Navigation

  • Page 1

    CENTURION V Operation Manual Version 1.3 December 1, 1990 MILLTRONICS MANUFACfURING COMPANY 7870 Park Drive Chanhassen, MN 55317 (612) 474-8100

  • Page 2

    Unlock p·arameters: PROT03 3 TABLE OF CONTENTS PREFACE . . . . . AXIS DEFINITIONS 1 . INTRODUCTION 2. PROGRAM CONFIGURATION 2.1 Block .... . 2.2 Program ... . 2.3 Main program, subprogram 2.4 Command format ranges 2.5 Command formats for axes: and subroutines M and G Codes 3. PREPARATORY FUNCTI...

  • Page 3

    4. 5. 3.15 3.16 3.17 3.18 3.19 3.20 3.21 3.22 3.23 3.24 3.25 3.26 Coordinate systems . . . . . . . . . . . . 3.15.1 Machine coordinate system (G53) 3.15.2 Floating zero (G92) .... 3.15.3 Work coordinate systems (G54 - G59) Local coordinate system (G52) . . . Exact stop mode (modal) (G61) . . . Si...

  • Page 4

    5.5.2 F3 BLOCK (MAIN-RUN) .. . 5.5.3 F4 OSTOP (MAIN-RUN) .. . 5.5.4 F5 BSKIP (MAIN-RUN) .. . 5.5.5 F6 DISPL (MAIN-RUN-DISPL) 5.5.5.1 Fl NEXT (MAIN-RUN-DISPL) 5.5.5.2 F2 DIST (MAIN-RUN-DISPL) 5.5.5.3 F3 GRAPH (MAIN-RUN-DISPL-GRAPH) 5.5.5.3.1 Fl ROT 5.5.5.3.2 F2 PAN 5.5.5.3.~ F3 WIND . 5.5.5.3.4 F4...

  • Page 5

    F2 EBLOK F3 TAB . F4 MARK F5 TOF . F6 EOF . F7 PGUP F9 LEFT FlO RIGHT 5.9.1.1.3 F3 WORDS 5.9.1.1.4 F4 MISC Fl UNDO F2 REST F3 HDW . F4 MSET F5 MHIDE F6 LNDEL F7 CHNG F8 FIND F9 FNEXT 5.9.1.1.5 F5 INS 5.9.1.1.6 F6 DEL 5.9.1.2 F2 NEW (MAIN-PROG-TEXT-NEW) 5.9.1.3 F3 OLD (MAIN-PROG-TEXT-OLD) 5.9.1.4 ...

  • Page 6

    6. 7 . 5.11.1.1 F1 LOAD (MAIN-UTIL-FILES-LOAD) 5.11.1.2 F2 SAVE (MAIN-UTIL-FILES-SAVE) 5.11.1.3 F3 NAME (MAIN-UTIL-FILES-NAME) 5.11.1.4 F4 COPY (MAIN-UTIL-FILES-COPY) 5.11.1.5 F5 LIST (MAIN-UTIL-FILES-LIST) 5.11.1.6 F6 DIR (MAIN-UTIL-FILES-DIR) 5.11.1.7 F7 MENU (MAIN-UTIL-FILES-MENU) 5.11.1.8 F9 ...

  • Page 7

    7.3.5.3 F3 RECT (MILL-POCK-RECT) ... . 7.3.5.3.1 F1 CLEAR ....... . 7.3.5.3.2 F2 FIN (MILL-POCK-RECT-F 7 . 3 . 6 F6 FRAME (MILL- FRAME) . . . . . . . 7.3.6.1 F1 SETUP (MILL-FRAME-SETUP) 7.3.6.2 F2 CIRC (MILL-FRAME-CIRC) 7.3.6.3 F3 RECT (MILL-FRAME-RECT) 7.3.7 F7 3D POCKET (MILL-3DPKT) ... 7.3.7.1...

  • Page 8

    PREFACE The Centurion V has three controllable axes in its basic configuration: X, Y, and Z. This manual assumes that the tool moves with respect to the workpiece. This manual is divided into two sections, M & G code programming and conversational programming. The conversational programming ...

  • Page 9

    AXIS DEFINITIONS All directions are referenced with respect to the tool. The following illustrates the X, Y and Z directions. -X +Z -z -Y +Y FRONT -A--B-0 +Z SPINDLE -X +X -c-i i

  • Page 10

    1. INTRODUCTION A group of commands given to the CNC for operating the machine is called a program. By specifying commands the tool is moved along a straight line or arc, and machine functions such as coolant on/off, tool change or spindle on/off are performed. The function of moving the tool alo...

  • Page 11

    2. Work coordinate system ZERO MACHINE ZERO 3. Local coordinate system LOCAL COORD. ZERO ZERO The position to be reached by the tool is commanded with a coordinate value referenced to one of the above coordinate systems. The coordinate value consists of one component for each axis, X, Y and Z. Co...

  • Page 12

    In incremental mode the tool moves to a point the programmed distance from the current tool position. XO , Y2 X2, YO 2 3 y 4 XO , YO ____ ___ XO, Y -2 X- 2,YO INCREMENTAL 1 - 3

  • Page 13

    1-4

  • Page 14

    2. PROGRAM CONFIGURATION By definition, a program is a group of commands given to the CNC for operating a machine. By specifying commands, the tool is moved along a straight line or an arc, or the spindle motor is turned on and off. In a program, specify the commands in the sequence of actual too...

  • Page 15

    2.2 Program M30 PROGRAM NUMBER BLOCK BLOCK BLOCK END OF PROGRAM Normally a program number is specified at the beginning of a pro-gram, and a program end code (M02, M30) is specified at the end of the program. Neither is required, however, and it may be advan-tageous to omit the program end code f...

  • Page 16

    Subprograms can be used to build part libraries of commonly used patterns. Subprograms can reside anywhere in memory. 2.4 Command format ranges The basic address and command value ranges are listed in Table 1. Note these figures give the maximum numerical limit for the control. These limits will ...

  • Page 17

    2 . 5 Command formats for axes: M and G Codes Axis commands can be programmed in a calculator format. No leading or trailing zeros are necessary. Whole numbers may be programmed without the decimal point. A decimal point may be used with mm, inches or second values. The location of the decimal po...

  • Page 18

    3. PREPARATORY FUNCTIONS G CODES The preparatory function code is a two digit number preceded by the letter G. Preparatory functions are used to deter-mine the program operating mode and are divided into two types, one-shot and modal. One-shot G codes are in effect only during execution of the bl...

  • Page 19

    52 53 54 55-59 60 61 63 64 65 68 69 70 71 72 73 74 80 81 82 83 84 85 86 89 90 91 92 98 99 Local coordinate system set X Machine coordinate system X Work coordinate 1 system X X Work coordinate 2-6 system X Single direction positioning X Exact stop mode X Tapping mode X Cutting X X Non-movement X ...

  • Page 20

    Note 1: Format: GO 0 -- ; where -- is: where ; is: a combination of optional axis address (of X, Y, Z, A, B, C) as X-Y-Z-A- ... End of block (CR for EIA ASCII code) This manual uses this notation hereinafter . The programmed feed remains in the feedrate register and can be activated by cancelling...

  • Page 21

    3.1.2 Linear interpolation G01 -F This command actuates the linear interpolation mode. The value of - defines the distance the tool will travel. The feedrate is set to a cutting feed by the F code and is modal. An example follows: (G91) G01 X20 Y10 F20 ; Y AXIS <END POINT l X AXIS 20.0 < S...

  • Page 22

    The F command can appear anywhere in a block and specifies the rate of motion in inches or millimeters per minute. NO POLAR CENTER ANGLE FROM POLAR CENTER Gl Gl7 XO Y-1 < 0, I ) < 0, I ) 135° +---4E---L-1---T~>--, R I .414 AB45 AB 135 G1 G17 XO Y-1 R1 AA 270 AB 0 AA 0 AS 90 ( -1.0) ( I....

  • Page 23

    3.1.3 Circular interpolation (G02, G03) The general command format to move along a circular arc is as follows: G17 G18 G19 G02 or G03 X y X Z y z or ABR *(1) *(2) *(3 or 6) I J or I K or J K or XC YC R or XC ZC R or YC ZC R or R or R or R or * (4 or 5) AAR AAR AAR F F F * (7) *These numbers are r...

  • Page 24

    1 Data to be given Command Meaning Plane selection G17 Specify arc on XY plane G18 Specify arc on zx plane G19 Specify arc on YZ plane 2 Direction of G02 Clockwise (CW) rotation G03 Counterclockwise (CCW) 3 End point G90 mode Two of X, End point position in position Y, and z work coordinate syste...

  • Page 25

    Method I Describing an Arc Using Incremental Center The end point of an arc is specified by address X, Y or Z, and is expressed as an absolute or incremental value depending on G90 or G91. In incremental the coordinate of the end point is related to the start point of the arc. The arc center is d...

  • Page 26

    Examples: For arc 1 (less than 180°) G2 X6 Y2 R5 F30 For arc 2 (greater than 180°) G2 X6 Y2 R-5 F30 R = -5 CD .. __ __,) -- --START POINT ' . ' . ' . ' .. ' . -----· :~--:::~\~-/ y : \ : R = 5 . ' ' ' X Method III END POINT . . . . ' ' ' . . ' ' ' ' ' ' Describing an Arc Using Absolute Center ...

  • Page 27

    Examples of Trig Help Program 1 ESTIMATED y START POINT ~ /ESTIMATED ,-END POINT (0,0) G1 XO YO X2 Y6 G17 G2 X12 Y6 '~ estimated end point G1 X15 YO X7 Y3 PR[ljRAMMEO PATH estimated start point XC7 YC3 R3 ~ absolute center point y X7 Y3 ( 15,0) X ( 0,0) ( 15,0) X Program 2 Path generated by Progr...

  • Page 28

    G1 XO YO X2 Y1 estimated start point G17 G2 XS Y6 XC4 YC2 R1.5 ~ estimated end point G1 XS YO ( 0, 0) RJ .S ( 4' 2) ( 5, 0) Path generated by Program 2 Program 3 G1 XO YO X7 Y6 G17 G2 XS Y.2 '-----v--' estimated point G1 XS YO ( 7,6) (5,2) ( 5,0) Programmed path estimated point XC4 YC2 R1.5 y ( 0...

