Linear axis ...

  • Page 2163

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2133 - Compensation vector when 0° :V0’ Tool length compensation vector :V then, calculation is performed as follows: V0 =( h * cos RA sin RB ,-h * sin RA ,h * cos RA cos RB ) V0’= ROT1(ROT2(V0 ,-φ0 ),-θ0 ) V = ROT2(ROT1(V0’ ,θ),φ) where, ...

  • Page 2164

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2134 - Example Example of parameter setting Let us consider the following four types of spindle unit in a machine configured with: Linear axes: 3 axes X (= 1), Y (= 2), Z (= 3) Rotation axes: 2 axes B (= 4), C (= 5) C S X Y Z C VS0 S X Y Z C S Z X Y C B α ...

  • Page 2165

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2135 - The parameter setting in these cases is shown in Table 12.2.3 (a). Table 12.2.3 (a) Example of parameter setting Parameter No. (1) Straight (2) Right Angle (3) Fixed Angle (4) Nutator Common parameters 25861 5 (C axis) 5 (C axis) 5 (C axis) 4 (B axis) 2...

  • Page 2166

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2136 - #6 DAL Absolute position 0: The actual position displayed takes into account tool length offset. 1: The programmed position displayed does not take into account tool length offset. #7 #6 #5 #4 #3 #2 #1 #0 3402 CLR [Input type] Parameter i...

  • Page 2167

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2137 - #7 #6 #5 #4 #3 #2 #1 #0 25860 SU3 SU2 NCV SCV [Input type] Parameter input [Data type] Bit path #2 SCV At power-on, a spindle unit compensation vector is: 0: Not calculated. 1: Calculated. NOTE This parameter is effective in the case of e...

  • Page 2168

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2138 - 25869 Linear axis 3 for performing spindle unit compensation/tool length compensation (2nd set) [Input type] Parameter input [Data type] Byte path [Valid data range] 0 to Number of controlled axes These parameters set the rotation axes and linear axe...

  • Page 2169

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2139 - [Input type] Parameter input [Data type] Real path [Min. unit of data] Depend on the increment system of the reference axis [Valid data range] -360.0 to 360.0 These parameters set the reference angles and compensation amount for performing spindle uni...

  • Page 2170

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2140 - NOTE 2 If, in G43.3/G44.9 mode, automatic operation is stopped with a single block or other means, and the rotation axis is shifted manually, the compensation vector will not change. In this case, when the rotation axis is specified in automatic operati...

  • Page 2171

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2141 - 12.3 TOOL MANAGEMENT FUNCTION 12.3.1 Tool Management Function Overview The tool management function totally manages tool information including information about tool offset and tool life. Explanation A tool type number is specified with a T code. The to...

  • Page 2172

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2142 - • Maximum tool life value Item Description Data length 4byte Unit of data When the number of use times is specified: Times When time is specified: Seconds Valid data range When the number of use times is specified: 0 to 99,999,999 times When time is sp...

  • Page 2173

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2143 - M • Tool length compensation number (H) Item Description Data length 2byte Valid data range 0 to 999 • Cutter compensation number (D) Item Description Data length 2byte Valid data range 0 to 999 T • Tool geometry compensation number (G) Item Desc...

  • Page 2174

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2144 - • Customize data 1 to 4 (to 20) (to 40) Item Description Data length 4byte Valid data range -99,999,999 to 99,999,999 - Cartridge management table The storage status of tools in cartridges is managed with the cartridge management table. • Multiple ...

  • Page 2175

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2145 - Standby position First Second Third Fourth Fifth path 521 522 523 524 Sixth path 621 622 623 624 Seventh path 721 722 723 724 Eighth path 821 822 823 824 Ninth path 921 922 923 924 Tenth path 1021 1022 1023 1024 NOTE When specifying 111, 121, and so o...

  • Page 2176

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2146 - There are two types of tool life management counting methods: counting the number of use times and counting cutting time. One of the counting methods is set in tool information of tool management data. Other major specifications related to tool life ma...

  • Page 2177

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2147 - - Selecting a tool having a tool type number and shortest life The following example explains how a tool having a tool type number specified by a T code is selected: N10 T11111111 ; (1) Among tools whose tool type number is 11111111, a tool having th...

  • Page 2178

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2148 - N80 M06; (1) In response to the M06 command, M code binary value 0006 is output to PMC F addresses <Fn010 to Fn013> and the MF signal is output to <Fn007.0>. (2) The machine performs a tool change operation, and moves the tool from the stan...

  • Page 2179

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2149 - (3) Since a tool change operation is not needed, the PMC sends completion signal FIN to the CNC. (4) The CNC starts counting the tool life of the tool held at the spindle position. For the type for counting the number of use times, the life count is incr...

  • Page 2180

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2150 - M code output <Fn010-Fn013> Auxiliary function strobe signal MF<F007.0> Completion signal FIN<Gn004.3> N999 M30; (1) When the lives of all tools having the same tool type number have expired, tool change signal TLCH <Fn064.0>...

  • Page 2181

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2151 - Tool change signal TLCH<Fn064.0> Tool reset signal TLRST<Gn048.7> Tool change Individual tool changesignal TLCHI<Fn064.2> Individual tool reset signal TLRSTI<Gn048.6> Tool change NOTE Time is counted up while a cutting feed op...

  • Page 2182

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2152 - - T code command for specifying a particular tool To specify a particular tool directly without allowing the CNC to select a tool, use the following format: M_ T_ ; NOTE A block for specifying the above command must not contain any other command. ...