  • Page 29

    In general, when dealing with lines and arcs, if the line is programmed short of the arc it will be extended to the arc . If the line is programmed past the arc it will be shortened to the arc, and if the line does not intersect the arc it will be made tangent. Program 4 (9,8) y R2 ( 2.5,2> ( ...

  • Page 30

    Program 5 y ( 2.5.2) ( o.o) Programmed path Gl XO YO X2.5 Y2 estimated point G17 G2 XS Y3 XCS YC4 Rl ~__.J estimated point G17 G3 X9 YS XC7.5 YCS R2 <..._y-/ estimated point Gl X9 YO y (2.5.2> ( 0,0) <7 .5,5> R2 ( 9, 0) X ( 9,0) X Path generated by Program 5 In general when estimating...

  • Page 31

    ** For line/circle and circle/line, the start and end point estimates must lie on the line; i.e. the slopes of the lines entering or leaving the arc must be correct. ** If a line intersects at two points, the estimated point should be closer to the desired point of intersection. ** If the above c...

  • Page 32

    The above formats are written for the XY plane but are valid in any plane or direction. Trig Help is only valid in polar when using an arc with an absolute center point (XC, YC) . Program 6 The following programs will all produce the same part, and which programming method is used is totally opti...

  • Page 33

    3) Absolute coordinates (Cartesian No Trig Help) G90 G1 xo YO X4.2929 Y4.2929 G17 G3 XS.9973 Y6.8737 XC3 YC7 R3 or G17 G3 I-1.2929 J+2 .7071 XS.9973 Y6.8737 or G17 G3 XS.9973 Y6.8737 R3 G2 X8 y. 3 S42 xes YC3 R4 or G2 X8 y. 3 542 R4 G1 YO xo 4) Absolute coordinates (Cartesian Trig Help) G1 xo YO ...

  • Page 34

    3.1.4 Corner rounding By adding: ,R __ to the end of blocks commanding linear or circular interpolation, corner rounding can be automatically inserted. (1) G91 G01 XO YO (2) X1,R.25 (3) X1 Y1 CD 3.1.5 Angle chamfering By adding: ,c __ to the end of blocks commanding linear interpola-tion, angle c...

  • Page 35

    backwards to the start point. When using this function all Trig Help functions are still valid. (1) XO YO (2) X3 Y1 (3) G17 G2 R1 XC3 YCO AB270 (4) G01 XO YO BACK CO W345 Back co W345 (1) XO YO (2) X3 Y1 < 3, I ) extend line backwards from (0,0) use the arc intersection farthest from (0,0) ext...

  • Page 36

    (1) XO YO (2) X3 Y1 (3) G17 G2 R1 XC3 YCO X3 Y-1 (4) G01 XO YO BACK CO W270 W270 ( 1) xo (2) X3 (3) X4 ( 4) xo YO Y1 YO YO ( 3, l) This line doesn't intersect with the arc; therefore, the line will be rotated until it is tangent. BACK CO W345 345° < 3, I l (4 , 0 ) ' ' ' ' ' ' This example us...

  • Page 37

    Note 1: IO, JO and KO can be omitted. Note 2: If X, Y and Z are all omitted or if the end point is located at the same position as the start point, and the center is commanded by I, J and K, an arc of 360° (a complete circle) is assumed. G02I ; (a complete circle) When R is used, an arc of 0° ...

  • Page 38

    z TOOL PATH X y An F command specifies a feedrate along a circular arc. Therefore the feedrate of the linear axis is as follows: F X Length of linear axis Length of circular arc Determine the feedrate so the linear axis feedrate does not exceed any· of the various limit values. 3.2 Dwell comman...

  • Page 39

    3.3 Exact stop (G09) Moves commanded in blocks with G09 decelerate at the end point, and in-position check is performed. This function is used when sharp edges are required for work-piece corners in cutting feed. 3.4 Set data on/off (GlO, Gll) This function allows all the CNC's configuration, set...

  • Page 40

    inches. This function can be initiated in a program or in MDI. G20 is active after power-up. G20 cancels G21. 3.9 Metric dimensioning mode (modal) (G21) This function will cause the system to go into the metric mode. In this mode the system will accept dimensions in millimeters (mm) . This functi...

  • Page 41

    3.11.1 Circular pocket clear (G24) TOOL DOWN The G24 autoroutine is used to clear a circular pocket by starting in the center and spiraling out to the programmed diameter. Circular Pocket Clear Program Nl G20 G90 (Inch/Absolute) N2 GOO XO YO (rapids to center of pocket) N3 SlOOO M3 Dl G43 Hl (spi...

  • Page 42

    3.11.2 Circular finish inside (G25) The G2, G3, G41 and G42 codes are used together to determine not only the direction of cut, but whether the cut is to be an outside or inside cut. Parameters are used which determine the dimension of the circle. The radius of the tool will auto-matically be fig...

  • Page 43

    N9 Figure 2.1 Inside cw Finish Circle G42 G2 selects CW circle and right cutter compensation N9 Figure 2.2 Inside ccw Finish Circle G41 G3 selects CCW direction and left cutter compensation Note: Parameter P150 is the pocket radius. If no finish stock is desired, parameters P153 and P154 should b...

  • Page 44

    Circular Finish Outside Progra~ N1 G20 G9 (Inch/Absolute) N2 81000 M3 D1 G43 H1 (spindle CW-1000 RPM, calls tool #1's offsets) N3 F20 (X-Y feedrate) N4 P150=1 (Boss radius) N5 P153=0 (X-Y finish stock) N6 P154=0 (Z finish stock) N7 G26 G98 G41 G2 R.1 Z-.5 V-.3 Q.2 F5 *1 *2 *3 *3 *4 *5 *6 *7 *8 *1...

  • Page 45

    axes will stay at their current positions until the intermediate point is reached. Then they will position to the reference point along with the other axes. once an intermediate point is programmed it will be remembered until the next G28 is executed (i.e. for use in a G29). The command format is...

  • Page 46

    Example of G28 and G29 y R REFERENCE 4 POINT 3 2 A ( 0, 0) 2 3 4 5 6 X X1 Y1 Point A G28 X3 Y2 Point B then Point R G29 X6 Y1.5 Point B then Point c G30 2nd, 3rd, 4th Reference Point Return This function works in an identical manner to the G28 reference point return except that a 2nd, 3rd and 4th...

  • Page 47

    3.11.7 Rectangular pocket clear (G34) The G34 autoroutine is used to clear a rectangular pocket by starting in the center and working its way out to the finish dimensions. The operation of the autoroutine is identical to the circular routines except that a rectangle with radiused corners is cut. ...

  • Page 48

    y p D <P DCKET !H. 152> / 1\.. START/ Et() \ \ r l \ \ \ \ J X POCKET DIH. !PIS! l j\ -/ c IJIINER RADIUS <PlSDl I-- CUT \IIDTH <PISS> If N11 is G42 G2, the cut direction is cw. If N11 is G41 G3, the cut direction is CCW. 3.11.8 Rectangular finish inside (G35) The G35 autoroutine i...

  • Page 49

    Block # N10 Block # N10 Line Entry Info G2 G42 selects CW direction and right cutter comp '.START/ END Figure 4.1 Inside CW Finish Rectangular X~ P151g>152 Line Entry Info G3 G41 selects ccw direction and left cutter comp '.START/ END Figure 4.3 Block # N10 Block # N10 Inside CCW Finish Rectan...

  • Page 50

    formula the CNC uses to calculate the distance from the center to the feed down point is as follows: Y = (3 X tool radius) + .1 + 1/2 Y pocket width t-----X DIMENSION ------1 [P 151) "' .. --.---.... ------.. ---------.... ----------.. _ ~--:''-+. ,-------------... •, C!J!NER RADIUS [p !SO...

  • Page 51

    Block # N11 Line Entry Info G3 G42 selects ccw direction and right cutter comp START/ /~ Block # N11 Figure 5.1 Outside ccw Finish 3.12 Cutter compensation (G40, G41, G42) G40 Compensation Off G41 Left Compensation G42 Right Compensation Line Entry Info G2 G41 selects CW direction and left cutter...

  • Page 52

    programmed point and a new programmed point is read up to become the next programmed point. This mechanism is repeated over and over again until the end of the program is reached. This sequence should be understood clearly in order to understand many points that will come up later on how the comp...

  • Page 53

    @ ® @ _/)@ ,..... : ® ,__ __ ___;' 0(----------~-------~\_ gJ ® l , ____ t UP~-+--------------~ (;J ---------------------------------_j ® CD (?) START START (A) (8) PATH OF A CUTTER WITH PATH OF A CUTTER WITH o· TOOL DIAMETER NON-ZERO TOOL DIAMETER Figure 7 Explanation of How a 00.0001"...

  • Page 54

    Figure 9 shows how a 00.0001" chamfer or round corner added at point (4) has saved an unnecessary departure. C])r--------------------------------------- ' @ ! _j_.___ .0001 CHAMFER i 'y2:.----(3) IS ADDED : '(' ~ l !0) cw r~j- ------------------------® CD·.--- ~ Figure 9 Outside "V&q...

  • Page 55

    Therefore, the compensation should be turned on before the tool enters the work . For ease of programming, the tool should enter and leave the part perpendicular to the part surface. This is not a strict requirement, but simplifies understanding how the cutter compensation will behave entering an...

  • Page 56

    Step 3 Step 4 Step 5 Check if all paths in the sequence intersect. If yes, then except for the start and end points, connect the displaced path and label points of intersection. If even one inter-section cannot be found, the part will not run if the error is not corrected. @) @ ,r,·--·-·--··...

  • Page 57

    Step 6 The solution is to rearrange the start and end points so that the corner is properly cut. STEP 5 Figure 11.5 Compensation Exercise Step 5 Note how points (1), been moved a little. follows: STEP 6 (2}, (10) and (11) have The result will be as Figure 11.6 Compensation Exercise Step 6 Note: I...

  • Page 58

    some value of the radius they will become identical. If the radius is increased further, the tool radius will have become too large to make that circle and the system will give an error telling the operator that an intersection cannot be found at that line. 3. If a compensated path can be success...

  • Page 59

    slope of (1) to (2) has to be the same as the slope of (9) to (10). In this case the slope is zero. Similarly, the purpose for changing line (9) to (10) is to give past information to the system about line (2) to (3), which happened some 8 blocks earlier. Again, the slope of (9) to (10) has to be...

  • Page 60

    3.12.2 Non-movement (G65) Starting and Ending Cutter Compensation The G65 code placed on a line with coordinates will cause these coordinates to be used for cutter compensation points but skipped during machine movement. G65 X y z Machine will not move to the XYZ coordinates The G65 will allow th...

  • Page 61

    Starting and Ending Cutter Compensation G41 Tool Left D1 = Tool Radius (Previously Set in D1) PIERCE RETRACT 1=point on part before pierce point 2=pierce point 1=last position before retract 2=tool retract position 3=point after retract 3=first cut move G41 01 G65 XO Yl XO YO XI YO G41 01 G65 X-1...

  • Page 62

    Starting and Ending Cutter Compensation G42 Tool Right Dl = Tool Radius (Previously Set in Dl) PIERCE RETRACT l=point on part before pierce point 2=pierce point l=last position before retract 2=tool retract position 3=point after retract 3=first cut move G42 01 G65 XO Yl XO YO XI YO I T 12 -d~-·...

  • Page 63

    Enter-Exit Cutter Compensation Sample Program GO X-5 Yl G41 Dl FlO G65 XO Yl XO YO Gl Z-1 Xl YO Xl Yl XO Yl XO YO G65 Xl YO G40 GO ZO < -5, I) part load/unload point cutter comp. on offset #1 no move compensation point tool down cutter comp. off no move exit point tool up •.. < 0, I ) .--...

  • Page 64

    compensation is turned off in a program- using these routines so that the axis can position to the programmed center. If the compensation center is used, the whole pocket will be shifted. ** If the programmed point rather than the compensated point is desired, a G40 command should be added to the...

  • Page 65

    In the above cases the tool will back up as it tries to place itself tangent to the walls of the slots or vee. This case will give a line-to-arc no intersection error. 3.13 Tool length offset (G43, G44, G49) A tool length offset is activated using a G43 or G44 command. Command format: G43 G44 or ...

  • Page 66

    G43 is a + offset (value in H table is added to axis) G44 is a · offset (value in H table is subtracted from axis) Once a G43 or G44 offset is activated it will remain in effect until cancelled by a G49 or HOO command. The H offsets can be changed throughout the program without cancelling the p...

  • Page 67

    3.14 cancel scaling (G50) Set scaling (G51) Scaling can be commanded at any time during a program by using the G51 command. Command format: G51 I J K X y z I, J, K are the scaling center. If I, J, K are not specified in the G51 line, the scaling center will default to the last center used. The sc...

  • Page 68

    3.15 Coordinate systems The machine zero is a fixed point on the machine. The machine zero point is normally decided by the machine tool builder and set by a limit switch and encoder marker pulse on each axis. The machine zero point is established when the horne command is first executed. Once th...

  • Page 69

    3.15.2 Floating zero (G92) This command establishes the work coordinate system so that the position of the tool becomes the programmed position in the current work coordinate system. · 5 ---------,. P3 ' ' ' ' P2 .5 PI CURRENT WORK COORDINATE SYSTEM NEW G92 COORDINATE SYSTEM If the machine is p...

  • Page 70

    Machine Zero Point. Normally the "Machine Zero Point" and the "Home Position" are the same. WORK WORK 2 WORK 3 WORK 4 WORK 5 G54 G55 G56 G57 G58 G55 Xl Yl moves to Xl Yl in work offset 2 G59 Xl Yl moves to Xl Yl in work offset 6 G54 is always the power on coordinate system ...

  • Page 71

    X2 Y2 3 2 HOME POSITION MACHINE ZERO POINT G52 X1 Y1 X1 Y1 X2 Y2 Using G92 X2 Y2 G92 X1 Y1 X1 Y1 X2 Y2 P4 • P3 • CURRENT MACHINE POSITION AT START P2 2 3 GSS WORK SYS 2 moves to P3 sets zero at P2 dim. rel. P1 stays at P3 moves to P4 moves to P3 sets zero at P2 dim. rel. P3 stays at P3 moves ...

  • Page 72

    Notes: 1. The amount of overrun is preset by the machine tool builder. 2. During canned cycles z axis moves will not be affected. 3. Overrun direction is not affected by mirror imaging. 4. If 11GOO unidirectional approach" was set by the machine tool builder, the same positioning sequence w...

  • Page 73

    y II CENTER OF ROTATION AA ANGLES OF ROTATION X care needs to be taken when using rotation in conjunc-tion with other functions. Functions such as mirror image, scaling and cutter compensation rieed to be thought about carefully when used together with rota-tions. Some of the basic rules are as f...

  • Page 74

    y 5 4 3 2 (Q,Q) ROTATED PART 2 ROTATION CENTER 3 SCALED ROTATION CENTER 4 Part Scaled then Rotated G51 I4 Jl.5 X.9 Y.9 G68 I3 Jl AA45 X3 Yl X5 Y2 X3 Yl G69 G50 3-57 SCALED ROTATED PART SCALING CENTER 5 ORIGINAL PART SCALED PART X

  • Page 75

    5 4 3 2 (Q,Q) y ROTATED PART 2 ROTATION CENTER 3 SCALED ROTATED PART 4 SCALING CENTER 5 Part Rotated then Scaled G68 I3 Jl AA45.00 G51 I4 Jl.S X.9 Y.9 X3 Yl xs Y2 X3 Yl GSO G69 3.22 Cancel mirror image (G70) Set m1rror image (G71) ORIGINAL PART SCALED PART X The mirror image commands allow mirror...

  • Page 76

    4 3 2 ( 0,0) G71 X3.5 X4 Yl.S xs Y2.25 X4 Y3 Y1.5 G70 G71 XO X MIRROR IMAGE MIRRORED PART ""' --~ ""/' : ," : .· ' . ' c:..... : 2 ', ' "' ... , : ', ' ' ... ~ 3 +Y MIRROR CENTER LINE ORIGINAL [>PART 4 5 G70 XO YO ZO NORMAL <NO MIRROR IMAGE> -x-----------...

  • Page 77

    G code G73 G74 G80 G81 G82 G83 G84 G85 G86 G89 3.23 Canned cycles A canned cycle simplifies the program by using a single block with a G code to specify the machining operations usually specified in several blocks. Drilling Operation Retraction Application -z at hole bottom +Z Intermittent -Rapid...

  • Page 78

    \2 ____ EJP.ERATI_ON __ I ____ ? I ' ' ' ' : ' ' ' ' ' ' : OPERATION 2-· POINT R-OPERATION 3-/ OPERATION 4 ' ' 1 ' ' ' ' _.____ INITIAL POINT -.---- OPERATION 6 OPERATION 5 ---------~ RAPID TRAVERSE FEED Figure 14.1 Canned Cycle Operation Positioning is performed on the XY plane and hole machini...

  • Page 79

    Figure 14.2 shows how to specify data in G90 or G91 mode. G90 G91 \2 ___ Q ____ POINT R POINT R t f zo I zo z z 1 POINT Z ~ POINT Z ABSOLUTE INCREMENTAL -------- RAPID TRAVERSE -CUTliNG FEED Figure 14.2 Absolute and Incremental Programming If the tool is to be returned to point R or to the initia...

  • Page 80

    The machining data in a canned cycle is specified as shown below: G X y z R v Q_ p F L L Hole position data L Drilling data Drilling mode Drilling mode Hole position data Drilling data G X y z . R . v Q p F . See Table 3. Specifies hole position by an incremental or absolute value. The path and f...

  • Page 81

    Equally spaced holes can be programmed by use of the L address . • PRESENT POSITION LAST \ MACHINING POSITION "-. FIRST "' MACHINING POSITION G81 X y z R LS F X Y specifies the first and subsequent hole positions in the incremental mode (G91). In the absolute mode (G90), a hole woul...

  • Page 82

    The following is a format of the G72 command: G72 X y R Q_ p K --angll of ~ I ~ 1 position of I # holes bolt circle center ~ in 360° first hole radius # of holes of bolt circle drilled in 360° Program to Drill a 5 Hole 1" Radius Bolt Circle Note: Nl G20 G90 (Inch/Absolute) N2 81000 M3 G43...

  • Page 83

    3.23.2 High speed peck drilling cycle (G73) G73 < G98 > G73 < G99 > -----<~----+---POINT R --~----...,---POINT R ---r---t-----t-- Z ZERO ----r--t-----1- Z ZERO t v i v Q Q Q (] Q Q ----'-~-------''--'---POINT Z -'-------''--'-- POINT Z --------- RAPID TRAVERSE ------- CUTTING FEED ...

  • Page 84

    3.23.3 Left hand tapping cycle (G74) G74 <G98l Q ______ ~::::" ' ' l l SPINDLE CCW t l~OINT R I 1 POINT z DWELL _.- ....__ SPINDLE CW G74 < G99 l \2 _______ 9 i SPINDLE i /[[W trDINTR ! POINT Z DWELL_...- -......._SPINDLE C'tl ···············-RAPID TRAVERSE ---FEED G74 G...

  • Page 85

    3.23.5 Drilling cycle, spot boring cycle (G81) GBI <G9B> GBI < G99 > Q_-< INITIAL Q __ l POINT i t ~ I POINT R t POINT R II I; POINT Z POINT Z ---------- RAPID TRAVERSE ------- CUTTING FEED G81 G98/G99 Z R F The G81 command specifies the drilling cycle. This cycle will do the foll...

  • Page 86

    3.23.6 Drilling cycle, counter boring cycle (G82) G82 < G98 l G82 <G99 l \2 ______ INITIAL \2 _____ 9 POINT : 4 ' ' : l ' ' t i POINT R II POINT Z D'IIELL _...-G82 G98/G99 Z R p ! miNTO I l POINT Z : ---DWELL ·········-RAPID TRAVERSE ------- CUTTING FEED F The G82 command is simil...

  • Page 87

    Note: 3.23.7 Peck drilling cycle (G83) G83 (G98) Q, I I ! ' . : ' h i : ' ' (]I : t ll I Ill i ' POI NTR RO Z ZE t D t I 0 tJ t PDIN T Z G83 <G99> \/_, ; I ------·- RAPID TRAVERSE -CUTTING FEED G83 G98/G99 Z R v Q_D F The G83 command specifies the peck drill cycle. This cycle will do the f...