  • Page 2183

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2153 - Is tool management data valid (is bit 0 (RGS) of tool information set to 1)? Is tool being edited? Does tool type number (T) match with specified number? Is tool registered in cartridge (is cartridge number non-zero value)? Is cartridge targeted for sear...

  • Page 2184

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2154 - Being used Item #8407 Customize data 0 (bit) #8408 Tool information #8409 Tool length compensation number (H) #8410 Cutter compensation number (D) #8411 Spindle speed (S) #8412 Cutting feedrate (F) #8413 Tool geometry compensation number (G) #8414 Tool w...

  • Page 2185

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2155 - Therefore, machining conditions registered in tool management data can be specified directly by coding, for example, D#8410, H#8409, S#8411, and F#8412 with a tool change macro (such as M06). Similarly, customize data can be referenced by a custom macro...

  • Page 2186

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2156 - Similarly, the tool management data and cartridge management table can also be read from and written to using the PMC window. Tool management data of the tool being used as a spindle after a tool change operation performed by M06 and the tool being sel...

  • Page 2187

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2157 - Signal Tool change signal TLCH<Fn064.0>,TLCH1 to 4<Fn328.0 to Fn328.3> [Classification] Output signal [Function] These signals post that the life of the last one of the tools having the same tool type number has expired. [Output cond.] The...

  • Page 2188

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2158 - Tool skip signals TLSKP<Gn048.5>,TLSKP1 to 4<Gn329.0 to Gn329.3> [Classification] Input signal [Function] These signals can forcibly change a tool whose life has not yet expired. These signals are used when a tool is broken. [Operation] &q...

  • Page 2189

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2159 - Example) When *TLV7, *TLV6, and *TLV3 are set to “0“, the override value is calculated as follows: 12.8+6.4+0.8=20.0 The life count is multiplied by 20.0. [Operation] The actual cutting time is counted and multiplied by the override value obtained...

  • Page 2190

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2160 - NOTE When tool management data output in-progress signal TLMOT is 1, be careful not to rewrite tool management data by using the PMC window and FOCAS2. Tool management data edit in-progress signal TLMEM<Fn315.7> [Classification] Output signal [...

  • Page 2191

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2161 - Life expiration signal TMFNFD<Fn315.6> [Classification] Output signal [Function] This signal indicates whether a valid tool whose life still remains is left among the tools having the type number specified by a T code. [Output cond.] This signa...

  • Page 2192

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2162 - Parameter #7 #6 #5 #4 #3 #2 #1 #0 3108 PCT [Input type] Parameter input [Data type] Bit path #2 PCT For modal T display on the program check screen: 0: A specified T value is displayed. 1: HD.T and NX.T are displayed. Values displayed fol...

  • Page 2193

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2163 - #0 TCF When a T code is specified with the tool management function: 0: A cartridge number and pot number found by the NC are output. 1: The specified T code is output without modification. #1 THN When NX.T and HD.T are displayed with the tool manag...

  • Page 2194

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2164 - #7 #6 #5 #4 #3 #2 #1 #0 13202 DOM DOT DO2 DOY DCR [Input type] Parameter input [Data type] Bit #1 DCR On the tool management function screen, tool nose radius compensation data is: 0: Displayed. 1: Not displayed. NOTE This parameter is val...

  • Page 2195

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2165 - #0 NM1 The first cartridge is: 0: Searched. 1: Not searched. #1 NM2 The second cartridge is: 0: Searched. 1: Not searched. #2 NM3 The third cartridge is: 0: Searched. 1: Not searched. #3 NM4 The fourth cartridge is: 0: Searched. 1: Not search...

  • Page 2196

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2166 - The M code set in parameter No. 13221 must not be specified in a block where another auxiliary function is specified. The M code set in parameter No. 13221 does not wait for FIN. So, do not use the M code for other purposes. NOTE The use of this parame...

  • Page 2197

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2167 - [Valid data range] 1 to 9999 This parameter sets the start pot number to be used with the second cartridge. Pot numbers starting with the value set in this parameter and sequentially incremented by 1 are assigned to all data items. 13232 Number of data...

  • Page 2198

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2168 - 13250 Number of valid spindles NOTE When this parameter is set, the power must be turned off before operation is continued. [Input type] Parameter input [Data type] Byte path [Valid data range] 0 to 4 This parameter sets the number of spindle posit...

  • Page 2199

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2169 - When 0 is set, an ordinary used code such as H99/D99 is used. When a value other than 0 is set, H99/D99 no longer has a particular meaning. So, when H99/D99 is specified in this case, the specification of offset number 99 is assumed. With the T series, a...

  • Page 2200

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2170 - 12.3.2.1 Customization of tool management data display With the tool management data screen display customization function, the display positions of screen elements (type number, tool information, life counter, and so forth) on the tool management screen...

  • Page 2201

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2171 - The tool life arrival notice signal changes in output method depending on the settings of bit 3 (ETE) of parameter No. 13200 and bit 2 (TRT) of parameter No. 13200. Under the following conditions, the tool life arrival notice signal is output for the sam...

  • Page 2202

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2172 - • Total maximum life Item Description Data length 4byte Unit of data When the number of use times is specified: Time When time is specified: Seconds/milliseconds Valid data range When the number of use times is specified: 0 to 2,147,483,647 time When t...

  • Page 2203

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2173 - No (disabled) Is tool management data enabled? (Is RGS, bit 0 of tool information, set?) Yes (enabled) Yes (not performed) No (performed)Yes (breakage) Is the tool life status "tool breakage (4)"? No (not breakage) Check the next dataEndData to...