  • Page 88

    3.23.8 Right hand tapping cycle (G84) GB4 <G98l GB4 (G99l Q _______ -. ~l:J" : 4 Q _____ ? i i SPINDLE C'll i / SPINDLE CW i l,-;mNT R 11 ~Im' 11 ~Imz j POINT Z DWELL..-' -..... SPINDLE CCW DWELL_...- -..._ SPINDLE CC'II --------------- RAPID TRAVERSE ---FEED G84 G98/G99 Z R B p F The G84...

  • Page 89

    3.23.9 Boring cycle (G85) GBS ( G98 > Q ______ -Q INITIAL ' ' POINT ' ' ' ' : ! ' ' ' : POINT R I I POINT Z G85 G98/G99 Z F GBS ( G99 > Q _____ Q i POINT R I POINT Z ········-RAPID TRAVERSE ------- CUTTING FEED The G85 command specifies the boring cycle. At each following axis posi...

  • Page 90

    3.23.10 Boring cycle (G86) G86 ( G9B> GB6 ( G99 > Q _______ , I SPHU£ " Q _____ ! j t INITIAL i i POINT l / SPHIJLE CW t i I! POINTR 11 :II:: i POINT Z \ SPINDLE STIJ' \ SPINDLE STOP ----------- RAPID TRAVERSE --FEED G86 G98/G99 Z R F The G86 command specifies the high speed peck cyc...

  • Page 91

    3.23.11 Boring cycle (G89) G89 <G98 > G89 < G99) Q ___ -<> INITIAL Q ___ ? : ~ POINT ! i i POINT R_ ll ~INTR I I POINT Z POINT Z -DWELL -DWELL ------------ RAPID TRAVERSE --FEED G89 G98/G99 Z p F The G89 command specifies the bore with dwell cycle. At each following axis position ...

  • Page 92

    Note 3: block does not contain the X, Y and R data, drilling is not performed. However, when "G4 X .. is specified, drilling is not performed even if X is specified. If a following block contains a z position by itself, drilling will not be performed. The z axis will, however, rapid to this...

  • Page 93

    Note 6: Note 7: Note 8: When a miscellaneous function is specified in the same block as a canned cycle command, the M code and MF signals are sent at the first positioning operation (Operation 1, page 3-60). The control waits for the finish signal (FIN) at the end of positioning before starting t...

  • Page 94

    negative or positive, depending on where the operator sets the zero coordinate. G90 is active on power up. G90 cancels G91. 2 P3 2 Absolute Positioning G90 XO YO Pl Xl Y1.5 P2 X2 Y2 P3 3.24.2 Incremental mode (modal) (G91) This function causes the control to go into the incre-mental mode. In this...

  • Page 95

    2 2 Incremental Positioning G90 XO YO Pl G91 Xl Yl.5 P2 Xl Y.5 P3 3.25 Floating zero (G92) Refer to Section 5.4 on floating zero. 3.26 Return to initial level or toR level (G98/G99) These two G codes are only used when the control is in one of the z axis canned cycles (G73 thru G89) or autoroutin...

  • Page 96

    4. MISCELLANEOUS FUNCTIONS (M Functions) The miscellaneous function codes are one or two digit numbers pre-ceded by the letter M. If the code is less than 10, zero entry is optional (M02 or M2). These codes are used to perform a variety of machine and control functions as listed in the table belo...

  • Page 97

    All M codes except M98 and M99 produce an M strobe and an 8 bit BCD number on the M,S,T buss. 4.1 Program stop (MOO) The execution of the program is halted on the block containing the MOO. Program execution will be resumed when CYCLE START is pushed. If MOO is on a line with a move command the mo...

  • Page 98

    after the tool change complete signal is received to resume program operation. For safety reasons a manual tool change should never be attempted unless the machine is in an M06 tool change command. 4.7 Coolants on/off (M07, MOS, M09) These codes turn the coolants on (M07 mist, M08 flood) before a...

  • Page 99

    it as it's running. (Refer to Utilities, Section on DNC.) A general rule of thumb when writing a program with loops is to do an M90, Graphics Off, after the first loop. This prevents redundant lines from building up in the graphic memory. After the loop is finished M91, Graphics On, can be execut...

  • Page 100

    4.13.1 Preparation of subprogram A subprogram is prepared in the following format: 0 xxxx M99 At the top of a subprogram a program the program is specified after "0". the end of a subprogram is optional. called by an M98, an M02, M30 or MOO programs are entered into memory the programs....

  • Page 101

    The execution sequence of a main program which calls a subprogram is as follows: MAIN PROGRAM NOOlO N0020 ------------· J ------------· J N0030 M98 P40l0 L2; N0040 ------------· J NOOSO M98 P4010 N0060 ------------· , _____ ___ 2 SUBPROGRAM 3 04010; N0020 -------- · J N0030 --------· J N004...

  • Page 102

    4.14 Text command The Centurion V has a lettering command which can be used to engrave serial numbers or other descriptions. The text cycles must be loaded by setting the Load Text Cycles parameter, MAIN-PARMS-CTRL. (0 = disable text cycle; 1 = enable text cycle.) The control must be rebooted aft...

  • Page 103

    4-8

  • Page 104

    5. FRONT PANEL OPERATION Diagram of Main Screen Runtime: 000:00:00 I MAIN I ACTIVE: 01111 CURRENT X 00.0000 y 00.0000 z 00.0000 TIMES AT 100% GRAPHICS AREA RUN: 000:00:00 FEED: 000:00:00 RAPD: 000:00:00 DISTANCE: 0000.0000 Fl F2 F3 F4 F5 F6 F7 F8 F9 FlO ESC HOME JOG HDW RUN MDI DISPL PARMS PROG V...

  • Page 105

    function is the sequence of keys to push to get to that function from the main menu. If a button is blinking, that is the next button to push in a normal sequence of operation. Highlighted keys on the CRT mean they are the currently selected mode or their functions are available for use on this s...

  • Page 106

    stop all machine actions instantly. Once- .the EM STOP button is pushed, the RESET button will flash indicating that it must be pushed before any machine functions can be restarted. The control is always in an EM STOP state after Power On. The following diagram shows the layout of a Centurion V f...

  • Page 107

    5.2 Home sequence (Fl HOME) MAIN-HOME After a power off sequence the control will always have to be homed. Each axis will seek a home limit switch and a marker pulse on the encoder. After this procedure is finished the machine's reference position will be established and will be remembered until ...

  • Page 108

    The F keys across the bottom of the screen are used to select the type of Jog desired. Fl selects slow jog which is about 20 ipm at 100% feedrate override. The feed override is active and can be used to speed up or slow down the jog speed. F2 selects rapid jog which is a feedrate of about 100 ipm...

  • Page 109

    The F keys across the bottom of the screen are used to select which axis will move when the handwheel is turned. The feedrate override switch will determine the distance each axis will move for one click of the pulse generator. A feed override of 10% will cause the axis to move .0001 inch for eac...

  • Page 110

    tool length offset for tool #1 has been set. Now when tool #1 is programmed to a position, it will position in reference to part zero. Repeat this procedure for each tool. A tool length offset can also be set by entering a value into a tool offset register, The value can be measured by touching t...

  • Page 111

    the X or Y axis back toward the part the distance of the edge finder radius and depress X-FLZ or Y-FLZ again. Another way to set the floating zero is as follows: Using a 1/2 11 diameter edge finder in the X axis, handwheel or jog to the edge of the part. Establish whether the edge finder is posit...

  • Page 112

    5.5 Run F4 RUN (MAIN-RUN) Run is used to execute the active program. Upon pushing the RUN button the following screen appears: Runtime: 000:00:00 I MAIN-RUN I ACTIVE: 01111 CURRENT NEXT X 00.0000 00.0000 y 00.0000 00.0000 z 00.0000 00.0000 Camp : Cancelled Tool : 00 Length : 00.0000 Radius : 00.0...

  • Page 113

    Runtime: 000:00:00 I MAIN-RUN-START I ACTIVE : 01111 CURRENT X 00.0000 y 00.0000 z 00.0000 NEXT 00.0000 00.0000 00.0000 Comp : Cancelled Tool : 00 Length : 00.0000 Radius : 00.0000 Plane : XY (system #1) Coords : Cartesian Interp : Linear (Feed) Feed : 000.0 ipm (00%) : 000.0 ipm Units : Abs/Engl...

  • Page 114

    Runtime: 000:00:00 I MAIN-RUN I ACTIVE: 00000 CURRENT NEXT X 00.0000 00.0000 y 00.0000 00.0000 z 00.0000 00.0000 Camp : Cancelled Tool : 00 Length : 00.0000 Radius : 00.0000 Plane : XY (system #1) Coords : Cartesian Interp : Linear (Feed) Feed : 000.0 ipm (00%) : 000.0 ipm Units : Abs/English Cyc...

  • Page 115

    Note: that will happen when a "Resume" "Cycle Start" is executed is z will retract to the tool change position, all the way up. Next, X and Y will rapid to the halted point. Once X and Y are in position a "Cycle Start" will be requested. When CYCLE START is pushe...

  • Page 116

    Runtime: 000:00:00 I MAIN-RUN-DISPL I ACTIVE: 01111 CURRENT X 00.0000 y 00.0000 z 00.0000 NEXT 00.0000 00.0000 00.0000 Comp : Tool : Length : Radius : Plane : Coords . . Interp : Feed : ( 00%) : Units : Cycle : Dwell : Spindle : (00%) : Coolant : Cancelled 00 00.0000 00.0000 XY (system #1) Cartes...

  • Page 117

    5.5.5.3 F3 GRAPH (MAIN-RUN-DISPL-GRAPH) If the GRAPH key is activated the control switches from displaying text to a graphic display of the active part program. The following screen will appear. Runtime: 000:00:00 MAIN-VERF-DISPL-GRAPH ACTIVE: 01111 CURRENT X 00.0000 y 00.0000 z 00.0000 TIMES AT ...

  • Page 118

    feedrate override setting. The distance display gives the total inches the machine has travelled during the program. This display is intended to help in estimating tool wear. The Runtime at the top of the screen is basically a stop watch which starts when a Run Program command is executed and sto...

  • Page 119

    (Fl -XY, F2 -XZ, F3 -Y2, F4 -ISO) The Fl, F2, F3 and F4 keys give the four standard rotations of a part: XY plane, XZ plane, YZ plane and isometric views. The orientation index in the upper left corner of the screen shows the current part orien-tation and rotates to show what the new orientation ...

  • Page 120

    5.5.5.3.2 F2 PAN (MAIN-RUN-DISPL-GRAPH-PAN) The F2 PAN key selects the Pan function (PAN) which allows the operator to pan around a part. The following display will appear. Runtime: 000:00:00 MAIN-RUN-DISPL-GRAPH-PAN ACTIVE: 01111 CURRENT X 00.0000 y 00.0000 z 00.0000 TIMES AT 100% RUN: 000:00:00...

  • Page 121

    5.5.5.3.3 F3 WIND (MAIN-RUN-DISPL-GRAPH-WIND) The F3 WIND key selects the window function which allows the operator to window in on a particular area of the part. The following display will appear when Window is selected. Runtime: 000:00:00 MAIN-RUN-DISPL-GRAPH-WIND ACTIVE: 01111 CURRENT X 00.000...

  • Page 122

    5.5.5.3.4 F4 AUTO (MAIN-RUN-DISPL-GRAPH-AUTO) The F4 key selects the auto zoom function. This function automatically scales and centers any part on the screen. Normally an Auto has to be done after a part is rotated to get it back to the center of the screen. 5.5.5.3.5 F5 ZOOM- (MAIN-RUN-DISPL-GR...

  • Page 123

    5.5.5.3.10 FlO CLEAR (MAIN-RUN-DISPL-GRAPH) The FlO key clears the current display buffer. After the clear screen command nothing will be displayed until either the program is Verified or Run again. It is generally used to clear MDI moves from the graphic display before running or verifying a pro...

  • Page 124

    Runtime: 000:00:00 I MAIN-RUN-DISPL-DIAG X-axis Input Estopped CW Spindle ccw Spindle Up To Speed Tool Change Lube Fault Wait Channel X Input 08 X Input 09 X Input 10 X Input 11 Home Switch Marker Pulse F1 X F2 y 0 1 1 0 1 0 1 0 0 0 0 1 0 F3 z X-axis Output Force Estop 0 Mist Coolant 0 Flood Cool...

  • Page 125

    Runtime: 000:00:00 I MAIN-RUN-DISPL-DIAG I ACTIVE: 01111 Y-axis Input Y-axis Output y Input 01 1 y Output 01 1 y Input 02 1 y Output 02 1 y Input 03 1 y Output 03 1 y Input 04 1 y Output 04 1 y Input 05 1 y Output 05 1 y Input 06 1 y Output 06 1 y Input 07 1 y Output 07 1 y Input 08 1 y Output 08...

  • Page 126

    Runtime: 000:00:00 I MAIN-RUN-DISPL-DIAG I ACTIVE: 01111 Z-axis Input z Input 01 1 z Input 02 1 z Input 03 1 z Input 04 1 z Input 05 1 z Input 06 1 z Input 07 1 z Input 08 1 z Input 09 1 z Input 10 1 z Input 11 1 Home Switch 1 Marker Pulse 0 F1 F2 F3 X y z Z-axis Output z Output 01 1 z Output 02 ...

  • Page 127

    Runtime: CURRENT X 00.0000 y 00.0000 z 00.0000 5.5.6 F7 MENU (MAIN-RUN-MENU) The F7 key selected from the Run or Verify screen brings up a window containing a listing of all the available programs which can be run. The F7 Menu option is also available from the Program screen (MAIN-PROG-CONV-MENU)...

  • Page 128

    5.5.7 F8 DRY (MAIN-RUN-DRY) When the dry run switch is active all program feedrates will run at the dry run feedrate. 5.6 Manual data input F5 MDI (MAIN-MDI) The F5 key on the Main menu selects the MDI (manual data input) function. Through MDI any programmable machine function can be executed one...

  • Page 129

    5.7 Display F6 DISPL (MAIN-DISPL) See explanation under MAIN-RUN-DISPL. This function can be entered from either screen. 5.8 Parameters F7 FARMS (MAIN-FARMS) The F7 key from the main screen brings up this parameter screen. Runtime: 000:00:00 I MAIN-PARMS I ACTIVE: 01111 CURRENT NEXT X 00.0000 00....

  • Page 130

    Runtime: CURRENT X 00.0000 y 00.0000 z 00.0000 F1 LEVEL 5.8.1 Fl SETUP (MAIN-PARMS-SETUP) The Fl selection brings up the parameters which make the control unique to a particular machine or application. When Fl SETUP is selected the following screen appears. 000:00:00 I MAIN-PARMS-SETUP-LEVEL I AC...

  • Page 131

    The CNC requires a Validation Code and an Access Level number to allow the machine setup parameters to be displayed or changed. The validation code and access levels are supplied by the machine tool builder and should be part of the system parameter setup sheet. Assuming the proper codes have bee...

  • Page 132

    5.8.2 F2 PREC (MAIN-PARMS-SETUP-PREC) If the F2 selection for Machine Precision is made, the following screen will be displayed. Runtime: 000:00:00 I MAIN-PARMS-SETUP-PREC I ACTIVE: 01111 CURRENT NEXT X 00.0000 00.0000 y 00.0000 00.0000 z 00.0000 00.0000 Comp : Cancelled Decimal Precision Tool : ...

  • Page 133

    the control except axes. The axis parameters are set separately in the 11Axis 11 parameters. 5.8.3 F3 MACH (MAIN-PARMS-SETUP-MACH) 5.8.3.1 F3 POWON (MAIN-PARMS-SETUP-MACH) Machine parameters are parameters which directly relate to the configuration of the machine tool and will normally be set by ...

  • Page 134

    Machine Units Number of Axes Feed Unit Power On Feedrate Spindle Unit Spindle Axis Tool Change 100% Rapid/Run 100% Rapid/Dry Spindle On Dry Can be either English or Metric and depend on the feedback or screw type Can be 1 to 7 Can be inch/rom/minute or revolutions/minute Can be any number up to t...

  • Page 135

    Runtime: 000:00:00 I MAIN-PARMS-SETUP-MACH I ACTIVE: 01111 CURRENT NEXT X 00.0000 00.0000 y 00.0000 00.0000 z 00.0000 00.0000 Feediate Oveiiide Settings Comp : Cancelled Tool : 00 1-000 5-040 9-080 13-120 Length : 00.0000 Radius : 00.0000 2-010 6-050 10-090 14-130 Plane : XY (system #1) COO IdS :...

  • Page 136

    Runtime: 000:00:00 I MAIN-PARMS-SETUP-MACH I ACTIVE: 01111 CURRENT NEXT X 00.0000 00.0000 y 00.0000 00.0000 z 00.0000 00.0000 Handwheel Override Settings Comp : Cancelled Tool : 00 Length : 00.0000 1-000 5-015 9-040 13-080 Radius : 00.0000 Plane : XY (system #1) 2-001 6-020 10-050 14-090 Coords :...

  • Page 137

    Runtime: 000:00:00 I MAIN-FARMS-SETUP-MACH CURRENT NEXT X 00.0000 00.0000 y 00.0000 00.0000 z 00.0000 00.0000 Spindle Override Settings 1-000 5-040 9-080 13-120 2-010 6-050 10 - 090 14-130 3-020 7-060 11-100 15-175 4-030 8-07 0 12-110 16-200 F1 F3 F4 FS F6 EDIT POWON FDOVR HWOVR SPOVR Keys displa...

  • Page 138

    5.8.4 F4 AXIS (MAIN-PARMS-SETUP-AXIS) If the F4 selection, AXIS, is pushed the following screen will be displayed. Runtime: 000:00:00 I MAIN-FARMS-SETUP-AXIS I ACTIVE: 01111 CURRENT NEXT X 00.0000 00.0000 y 00.0000 00.0000 z 00.0000 00.0000 Axis Address Label *** Comp : Cancelled Pulses Per Unit ...

  • Page 139

    list of all the selectable parameters displayed in this mode and a description of their functions. Axis Address Label ASCII code assigned to each axis X 88.0000 y 89.0000 z 90.0000 Pulses Per Unit X 10000.0000 y 10000.0000 z 10000.0000 Home Position X 00.0000 y 00.0000 z 00.0000 Home Direction X ...

  • Page 140

    Rapid Ace/Dec Home Sequence X 02.0000 y 02.0000 z 01.0000 Velocity Toward Home X 60.0000 y 60.0000 z 60.0000 40.000 The Ace/Dec constant is a number between 1 and 200 that determines the rate at which the axis velocity is stepped up. The smaller the number the longer the Ace/Dec times will be. Ac...

  • Page 141

    In Position X 00.0000 y 00.0000 z 00.0000 GOO Unidirectional X 00.0000 y 00.0000 z 00.0000 G60 Unidirectional X 00.0000 y 00.0000 z 00.0000 Backlash X 00.0000 y 00.0000 z 00.0000 Excess Error X 00.0000 y 00.0000 z 00.0000 Rotary=O Linear=1 X 01.0000 y 01.0000 z 00.0000 English Leading X 02.0000 y...

  • Page 142

    Metric Leading X 03.0000 y 03.0000 z 03.0000 Metric Trailing X 03.0000 y 03.0000 z 03.0000 Home Switch=O Marker=l X 00.0000 y 00.0000 z 00.0000 G28 Reference Point X 00.0000 y 00.0000 z 00.0000 G30 Reference Point2 X 00.0000 y 00.0000 z 00.0000 G30 Reference Point3 X 00.0000 y 00.0000 z 00.0000 G...

  • Page 143

    5.8.5 F5 MISC (MAIN-PARMS-SETUP-MISC) The F5 key brings up some miscellaneous setup parameters dealing with the spindle, RS-232 and M codes. When MISC is selected the following screen appears: Runtime: 000:00:00 I MAIN-PARMS-SETUP-MISC l ACTIVE: 01111 CURRENT NEXT X 00.0000 00.0000 y 00.0000 00.0...

  • Page 144

    executed after the completion of an axis move. As an example, if M5 were to be executed after moves, it would be entered in the table as follows: Post M code #1 05.0000 1 M05 5.8.6 F2 COORD (MAIN-PARMS-COORD) The F2 key off the parameter screen brings up the parameters dealing with the various co...