  • Page 2204

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2174 - NOTE 6 If one of the following operation is performed, total life data is updated: (a) Pressing of the soft key [UPDATE] or [SWITCH] (b) Pressing of the soft key [T-ASCE-SORT], [T-DESC-SORT], [R-ASCE-SORT], or [R-DESC-SORT] (c) Switching to another scree...

  • Page 2205

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2175 - Item Description Unit of data When the number of use times is specified: Times When time is specified: Seconds/milliseconds Valid data range When the number of use times is specified: 0 to 99,999,999 times When time is specified: 0 to 3,599,999 s (999 ho...

  • Page 2206

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2176 - Signal Tool management data protection signals TKEY0toTKEY5<G330.0 to 5> [Classification] Input signal [Function] These signals permit those operations from the MDI panel that will change the memory description. Six signals are available, as desc...

  • Page 2207

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2177 - NOTE When at least one of these parameters is set, the power must be turned off before operation is continued. #0 TDC The function of customizing the tool management data screen of the tool management function is: 0: Disabled. 1: Enabled. #2 TDB T...

  • Page 2208

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2178 - Oversize tools each having a different figure can be freely defined to form oversize tool patterns through MDI input on the tool figure setting screen, G10 data input, or inputting a file. Up to 20 patterns can be registered. An identification number (he...

  • Page 2209

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2179 - Pot No. (Row-Column) Tool management No. Pot No. (Row-Column)Tool management No. Pot No. (Row-Column) Tool management No. 1(01-01) * 11(03-01) * 21(05-01) 8 2(01-02) * 12(03-02) * 22(05-02) 0 3(01-03) * 13(03-03) * 23(05-03) 0 4(01-04) 0 14(0...

  • Page 2210

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2180 - Table 12.3.3 (a) Tool figure data Tool pattern No. Left direction Right directionUpper directionLower direction Figure 1 0 3 2 1 A 2 2 2 1 3 A Omitted 19 1 1 1 1 A 20 2 3 2 2 A Reference pot (where tool whose figure to be defined is stored) Set left, rig...

  • Page 2211

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2181 - Occupied area Nonoccupied area When 4 is set for left/right/upper/lower directionsWhen 3 is set for left/right/upper/lower directions Fig. 12.3.3 (c) Occupied area for figure B - Cartridge of chain type The area occupied by a tool stored in a cartridg...

  • Page 2212

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2182 - - System variables The following tool management data of the tool being used as a spindle after a tool change by M06 and the tool to be used next which is specified by a T code can be read through custom macro variables. The custom macro variable is a r...

  • Page 2213

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2183 - 13241 Number of rows of the first cartridge (when the cartridge is of the matrix type) NOTE When this parameter is set, the power must be turned off before operation is continued. [Input type] Parameter input [Data type] Word [Valid data range] 0 t...

  • Page 2214

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2184 - 13244 Number of columns of the second cartridge (when the cartridge is of the matrix type) NOTE When this parameter is set, the power must be turned off before operation is continued. [Input type] Parameter input [Data type] Word [Valid data range]...

  • Page 2215

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2185 - 13247 Number of rows of the fourth cartridge (when the cartridge is of the matrix type) NOTE When this parameter is set, the power must be turned off before operation is continued. [Input type] Parameter input [Data type] Word [Valid data range] 0 ...

  • Page 2216

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2186 - 12.4 TOOL COMPENSATION 12.4.1 Cutter Compensation and Tool Nose Radius Compensation Overview - Cutter compensation Use of cutter compensation can offset a programmed tool path by the tool radius set in the CNC when machining is performed. When the radiu...

  • Page 2217

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2187 - Parameter #7 #6 #5 #4 #3 #2 #1 #0 5000 SBK [Input type] Setting input [Data type] Bit path #0 SBK With a block created internally for tool radius - tool nose radius compensation: 0: A single block stop is not performed. 1: A single block ...

  • Page 2218

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2188 - #0 SUP #1 SUV These bits are used to specify the type of startup/cancellation of tool radius - tool nose radius compensation. SUV SUP Type Operation 0 0 Type A A compensation vector perpendicular to the block next to the startup block or the block p...

  • Page 2219

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2189 - #1 CNC #3 CNV These bits are used to select an interference check method in the tool radius - tool nose radius compensation mode. CNV CNC Operation 0 0 Interference check is enabled. The direction and the angle of an arc are checked.0 1 Interferenc...

  • Page 2220

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2190 - Even if ΔVx ≤ ΔVlimit and ΔVY ≤ ΔVlimit, vector to single-block stop point remains. Tool center path Programmed path If ΔVx ≤ ΔVlimit and ΔVY≤ ΔVlimit, this vector is ignored. S ΔVYΔVxrrN1 N2ΔVlimit is determined depending on the sett...

  • Page 2221

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2191 - #0 OFA #1 OFC #2 OFD #3 OFE These bits are used to specify the increment system and valid data range of a tool offset value. For metric input OFE OFD OFC OFA Unit Valid data range 0 0 0 1 0.01mm ±9999.99mm 0 0 0 0 0.001mm ±9999.999mm 0 0 1 0...

  • Page 2222

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2192 - #7 NAG If the gap vector length is 0 when the interference check avoidance function for cutter compensation/tool nose radius compensation is used: 0: Avoidance operation is performed. 1: Avoidance operation is not performed. 19625 Number of blocks to...

  • Page 2223

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2193 - Number Message Description PS5448 INTERFERENCE TO AVD. AT G41/G42 In the interference check evade function of cutter compensation or tool nose radius compensation, a further interference occurs for an already created interference evade vector. Reference...