  • Page 145

    Runtime: 000:00:00 I MAIN-PARMS-COORD I ACTIVE: 01111 CURRENT NEXT X 00.0000 00.0000 y 00.0000 00.0000 z 00.0000 00.0000 Work G92 *** Comp : cancelled Work G52 *** Tool : 00 work Coord 1 *** Length : 00.0000 work Coord 2 *** Radius : 00.0000 Work Coord 3 *** Plane : XY (system #1) Work Coord 4 **...

  • Page 146

    5.8.7 F3 TOOL (MAIN-PARMS-TOOL) The F3 TOOL key brings up the following screen. Runtime: 000:00:00 I MAIN-PARMS-TOOL I ACTIVE: 01111 CURRENT NEXT X 00.0000 00.0000 y 00.0000 00.0000 z 00.0000 00.0000 Tool Length (H) Radius (D) Comp : Cancelled TOl 01.0000 00.2500 Tool : 00 T02 00.0000 00.1000 Len...

  • Page 147

    5.8.8 F4 DOFF (MAIN-PARMS-D OFF) The F4 D OFF key displays the 99 D radius offsets available on the CNC. These offsets are accessed and edited in the same manner as all other 11Parameters 11• Following is the D offset screen. Runtime: 000:00:00 I MAIN - PARMS-D OFF I ACTIVE: 01111 CURRENT NEXT ...

  • Page 148

    5.8.9 F5 HOFF (MAIN-PARMS-H OFF) The F5 key displays the 99 H tool length offsets available on the control. These offsets are accessed and edited in the same manner as all other "Parameters." The H offset screen follows: Runtime: 000:00:00 I MAIN-PARMS-H OFF I ACTIVE: 01111 CURRENT NEXT...

  • Page 149

    5.8.12 F8 PROG (MAIN-PARMS-PROG) This set of 125 parameters gives the machine programmer access to all the internal parameters the CNC is using to execute a program. Normally these parameters would be used for display purposes only as an aid to program debugging. However it is possible to read an...

  • Page 150

    P252 P253 P254 P260 P261 P262 P263 P264 P265 P266 P267 P270 thru P303 P304 P305 P306 P307 P308 P309 P310 P311 P312 P313 P314 P315 P316 current dwell time Current spindle speed Temporary Contains active tool number Contains active D tool radius Contains active H tool length Contains active D offse...

  • Page 151

    P317 P318 P319 P320 thru P322 P323 P24 Rotation on/off Mirror image on/off Current work coordinate number Gives the primary, secondary and tertiary axis based on plane selection X=1 Y=2 Z=3 . etc. For G17 pri=1 sec=2 ter=3 For G18 pri=1 sec=2 ter=3 Current return plane z dimension relative machin...

  • Page 152

    Plll P120 thru P139 P140 P141 P142 P143 Pl44 P145 P146 P147 P148, P149 P150 P151 P152 P153 P154 P155 P156 P157 P158 P159 P160 thru P171 P172 thru P179 Wall seek activate Used by 3D pocket R plane dimension Final Z depth of canned cycle Initial level of canned cycle z increments of canned cycle Fi...

  • Page 153

    Pl80 thru Pl87 Pl88 thru Pl95 Pl96 Pl97 Pl98 Pl99 Coordinates of the scaling center for the enabled axis Pl80=X Pl8l=Y Pl82=Z . etc. Scale factor for each of the enabled axes Pl88=X Pl89=Y Pl90=Z . etc. I, J, K position of primary axis center of rotation I, J, K position of secondary axis center ...

  • Page 154

    Pressing the PROG key will change the soft keypad to allow selection of the type of programming wished, or to transfer programs to or from the floppy disk drive. Runtime: 000:00:00 I MAIN-PROG I ACTIVE: 00000 CURRENT X 00.0000 y 00.0000 z 00.0000 Fl F2 NEXT 00.0000 00.0000 00.0000 F3 Comp : Tool ...

  • Page 155

    Runtime: 000:00:00 I MAIN-PROG-TEXT lEDITING: 01234 CURRENT NEXT X 00.0000 00.0000 y 00.0000 00.0000 z 00.0000 00.0000 F1 F2 EDIT NEW F3 OLD F7 MENU Comp : Tool : Length : Radius : Plane : Coords : Interp : Feed : (00%) : Units : Cycle : Dwell : Spindle : (00%) : Coolant : Cancelled 00 00.0000 00...

  • Page 156

    Cursor The cursor is a small line on the screen that marks where changes are being made to the text Entering and Editing Text You enter text in much the same way as you enter text on a typewriter, and most of the keys on the keypads behave in the same fashion (pressing ENTER terminates a block, f...

  • Page 157

    Runtime: CURRENT X 00.0000 y 00.0000 z 00.0000 GO zo X1.5 Y8 X-1.5 Y- 8 Xl. 5 YO XO YO G98 F20 P151=3 P152=16 P153=0 P154=.1 G81 XO YO G80 Fl F2 (MAIN-PROG-TEXT-EDIT) The first screen you will see when entering the text editor is the edit screen with the first 16 lines of the program displayed. A...

  • Page 158

    Fl F2 BEGIN END F3 Although marked blocks are normally high-lighted so you can see what you've marked, the block may be hidden (or made visible) with the Hide block command. FS F6 F7 F8 ESC WORD HIDE DEL COPY MOVE ESC Fl BEGIN Marks the beginning of a block. The marker itself is not visible on th...

  • Page 159

    Fl F2 BBLOK EBLOK Fl F2 IF THEN F3 F4 5.9.1.1.2 F2 CURSR (MAIN-PROG-TEXT-EDIT-CURSR) The CURSR menu contains extended cursor movement commands: FS F6 F7 FB F9 FlO ESC TAB MARK TOF EOF PGUP PGDN LEFT RIGHT ESC F3 Fl BBLOK Moves the cursor to the position of the block-begin marker. F2 EBLOK Moves t...

  • Page 160

    Fl F2 UNDO REST F3 F4 5.9.1.1.4 F4 MISC (MAIN-PROG-TEXT - EDIT-MISC) This section discusses a number of commands that do not readily fit into any of the other categories. FS F6 F7 FB F9 ESC HDW MSET MHIDE UNDEL CHNG FIND FNEXT ESC Fl UNDO F2 REST F3 HDW IF! I Restores whole lines deleted with the...

  • Page 161

    F8 FIND to 67 characters. After entering the search string, you are asked to enter the replacement string. The last replacement string entered, if any, will be displayed; you may accept it, edit it, or enter a new string. Finally you are prompted for options. The options you used last are display...

  • Page 162

    Note: W Searches for whole words only; skips matching patterns embedded in other words. If the text contains a target matching the search string, the target is high-lighted and the cursor is positioned just beyond it. F9 FNEXT Repeats the last search operation. If the last search command called f...

  • Page 163

    asking if the changes should be accepted and stored. Pressing "Y" will accept the changes and alter the program file. Pressing "N'' will abort the changes and leave the file unchanged. 5.9.1.2 F2 NEW (MAIN-PROG-TEXT-NEW) The NEW key will allow entry (in the message box) of a number...

  • Page 164

    Runtime: CURRENT X 00.0000 y 00.0000 z 00.0000 5.9.1.4 F7 MENU (MAIN-PROG-TEXT-MENU) The MENU key will display a list of all text programs currently loaded in RAM memory. By using the F7 - FlO keys the file selection arrows are positioned at the program to edit, and the F5 ENTER key is pressed to...

  • Page 165

    Runtime: CURRENT X 00.0000 y 00.0000 z 00.0000 While programming in the conversational system, three types of softkey configurations will be encountered. They are: 5.9.1.5 STORE/INPUT KEYS 000:00:00 I MAIN-PROG-CONV ~EDITING: P1234 NEXT 00.0000 00.0000 00.0000 Program Setup Comp : Cancelled Tool ...

  • Page 166

    Definitions of the Store/Input keys are as follows: Fl STORE Accepts the entries and adds to the program file. If all required data has not been entered the STORE key will not work and the cursor will position to the field requiring input. Each screen stored is called an event. F3 TOGL F5 DEL F7 ...

  • Page 167

    5.9.1.6 EDIT KEYS Runtime: 000:00:00 I MAIN-PROG-CONV I EDITING: P1234 CURRENT NEXT X 00.0000 00.0000 y 00.0000 00.0000 z 00.0000 00.0000 EVENT 0020 Comp : Cancelled -END OF PART-Tool : 00 Fl EDIT Length : 00.0000 Radius : 00.0000 Plane : XY (system #1) Coords : cartesian Interp : Linear (Feed) F...

  • Page 168

    will continue until the EXIT softkey is pressed in the menu subsystem. F7 DEL Will delete the event currently being displayed. F9 PREV Displays the previous event in the program file. FlO NEXT Displays the next event in the program file. ESC EXIT Exits the conversational system and automati-cally...

  • Page 169

    5.9.2 F2 CONV (MAIN-PROG-CONV) This next section will deal with selecting conversa-tional programs. Upon entering the conversational programming mode, the active window in the upper right hand corner will switch to show the last conversational program edited. Runtime : 000:00:00 I MAIN-PROG - CON...

  • Page 170

    Fl POS 5.9.2.2 F2 NEW (MAIN-PROG-CONV-NEW) Pressing the NEW key will ~llow entry, in the message box, of a number for a new conversational program. After the number has been entered, the control will check the conversational programs currently in RAM memory to see if a program by that number is a...

  • Page 171

    CONVERSATIONAL SYSTEM FLOWCHART Menu Subsystem POS MILL I--START f--<;EOM CLINE ARC -MISC -END 1--POCK [ SETUP CIRC t CLEAR F IN RECT t CLEAR F IN .___ FRAME t SETUP CIRC RECT DRILL 1--START 1--DRILL 1--D/DWL 1--PECK 1--WPECK I--BORE 1--B/DWL .___ TAP I--POS 1-MISC 1--SUB '-- END BOLT -DRILL -...

  • Page 172

    Fl thru F8 will either bring up an input screen (e.g. Fl-POS) like this: Runtime: 000:00:00 I MAIN-PROG-CONV IEDITING:Pl234 CURRENT NEXT X 00.0000 00.0000 y 00.0000 00.0000 z 00.0000 00.0000 Position Comp : Cancelled Tool : 00 Feedrate [RAPID ] Length : 00.0000 Coordinates [CARTESIAN] Radius : 00...