  • Page 2224

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2194 - Parameter #7 #6 #5 #4 #3 #2 #1 #0 3104 DAL DRL [Input type] Parameter input [Data type] Bit path #4 DRL Relative position 0: The actual position displayed takes into account tool length offset. 1: The programmed position displayed...

  • Page 2225

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2195 - #7 #6 #5 #4 #3 #2 #1 #0 5003 LVK [Input type] Parameter input [Data type] Bit path #6 LVK Tool length compensation vector 0: Cleared by reset 1: Not cleared, but held by reset The tool length compensation vector in the tool axis direction...

  • Page 2226

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2196 - Example 2) No alarm is raised in the following cases:3) G68 X_ Y_ Z_ I_ J_ K_ R_ ; : G43 H1 ; : G49 ; : G69 ;4) G43 H1 ; : G68 X_ Y_ Z_ I_ J_ K_ R_ ; : G69 ; : G49 ; NOTE A command to cancel tool length compensation (G28, ...

  • Page 2227

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2197 - 12.4.3 Tool Length Compensation Shift Types M Overview A tool length offset operation can be performed by shifting the program coordinate system: The coordinate system containing the axis subject to tool length compensation is shifted by the tool length...

  • Page 2228

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2198 - - Staring and canceling tool length compensation Once a command for starting or canceling tool length compensation (*2) is issued in a mode such as cutter compensation (*1), no look-ahead block interpretation is carried out until the tool length compens...

  • Page 2229

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2199 - Caution CAUTION 1 Specifying tool length compensation (a shift type) first and then executing an incremental command causes the tool length compensation value to be reflected in the coordinates only, not in the travel distance of the machine; executing ...

  • Page 2230

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2200 - Parameter #7 #6 #5 #4 #3 #2 #1 #0 5000 MOF [Input type] Setting input [Data type] Bit path #1 MOF When the tool length compensation shift type (bit 6 (TOS) is set to 1 of parameter No. 5006 or bit 2 (TOP) of parameter No. 11400 is set to ...

  • Page 2231

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2201 - #0 TLC #1 TLB These bits are used to select a tool length compensation type. Type TLB TLC Tool length compensation A 0 0 Tool length compensation B 1 0 Tool length compensation C - 1 The axis to which cutter compensation is applied varies from type ...

  • Page 2232

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2202 - 12.4.4 Second Geometry Tool Offset T Overview To compensate for the difference in tool mounting position and in selected position, this function adds 32 sets of second geometry tool offset for each of the X, Z, and Y axes for all paths (up to 2000 sets ...

  • Page 2233

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2203 - First geometry tool offset Second geometry tool offset No. X axis Z axis No. X axis Z axis 01 20.000 5.000 01 0.000 0.000 : : : : : : 10 25.000 8.000 10 0.000 0.000 11 -20.000 5.000 11 120.000 10.000 12 -10.000 3.000 12 120.000 -30.000 13 -15.000 0.000 1...

  • Page 2234

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2204 - NOTE 1 G2Y requires the Y-axis offset option. 2 This signal cannot shift a coordinate. Signal address #7 #6 #5 #4 #3 #2 #1 #0 Gn090 G2SLC G2Y G2Z G2X G2RVY G2RVZ G2RVX Parameter 3032 Allowable number of digits for the T code [Input type] Parame...

  • Page 2235

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2205 - #6 LWM Tool offset operation based on tool movement is performed: 0: In a block where a T code is specified. 1: Together with a command for movement along an axis. 5024 Number of tool compensation values NOTE When this parameter is set, the power m...

  • Page 2236

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2206 - Reference item Manual name Item name OPERATOR’S MANUAL (For Lathe System) (B-64484EN-1) Second Geometry Tool Offset

  • Page 2237

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2207 - 12.5 TOOL AXIS DIRECTION TOOL LENGTH COMPENSATION M 12.5.1 Tool Axis Direction Tool Length Compensation Overview When a five-axis machine that has two axes for rotating the tool is used, tool length compensation can be performed in a specified tool axis...

  • Page 2238

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2208 - (1) A-axis and C-axis, with the tool axis on the Z-axis C AZXY Workpiece CA Vx = Lc * sin(a) * sin(c) Vy = -Lc * sin(a) * cos(c) Vz = Lc * cos(a) (2) B-axis and C-axis, with the tool axis on the Z-axis CB ZY X Workpiece CB Vx = Lc * sin(b) *...

  • Page 2239

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2209 - (3) A-axis and B-axis, with the tool axis on the X-axis WorkpieceB A Z Y X AB Vx = Lc * cos(b) Vy = Lc * sin(b) * sin(a) Vz = -Lc * sin(b) * cos(a) (4) A-axis and B-axis, with the tool axis on the Z-axis, and the B-axis used as the master BA ZYX...

  • Page 2240

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2210 - (5) A-axis and B-axis, with the tool axis on the Z-axis, and the A-axis used as the master BA ZX Y Workpiece AB Vx = Lc * sin(b) Vy = -Lc * sin(a) * cos(b) Vz = Lc * cos(a) * cos(b) - Tool holder offset The machine-specific length from the rotatio...

  • Page 2241

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2211 - When the tool axis is on the Z-axis, and the rotation axes are the B-axis and C-axis, a compensation vector is calculated as follows : Xp = Lc * sin(B-Bz) * cos(C-Cz) Yp = Lc * sin(B-Bz) * sin(C-Cz) Zp = Lc * cos(B-Bz) Xp,Yp,Zp : Compensation pulse o...

  • Page 2242

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2212 - Workpiece Tool length compensation amountTool holderoffsetRotation center compensation vector A axis center B axis centerBA ZYX BA Fig. 12.5.2 (a) Compensation of Rotation Centers of Two Rotation Axes According to the machine type, set the values list...

  • Page 2243

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2213 - Tool tip(programmed point)Tool lengthcompensation amountSecond rotation axiscenter (control point)Rotation center compensationvector parameter(No.19661)First rotation axis centerTool holder offsetparameter(No.19666)Tool mounting positionSpind...

  • Page 2244

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2214 - The method of shifting the control point can be selected using the following parameters: Table 12.5.2 (b) Methods of Shifting the Control Point Bit 5 (SVC) of parameter No. 19665 Bit 4 (SPR) of parameter No. 19665Shift of controlled point 0 - Shift is ...

  • Page 2245

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2215 - When the machine type is other than (3) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++−=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡HoJzCzJyCyJxCxSzSySx When the machine type is (3) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++−=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡JzCzJyCyHoJxCxSzSySx...

  • Page 2246

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2216 - Bit 0 (RAM) of parameter No. 19650Bit 1 (RAP) of parameter No. 19650Angular displacement of rotation axis (parameter No. 19658) Z 1 1 30.0 19655 Axis number of the linear axis to which a rotation axis belongs [Input type] Parameter input [Data type...

  • Page 2247

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2217 - A- and B-axes (The tool axis is the Z-axis and the B-axis is the master.) A- and B-axes (The tool axis is the Z-axis and the A-axis is the master.) Center of rotation Center of rotation Tool axis directionTool axis directionWorkpieceWorkpiece Example o...

  • Page 2248

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2218 - [Valid data range] 9 digit of minimum unit of data (refer to standard parameter setting table (A)) (When the increment system is IS-B, -999999.999 to +999999.999) This parameter sets an angular displacement shifted from the origin for a rotation axis fo...

  • Page 2249

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2219 - Shift of controlled point Tool length offsetTool holder offset Controlled-point shift vector DE Tool center pointControlled pointSecond rotary axis of tool F First rotary axis of tool [Controlled-point shift vector when automatically calculated] #5 S...

  • Page 2250

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2220 - NOTE Set a radius value. Alarm and message Number Message Description PS5435 PARAMETER OUT OF RANGE (TLAC)Illegal parameter setting. (Set value is out of range.) PS5436 ILLEGAL PARAMETER SETTING OF ROTARY AXIS(TLAC) Illegal parameter setting. (axis of...

  • Page 2251

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2221 - 12.6 TOOL LIFE MANAGEMENT Tools are classified into several groups, and a tool life (use count or use duration) is specified for each group in advance. Each time a tool is used, its life is counted, and when the tool life expires, a new tool that is sequ...

  • Page 2252

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2222 - M If the tool life management B function is enabled, the function for selecting a tool group by an arbitrary group number can be used. T The tool life management B function can be used. However, the function for selecting a tool group by an arbitrary gr...

  • Page 2253

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2223 - CAUTION If the tool life is specified by use count, the tool change signal TLCH becomes 1 when the CNC is reset by a command such as M02 or M30 after the tool life has expired or when the tool life count restart M code is issued. If the tool life is sp...

  • Page 2254

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2224 - [Operation] The signal becomes 1 when: - The life of the currently used tool has expired. The signal becomes 0 when: - An individual tool change reset is executed. Individual tool change reset signal TLRSTI <Gn048.6> [Classification] Input signa...

  • Page 2255

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2225 - New tool select signal TLNW <Fn064.1> [Classification] Output signal [Function] Notifies the PMC that a new tool has been selected from a group. This signal can be used, for example, if the tool length offset value of a newly selected tool is to ...

  • Page 2256

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2226 - TL512 TL256 TL128TL64TL32TL16TL8TL4TL2 TL1 Tool group number 0 1 1 1 1 1 0 0 1 1 500 0 1 1 1 1 1 1 1 1 1 512 1 0 0 0 0 0 0 0 0 0 513 1 0 0 1 0 1 0 1 1 1 600 1 0 1 0 1 1 1 0 1 1 700 1 1 0 0 0 1 1 1 1 1 800 1 1 1 0 0 0 0 0 1 1 900 1 1 1 1 1 0 0 1 1 1 1000 ...

  • Page 2257

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2227 - Bit 3 (GRP) of parameter No. 6802 can be used to specify which remaining life setting (that is, one specified in parameter Nos. 6844 and 6855 or one registered as tool life management data) to use. [Output cond.] The signal is set to 1 if: • Remaining...

  • Page 2258

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2228 - [Output cond.] The signal becomes 1 when: • Tool life counting is disabled because the tool life counting disable signal LFCIV is 1. The signal becomes 0 when: • Tool life counting is enabled because the tool life counting disable signal LFCIV is 0....

  • Page 2259

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2229 - TF 1st tool 2nd tool 3rd tool T-code TLAL Fig. 12.6 (c) Timing chart of the number of remaining tools notification signal TLAL Signal address #7 #6 #5 #4 #3 #2 #1 #0 G0046 KEY4 KEY3 KEY2 KEY1 Gn047 TL128 TL64 TL32 TL16 TL08 TL04 TL02 TL01 ...

  • Page 2260

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2230 - NOTE After changing these parameters, set data again by using G10 L3 ;(registration after deletion of data of all groups). #2 LTM The tool life count is specified by: 0: Count. 1: Duration. NOTE After changing this parameter, set data again by usin...