  • Page 173

    5.9.2.5 F7 MENU (MAIN-PROG-CONV-MENU) The MENU key will display a list of all conversational programs currently loaded in RAM memory. Runtime: 000:00:00 I MAIN-PROG-CONV-MENU .I EDITING: P1234 CURRENT NEXT X 00.0000 00.0000 y 00.0000 00.0000 z 00.0000 00.0000 P1234 P1235 P9900 (PART 01-1 FLANGE )...

  • Page 174

    times, are valid during verify and can be used to estimate machining times. The program which is verified is the active program. To get coordinate information to compare against a print, put the control in block mode and step through the program. The cursor in the graphic mode will step around th...

  • Page 175

    Runtime: 000 : 00:00 I MAIN -VERF-START CURRENT X 00.0000 y 00.0000 z 00 . 0000 NEXT 00.0000 00.0000 00.0000 F1 F2 F3 FIRST BLOCK TOOL Comp Tool Length Radius Plane Coords Interp Feed (00%) Units Cycle I ACTIVE: 01111 : Cancelled : 00 : 00.0000 : 00.0000 : XY (system #1) : Cartesian : Linear (Fee...

  • Page 176

    Runtime: 000:00:00 I MAIN-VERF I ACTIVE: 00000 CURRENT NEXT X 00.0000 00.0000 y 00.0000 00.0000 z 00.0000 00.0000 BLOCK F2 F3 F4 FS F6 RESUM BLOCK OSTOP BSKIP DISPL Comp Tool Length Radius Plane Coords Interp Feed (00%) Units Cycle Dwell Spindle (00%) Coolant F8 DRY : Cancelled : 00 : 00.0000 : 0...

  • Page 177

    Note: executed is z will retract to the tool change position, all the way up. Next, X and Y will rapid to the halted point. Once X andY are in position a "Cycle Start" will be requested. When CYCLE START is pushed the Z axis will rapid to the R plane and then feed to its pre-vious dept...

  • Page 178

    Runtime: 000:00:00 I MAIN-VERF-DISPL I ACTIVE: 01111 CURRENT X 00.0000 y 00.0000 z 00.0000 NEXT 00.0000 00.0000 00.0000 Comp : Tool : Length : Radius : Plane : Coords : Interp : Feed : (00%) : Units : Cycle : Dwell : Spindle : (00%) : Coolant : Cancelled 00 00.0000 00.0000 XY (system #1) Cartesia...

  • Page 179

    5.10.5.3 F3 GRAPH (MAIN-VERF-DISPL-GRAPH) If the GRAPH key is activated the control switches from displaying text to a graphic display of the active part program. The following screen will appear. Runtime: 000:00:00 I MAIN-VERF-DISPL-GRAPH I ACTIVE: 01111 CURRENT X 00.0000 y 00.0000 z 00.0000 TIM...

  • Page 180

    Fl This display is intended to help in estimating tool wear. The Runtime at the top of the screen is basically a stop watch which starts when a Run Program command is executed and stops at the end of program or when the program is aborted. The two runtimes can be compared at the end of a program ...

  • Page 181

    5.11.1.1 F1 LOAD (MAIN-UTIL-FILES-LOAD) This function is used to load programs from the floppy disk into the control's program memory. When this function is selected the following screen is displayed: Runtime: 000:00:00 I MAIN·UTIL-FILES-LOAD I ACTIVE: 01111 CURRENT X 00.0000 y 00.0000 z 00.0000...

  • Page 182

    F4 ALL F5 NONE F7 i F8 ~ Selects all programs on floppy disk to be loaded. Unselects all selected programs. Moves selection cursor up one line. Moves selection cursor down one line. F9 PGUP Moves selection cursor up 16 lines. FlO PGDN Moves selection cursor down 16 lines. 5.11.1.2 F2 SAVE (MAIN-U...

  • Page 183

    5.11.1.7 F7 MENU (MAIN-UTIL-FILES-MENU) This key will display a list of text or conversational programs currently in program memory. 5.11.1.8 F9 ERASE (MAIN-UTIL-FILES-ERASE) This function is used to erase programs from the control's program memory. The keys available are the same as those in the...

  • Page 184

    5.11.2.1 (F3 DNC) MAIN-UTIL-RS232-DNC When this key is pressed the following screen appears: Runtime: 000:00:00 I MAIN-UTIL-RS232-DNC I ACTIVE: 01234 CURRENT NEXT X 00 . 0000 00.0000 y 00 . 0000 00 . 0000 z 00.0000 00.0000 Waiting for DNC link Camp : Cancelled Skipcount : 0 Blocks : 0 F1 F2 DISKl...

  • Page 185

    5.11.2.1.1 F1 DISK1 DISK1 will allow the selection of a program from program memory to be DNC'd. 5.11.2.1.2 F2 DISK2 DISK2 will allow the selection of a program from floppy disk to be DNC'd. 5.11.2.1.3 F9 SKIP This function key allows entry of a skip count. The skip count is the number of program...

  • Page 186

    Note: 5.11.2.3 F5 SEND (MAIN-UTIL-RS232-SEND) The SEND option is used to send programs from the control's program memory to an off-line computer. The softkeys for this function are simply: IF~ENU I I ESC ESC F1 BEGIN Starts transmission of the active send program. F2 MENU Allows selection of a pr...

  • Page 187

    5-84

  • Page 188

  • Page 189

    6. PARAMETRIC PROGRAMMING Parametric programming is similar to macro programming in that equations can be used to specify axis position rather than decimal numbers. The Centurion V does not restrict the use of parametrics to subroutines or macros. They can be used anywhere throughout a program. P...

  • Page 190

    6.3 Parametric operators 6.3.1 Arithmetic operators The following table shows the available arithmetic operators: Operator + * I DIV MOD Operation addition subtraction multiplication division integer division remainder The value of A div B is the mathematical quotient of A/B with any fractional p...

  • Page 191

    6.5 Function operators A function call is specified by the function name (e.g. SIN, ATAN, .) followed by the function argument in brackets. When a function is used for a coordinate position it must be contained in brackets. Examples: X [SIN [45]] Y [ATAN [1/2]] Z [SQRT [9]] A function returns a v...

  • Page 192

    ROUND - rounds a decimal value to an integer value. Values halfway in-between are rounded up. ROUND [2.3] = 2 ROUND [7.88] = 8 ROUND [1.5] = 2 ROUND [ - 1. 5] = 1 6.6 Mathematic expressions Expressions are made up of arithmetic operators and operands. Any combination of the previously described o...

  • Page 193

    Examples: IF [P1*P3/COS[P90]] GE [TAN[P6]] THEN X1 IF [P4/P3] LT [P6] GOTO 25 IF P1 = P2 THEN P4 = P5 - P6 The second type of conditional statement is the WHILE-WEND statement . A WHILE statement contains an expression that controls the repeated execution of the blocks contained between the WHILE...

  • Page 194

    The CALL format is as follows: CALL xxxx Program Number LXX Loop Count (Optional) If the L is omitted the called program will be executed once. The call statement is the same as an M98. 6.11 GOSUB and RETURN A GOSUB transfers program execution to the block number specified in the GOSUB statement....

  • Page 195

    Parametric Program to Cut One 60° Segment of a Fan Blade 15th PASS 60" 1st PASS C_j 2.0 Figure 15 Parametric Program of a Fan Blade N1 P10=15 P11=0 P17=0 P6=60 P8=.5 N2 P9=[.1*P11] P13=P8*SIN[P6] N3 P14=P8*COS[P6] P16=P8 N4 X[P16] Y[Pl7] ZO N5 G3 R[P8] XCO YCO X[P14] Y[P13] Z[P9] N6 G2 R[P...

  • Page 196

    P6 is the angle it sweeps P8 is the dynamic radius that increases from .5 by .1 each pass pg is the dynamic z depth that goes from o to 1.4 11 P10 is the number of times for looping = 15 P11 is the current # of loops, goes from 0-15 P13 X end point at end of ccw arc P14 Y end point at end of ccw ...

  • Page 197

    Calculated Output Parameters P80 = Xs P81 Ys P82 = Xe P83 = Ye P84 Xt P85 = Yt X starting point of tangent arc or line Y starting point of tangent arc or line X end point of tangent arc or line Y end point of tangent arc or line XC center of tangent arc (TANA case only) YC center of tangent arc (...

  • Page 198

    The Circle Generate function will calculate the center and radius of an arc through any three non-co-linear points. The general format for the CGEN function is as follows: Input Parameters P90=Xl P91=Yl P92=X2 P93=Y2 P94=X3 P95=Y3 output Parameters P80=XC P81=YC P82=R coordinates of first point c...

  • Page 199

    Nl N2 N3 N4 NS N6 N7 Sample Program Using TANA or TANL P90=0 P91=0 P92=1.5 P93=5 P94=4 P95=2 P96=5 XC of arc 1 YC of arc 1 radius of arc 1 XC of arc 2 YC of arc 2 radius of arc 2 radius of tangent arc (not used for tangent line) N8 TANA C3 or TANL C3 N9 G2 R1.5 XCO YCO X[P80] Y[P81] ~ TANA or TAN...

  • Page 200

    7. CONVERSATIONAL INPUT SCREENS This section contains diagrams of the conversational input screens, a small explanation of each screen, and the M-G code output which each screen will generate. The setup screen will always appear at the beginning of every program. It initializes certain important ...

  • Page 201

    Although the main history line does not actually change as the conversational menu keys are pressed, a history line will be shown along with each screen to describe the sequence of keys pressed to reach that screen from the main conversational menu: Fl POS F2 F3 F4 FS F6 F7 FB F9 FlO MILL DRILL B...

  • Page 202

    Fl Position GOl Feedrate [12 Coordinates [POLAR] Plane [XY] Radius [1.4142 Angle [45 z-axis [-2 CONVERSATIONAL SCREEN Polar Feed Positioning GENERATED CODE FOR POSITION F12 G17 R1.4142 AB45 Z-2 1 Tt_____l _''------_-c._ Axis move Polar angle Polar radius XY Plane Feedrate Linear interpolation See...