  • Page 2261

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2231 - [Data type] Bit path #1 TSM In the tool life management function, life counting is performed as follows when more than one offset is specified: 0: Counting is performed for each tool number. 1: Counting is performed for each tool. #2 LVF When the ...

  • Page 2262

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2232 - If the life count type is the duration specification type, the automatic operation becomes a stopped state if the life of at least one tool group has expired when the M99 command is specified. M If the life count is specified by use count, after the M99 ...

  • Page 2263

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2233 - #3 GRP Management data of tool life arrival notice signal TLCHB <Fn064.3> is: 0: Managed using the remaining life value set in parameter No. 6844 and 6845. 1: Managed using the remaining life value set in tool life management data. NOTE When th...

  • Page 2264

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2234 - #7 #6 #5 #4 #3 #2 #1 #0 6803 CTB [Input type] Parameter input [Data type] Bit path # 7 CTB Whether to turn the tool life arrival notice signal TLCHB <Fn064.3> of tool life management off is determined when life counting starts. An a...

  • Page 2265

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2235 - When tool change signal TLCH <Fn064.0> is 1, the state of the life was expired of the tool can be read by reading tool information on the final tool in FOCAS2 or the PMC window. #6 LFI In tool life management, counting of the life of a selected ...

  • Page 2266

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2236 - #6 TRU When the life count type is the duration specification type, and the life is counted every second (bit 0 (FCO) of parameter No. 6805 is set to 0): 0: Cutting time less than one second is discarded and is not counted. 1: Cutting time less than o...

  • Page 2267

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2237 - 6813 Maximum number of groups in tool life management NOTE After this parameter has been set, the power must be turned off then back on for the setting to become effective. [Input type] Parameter input [Data type] Word path [Unit of data] Group [V...

  • Page 2268

    12.TOOL FUNCTIONS B-64483EN-1/03 - 2238 - When the remaining tool number in the group selected by the T code is smaller than or equal to the value set in this parameter, the remaining tool number notice signal TLAL <Fn154.0> is output. When this parameter is set to 0, the remaining tool nu...

  • Page 2269

    B-64483EN-1/03 12.TOOL FUNCTIONS - 2239 - Number Message Description PS0152 OVER MAXIMUM TOOL NUMBER The number of tools registered in one group exceeded the maximum allowable registration tool number. PS0153 T-CODE NOT FOUND In registration of tool life data, a block in which the T code needs t...

  • Page 2270

    13.PROGRAM COMMAND B-64483EN-1/03 - 2240 - 13 PROGRAM COMMAND Chapter 13, "PROGRAM COMMAND", consists of the following sections: 13.1 DECIMAL POINT PROGRAMMING / POCKET CALCULATOR TYPE DECIMAL POINT PROGRAMMING .............................................................................

  • Page 2271

    B-64483EN-1/03 13.PROGRAM COMMAND - 2241 - Program command Pocket calculator type decimal point programming Standard type decimal point programming X1000 Command value without decimal point 1000mm Unit : mm 1mm Unit : Least input increment (0.001mm)X1000.0 Command value with decimal point 1000m...

  • Page 2272

    13.PROGRAM COMMAND B-64483EN-1/03 - 2242 - 13.2 G CODE SYSTEM 13.2.1 G Code List in the Lathe System T Overview There are three G code systems : A,B, and C. Select a G code system using bits 7 (GSC) and 6 (GSB) of parameter No. 3401. Table 13.2.1 (a) G code list G code system A B C Group Funct...

  • Page 2273

    B-64483EN-1/03 13.PROGRAM COMMAND - 2243 - Table 13.2.1 (a) G code list G code system A B C Group Function G25 G25 G25 Spindle speed fluctuation detection off G26 G26 G26 08 Spindle speed fluctuation detection on G27 G27 G27 Reference position return check G28 G28 G28 Return to reference positio...

  • Page 2274

    13.PROGRAM COMMAND B-64483EN-1/03 - 2244 - Table 13.2.1 (a) G code list G code system A B C Group Function G43.4 G43.4 G43.4 Tool center point control (type 1) (Bit 3 (TCT) of parameter No. 5040 must be 1.) G43.5 G43.5 G43.5 Tool center point control (type 2) (Bit 3 (TCT) of parameter No. 5040...

  • Page 2275

    B-64483EN-1/03 13.PROGRAM COMMAND - 2245 - Table 13.2.1 (a) G code list G code system A B C Group Function G68.2 G68.2 G68.2 Tilted working plane indexing G68.3 G68.3 G68.3 Tilted working plane indexing by tool axis direction G68.4 G68.4 G68.4 17 Tilted working plane indexing (incremental multi-...

  • Page 2276

    13.PROGRAM COMMAND B-64483EN-1/03 - 2246 - Table 13.2.1 (a) G code list G code system A B C Group Function - G90 G90 Absolute programming - G91 G91 03 Incremental programming - G98 G98 11 Canned cycle : return to initial level - G99 G99 11 Canned cycle : return to R point level 13.2.2 G Code Li...

  • Page 2277

    B-64483EN-1/03 13.PROGRAM COMMAND - 2247 - Table 13.2.2 (a) G code list G code Group Function G29 Movement from reference position G30 2nd, 3rd and 4th reference position return G30.1 Floating reference position return G30.2 In-position check disable 2nd, 3rd, or 4th reference position return G...

  • Page 2278

    13.PROGRAM COMMAND B-64483EN-1/03 - 2248 - Table 13.2.2 (a) G code list G code Group Function G50.4 Cancel synchronous control G50.5 Cancel composite control G50.6 Cancel superimposed control G51.4 Start synchronous control G51.5 Start composite control G51.6 Start superimposed control G52 Local...

  • Page 2279

    B-64483EN-1/03 13.PROGRAM COMMAND - 2249 - Table 13.2.2 (a) G code list G code Group Function G81 09 Drilling cycle or spot boring cycle Electronic gear box : synchronization start G81.1 00 Chopping G81.4 34 Electronic gear box: synchronization start G81.5 24 Electronic gear box 2 pair: synchro...

  • Page 2280

    13.PROGRAM COMMAND B-64483EN-1/03 - 2250 - NOTE G code system B and G code system C are optional functions. When no option is selected, G code system A is used, regardless of the setting of these parameters. #7 #6 #5 #4 #3 #2 #1 #0 G23 CLR FPM G91 G01 3402 G23 CLR G70 G91 G19 G18 G01 ...

  • Page 2281

    B-64483EN-1/03 13.PROGRAM COMMAND - 2251 - Note NOTE 1 When the power is turned on or the cleared state is set by a reset (bit 6 (CLR) of parameter No. 3402 is set to 1), modal G codes are placed in the following states: (1) G codes marked with in G code lists are enabled. (2) When the system ...

  • Page 2282

    13.PROGRAM COMMAND B-64483EN-1/03 - 2252 - Program code start % TITLE O0001 ;M30 ;% (COMMENT) Program section Leader section Program startComment section Program code end ; Fig. 13.3 (a) Program configuration Parameter #7 #6 #5 #4 #3 #2 #1 #0 0100 CTV [Input type] Setting input [...

  • Page 2283

    B-64483EN-1/03 13.PROGRAM COMMAND - 2253 - Alarm and message Number Message Description SR0001 TH ERROR A TH error was detected during reading from an input device. The read code that caused the TH error and how many statements it is from the block can be verified in the diagnostics screen. SR00...

  • Page 2284

    13.PROGRAM COMMAND B-64483EN-1/03 - 2254 - NOTE 1 Creating one folder results in the number of programs yet to be registerable decreasing one. 2 The program storage size means the maximum size of a program if the program is the one and only program registered. 3 If more than one program is regis...

  • Page 2285

    B-64483EN-1/03 13.PROGRAM COMMAND - 2255 - 13.5 INCH/METRIC CONVERSION Overview Either inch or metric input can be selected by G code. Conventionally, inch/metric switching must be performed at the reference position (machine coordinate system origin). However, setting bit 2 (FIO) of parameter ...

  • Page 2286

    13.PROGRAM COMMAND B-64483EN-1/03 - 2256 - #7 #6 #5 #4 #3 #2 #1 #0 1006 ROSx ROTx [Input type] Parameter input [Data type] Bit axis NOTE When at least one of these parameters is set, the power must be turned off before operation is continued. #0 ROTx #1 ROSx Setting linea...

  • Page 2287

    B-64483EN-1/03 13.PROGRAM COMMAND - 2257 - #0 MCN Machine position 0: Regardless of whether input is made in mm or inches, the machine position is displayed in mm for millimeter machines, or in inches for inch machines. 1: When input is made in mm, the machine position is displayed in mm, and...

  • Page 2288

    13.PROGRAM COMMAND B-64483EN-1/03 - 2258 - • Operation with a mirror image • Shifting of a workpiece coordinate system when a local coordinate system or workpiece coordinate system is set up #2 IMG Inch/metric conversion is: 0: Performed with the G20/G21 (G70/G71). 1: Not performed with t...

  • Page 2289

    B-64483EN-1/03 13.PROGRAM COMMAND - 2259 - Number Message Description PS5362 CONVERT INCH/MM AT REF-POS An inch/metric conversion was performed at a position other than the reference position. Perform an inch/metric conversion after returning to the reference position. Reference item Manual na...

  • Page 2290

    13.PROGRAM COMMAND B-64483EN-1/03 - 2260 - 13.6 CUSTOM MACRO 13.6.1 Custom Macro Overview A subprogram is useful for repeatedly executing the same operation. With the custom macro function, however, variables, operation commands, conditional branches, and so forth can be used to create general-p...

  • Page 2291

    B-64483EN-1/03 13.PROGRAM COMMAND - 2261 - Signal Custom Macro Input Signals UI000 to UI015<Gn054,Gn055>, UI016 to UI031<Gn056,Gn057>, UI100 to UI131<Gn276 to Gn279>, UI200 to UI231<Gn280 to Gn283> UI300 to UI331<Gn284 to Gn287> [Classification] Input signal [Fun...

  • Page 2292

    13.PROGRAM COMMAND B-64483EN-1/03 - 2262 - - When the bit 0 (MIF) of parameter No. 6001 is set to 0 : Signals Q'ty Variables Correspondence of values UO000 UO001 UO002 UO003 : UO014 UO015 1 1 1 1 : 1 1 #1100 #1101 #1102 #1103 : #1114 #1115 0 at 0 and 1 at 1 UO000 to UO015 16 #1132 Unsigned 16-bi...

  • Page 2293

    B-64483EN-1/03 13.PROGRAM COMMAND - 2263 - Signals Q'ty Variables Correspondence of values UI400 UI401 : UI431 1 1 : 1 #1036 #1037 : #1067 0 at 0 and 1 at 1 UI400 to UI431 32 #1068 Signed 32-bit binary code UI500 to UI531 32 #1069 Signed 32-bit binary code UI600 to UI631 32 #1070 Signed 32-bit b...

  • Page 2294

    13.PROGRAM COMMAND B-64483EN-1/03 - 2264 - Signal address #7 #6 #5 #4 #3 #2 #1 #0 Gn054 UI007 UI006 UI005 UI004 UI003 UI002 UI001 UI000 Gn055 UI015 UI014 UI013 UI012 UI011 UI010 UI009 UI008 Gn056 UI023 UI022 UI021 UI020 UI019 UI018 UI017 UI016 Gn057 UI031 UI030 UI029 UI028 UI027 UI026 UI02...

  • Page 2295

    B-64483EN-1/03 13.PROGRAM COMMAND - 2265 - Fn281 UO215 UO214 UO213 UO212 UO211 UO210 UO209 UO208 Fn282 UO223 UO222 UO221 UO220 UO219 UO218 UO217 UO216 Fn283 UO231 UO230 UO229 UO228 UO227 UO226 UO225 UO224 Fn284 UO307 UO306 UO305 UO304 UO303 UO302 UO301 UO300 Fn285 UO315 UO314 UO313 UO312 UO...

  • Page 2296

    13.PROGRAM COMMAND B-64483EN-1/03 - 2266 - #1 MGO When a GOTO statement for specifying custom macro control is executed, a high-speed branch to 20 sequence numbers executed from the start of the program is: 0: A high-speed branch is not caused to n sequence numbers from the start of the execut...

  • Page 2297

    B-64483EN-1/03 13.PROGRAM COMMAND - 2267 - Bit 5 (SBM) of parameter No. 6000 0 1 0 Disables single block stop. Bit 7 (SBV) of parameter No. 6000 1 Enables single block stop. (With variable #3003, single block stop can be enabled/disabled.) Enables single block stop. (With variable #3003, single...

  • Page 2298

    13.PROGRAM COMMAND B-64483EN-1/03 - 2268 - #6 CCV Common variables #100 to #149(NOTE) cleared by power-off are: 0: Cleared to <null> by reset 1: Not cleared by reset NOTE Cleared variables are as the table according to the combination of added options. Option “Addition of custom ma...

  • Page 2299

    B-64483EN-1/03 13.PROGRAM COMMAND - 2269 - #7 #6 #5 #4 #3 #2 #1 #0 6007 CVA MGE BCS SCS DPG [Input type] Parameter input [Data type] Bit path #0 DPG Specifies whether to allow G codes with a decimal point to be called. 0: Do not allow. 1: Allow. #1 SCS Specifies whether to call su...

  • Page 2300

    13.PROGRAM COMMAND B-64483EN-1/03 - 2270 - [Example] Execution of #3000=1 (ALARM MESSAGE); When bit 1 (MCA) of parameter No. 6008 is set to 0: The alarm screen displays "MC 3001 ALARM MESSAGE". When bit 1 (MCA) of parameter No. 6008 is set to 1: The alarm screen displays "MC0...

  • Page 2301

    B-64483EN-1/03 13.PROGRAM COMMAND - 2271 - NOTE 1 When MSM is set to 1 and an M code specified for a macro call is not at the beginning of the block, argument specification II cannot be used. 2 When MSM is set to 1 and an M code specified for a macro call is not at the beginning of the block, t...

  • Page 2302

    13.PROGRAM COMMAND B-64483EN-1/03 - 2272 - Address Variable number Address Variable number Address Variable number A #1 J #5 S #19 B #2 K #6 T #20 C #3 L *2 U #21 D #7 M #13 *3 V #22 E #8 M(Call code)*4 W #23 F #9 N #14 *5 X #24 G #28 to #32 *1P #16 Y #25 H #11 Q #17 Z #26 I #4 R #18...

  • Page 2303

    B-64483EN-1/03 13.PROGRAM COMMAND - 2273 - #7 #6 #5 #4 #3 #2 #1 #0 6010 *7 *6 *5 *4 *3 *2 *1 *0 #7 #6 #5 #4 #3 #2 #1 #0 6011 =7 =6 =5 =4 =3 =2 =1 =0 #7 #6 #5 #4 #3 #2 #1 #0 6012 #7 #6 #5 #4 #3 #2 #1 #0 #7 #6 #5 #4 #3 #2 #1 #0 6013 [7 [6 [5 [4 [3 [2 [1 [0 #7 #6 #5 #4 #3 #2 #1 #0 601...

  • Page 2304

    13.PROGRAM COMMAND B-64483EN-1/03 - 2274 - #4 MSV When Tool length compensation shift type is used, the value in which Tool offset value, Tool length offset and Tool holder offset are : #5041 - #5060, #100101 - #100132 (Current position) #5061 - #5080, #100151 - #100182 (Skip position): 0: It...

  • Page 2305

    B-64483EN-1/03 13.PROGRAM COMMAND - 2275 - Example In a 4-path system, when parameters are set as listed below, custom macro variables for paths 1 to 3 are used as variables common to these paths, but for path 4, custom macro variables for the path are used. Path number No. 6036 NC1Used custom...

  • Page 2306

    13.PROGRAM COMMAND B-64483EN-1/03 - 2276 - It is assumed that it message first, and assumes since the second to be comment section. #3000 =1 (ALARM MESSAGE) (COMMENT 1) (COMMENT 2); 1: The position in which comment section can be inserted in macro statements is as follows. (ABC) #100 =1; H...

  • Page 2307

    B-64483EN-1/03 13.PROGRAM COMMAND - 2277 - NOTE 4 When the option for embedded macro is effective and the option for addition of custom macro common variables is not effective, #150 to #199 can not be used but this