  • Page 203

    Tool Pierce - Start Mill Cycle Z Pierce Feedrate Clearance Final Z depth 1st Z depth Z Increment [10 [ .1 [ -1 [- . 25 [. 25 X Pierce Point [0 Y Pierce Point [0 Compensation [OFF] CONVERSATIONAL SCREEN Tool Pierce Start Mill Cycle GENERATED CODE FOR START MILL CYCLE P140 = .1 P141 = P143 = P144 -...

  • Page 204

    If cutter compensation is turned on, as is the case in the screen below, the resulting output will be identical to the previous with the exception of 2 lines. Tool Pierce - Start Mill Cycle z Pierce Feedrate Clearance Final Z Depth 1st z Depth Z Increment X Pierce Point Y Pierce Point Compensatio...

  • Page 205

    7.3.2.1 Fl LINE (MILL-GEOM-LINE) The line screen is used to do linear interpolation in Feed mode. Mill Geometry - Line GOl I Feedrate [20 ] Coordinates [CARTESIAN] x-axis [2 Y axis [2 z-:-axis [ End Option [---] Extend Back [OFF] CONVERSATIONAL SCREENS Cartesian Linear Interpolation GENERATED COD...

  • Page 206

    G01 Mill Geometry - Line Feedrate [20 Coordinates [POLAR] Plane [YZ] Polar Center YC [1 zc [-1 Radius [2 Angle [60 X-axis [ [ABSOLUTE] ] ] ] ] ] End Option [---] Extend Back [OFF] CONVERSATIONAL SCREENS Polar Linear Interpolation GENERATED CODE FOR LINE F20 G19 YC1 ZC-1 R2 AB60 T TL-------~------...

  • Page 207

    Line w/Round Corner Mill Geometry - Line Feedrate [20 ] Coordinates [CARTESIAN] X-axis [2 Y-axis [2 Z-axis [ End Option [Round Corner] Radius [.15 ] GENERATED CODE FOR ROUND CORNER GOl F20 X2 Y2, R1.5 Round corner radius ==r-See Section 3.1 . 4, page 3-17. Line w/Chamfer Mill Geometry - Line Feed...

  • Page 208

    G18 Mill Geometry - Arc Plane Feedrate Direction Coordinates Arc Radius Arc Center End Point [ZX] [10 [CCW] [ABS CENTER] R[2 ] ZC[O ] XC[2 ] z [0 ] X [4 ] y [ ] End Option [---] CONVERSATIONAL SCREENS ZX Plane Absolute Center CCW Circular Interpolation GENERATED CODE FOR ARC G03 FlO R2 ZCO XC2 ZO...

  • Page 209

    G17 Mill Geometry - Arc G03 Plane Feedrate Direction Coordinates Arc Radius [XY) [15 [CCW) [POLAR] R [3 Start Angle AA[45 z [ .5 End Option [Round Corner] Radius [. 25 CONVERSATIONAL SCREENS XY Plane Polar CCW Helical Interpolation w/Round Corner GENERATED CODE FOR ARC F15 R3 AA45 AB135 Z.5, R.25...

  • Page 210

    Ll 7.3.2.3 F3 TANGS (MILL-GEOM-TANGS) The TANGS (Tangents) screen is used to compute the intersection points necessary for a tangent arc or tangent line between two arcs. When this function is used the first arc and the tangent line or arc will be entered into the program. The second arc informat...

  • Page 211

    N1 N2 N3 N4 N5 N6 N7 7.3.2.3.1 Tangent Line Connect two arcs with tangent line or arc in the plane [XY] Mill first arc in direction CW] Rl [1. 5 ] XCl [00. 0000] YCl [00. 0000] Second arc for computation is: R2 [2 ] XC2 [5.0000 ] YC2 [4.0000 Exit first arc [ LEFT] and enter second arc [ LEFT] Con...

  • Page 212

    N1 N2 N3 N4 N5 N6 N7 7.3.2.3.2 Tangent Arc Connect two arcs with tangent line or arc in the plane [XY] Mill first arc in direction [ CW] Rl [1. 5 ] XCl [00 . 0000] YCl [00 . 0000] Second arc for computation is: R2 [2. 0000 ] XC2 [5. 0000 ] YC2 [4. 0000 Exit first arc [ LEFT] and enter second arc ...

  • Page 213

    P9 0= [ P92= [ P94= [ CGEN G17 G2 7.3.2.4 F4 CGEN (MILL-GEOM-CGEN) To use the Circle Generator any three points on an arc. will be used to compute the the specified arc. Circle Generator Plane [XY] Direction [ CW] Xl X2 X3 Yl Y2 Y3 Use X3 Y3 as end point NO] End angle function simply fill in Thes...

  • Page 214

    7.3.4 F4 END (MILL-END) This screen is used to end a previously started mill cycle. An end mill cycle without a start mill cycle, or a start mill cycle without an end mill cycle, will generate a syntax error when the program is run or verified. COMMON ERROR CODES FOR MILLING CYCLES Start Mill Cyc...

  • Page 215

    GOO Z[P140] T G65 XO Y1 T G40 Tool Retract End Mill Cycle Point on Part After Tool Retract X[O y [1 CONVERSATIONAL SCREENS Tool Retract End Mill Cycle GENERATED CODE FOR END MILL CYCLE z to clearance Rapid positioning Point after tool retract Non-movement Cancel compensation P161 P160 + .1 Set ra...

  • Page 216

    WEND GOl Fl SETUP F2 (P162) to see if milling has not been done at the final Z depth (P162=0) . If it hasn't, then tell loop to run one more time at final z depth (P162=1) . End of mill cycle. Matches WHILE in start mill cycle. Linear feed interpolation See Section 3.12.2 on page 3-43. 7.3.5 FS P...

  • Page 217

    G99 I P140 P141 P143 P145 7.3.5.1 F1 SETUP (MILL-POCK-SETUP) This screen is used to set parameters necessary for the circular and rectangular pocket routines. It must be done prior to any pocket clearing routines. Mill START and END are not to be used with pocket routines. ALL MILLING AUTOROUTINE...

  • Page 218

    P150 P153 P154 P155 G24 T 7.3.5.2 F2 CIRC (MILL-POCK-CIRC) The F2 CIRC selection brings up the following softkey selections: IF10 IESC EXIT BACK 7.3.5.2.1 F1 CLEAR (MILL-POCK-CIRC-CLEAR) Circular Pocket Clear Pocket Radius XY Finish Stock z Finish Stock Cut Width Cut Direction [CW] Compensation [...

  • Page 219

    P150 P153 P154 G25 1 7.3.5.2.2 F2 FIN (MILL-POCK-CIRC-FIN) Circular Finish Inside 4 0 0 G42 T Pocket Radius [4 Cut Direction [CW] Compensation [ON] CONVERSATIONAL SCREEN Inside CW Circular Pocket Finish GENERATED CODE FOR INSIDE CIRCLE FINISH G2 Set pocket radius Set XY finish stock to zero Set Z...

  • Page 220

    P150 P151 P152 P153 P154 P155 G34 T = 7.3.5.3 F3 RECT (MILL-POCK-RECT) The F3 rectangular pocket selection brings up the following softkeys: !FlO IESC ~XIT BACK 7.3.5.3.1 F1 CLEAR (MILL-POCK-RECT-CLEAR) Rectangular Pocket Clear X Pocket Dimension Y Pocket Dimension XY Finish Stock Z Finish Stock ...

  • Page 221

    P150 P151 P152 P153 P154 G35 T 7.3.5.3.2 F2 FIN (MILL-POCK-RECT-F IN) Rectangular Finish Inside X Pocket Dimension [2 Y Pocket Dimension [4 Corner Radius [5 Compensation [ON] Cut Direction [CW] CONVERSATIONAL SCREEN Inside CW Rectangular Pocket Finish GENERATED CODE FOR INSIDE RECTANGULAR POCKET ...

  • Page 222

    7.3.6 F6 FRAME (MILL-FRAME) The F6 frame mill selection brings up these softkeys: Fl F2 F3 FlO ESC SETUP CIRC RECT EXIT BACK G99 I P140 P141 P143 P145 7.3.6.1 F1 SETUP (MILL-FRAME-SETUP) This screen is used to set parameters necessary for circular and rectangular frame mill routines. It must be d...

  • Page 223

    P150 P153 P154 G26 T 7.3.6.2 F2 CIRC (MILL-FRAME-CIRC) Circular Finish Outside 4 0 = 0 G40 T Pocket Radius [4 Compensation [OFF] Cut Direction [CCW] CONVERSATIONAL SCREEN Outside ccw Circular Frame Mill GENERATED CODE FOR CIRCULAR FRAME G3 Set circle radius Set XY finish stock to zero Set Z finis...

  • Page 224

    7.3.6.3 F3 RECT (MILL-FRAME-RECT) Rectangular Finish outside P150 P151 2 P152 = 4 P153 P154 .5 0 0 G36 G40 T T X Pocket Dimension [2 Y Pocket Dimension [4 Corner Radius [.05 Compensation [OFF] Cut Direction [CCW] CONVERSATIONAL SCREEN Rectangular Finish Outside GENERATED CODE FOR RECTANGULAR FRAM...

  • Page 225

    7.3.7.1 Fl START 3D Sweep Cycle (MILL-3DPKT-START) The Fl START key brings up the starting menu. Start 3D sweep cycle Clearance z Pierce Feedrate Arc Feedrate Start Point [. 1 [5 [10 X [0 y [1 z [-. 2 Sweep Start Radius R[1 Sweep Start Angle AA[- .0001 Sweep End Angle AB[180 Pass Width [.05 Sweep...

  • Page 226

    sweep start angle Sweep end angle Pass width Sweep plane Cutter comp "P128=XX.XXXX" Start angle of arcs: If the start angle ~ 0°, a male part is made. If the start angle < 0°, a female part is made. "P129=XX.XXXX" End angle of arcs, always < 180° "P130=XX.X...

  • Page 227

    7.3.7.2 F2 END 3D Sweep Cycle (MILL-3DPKT-END) This key must be selected to terminate the 3DPKT cycle or an error will occur. Disable 3D Sweep Cycle CONVERSATIONAL SCREEN Disable 3D Sweep Cycle GENERATED CODE FOR DISABLE 3D SWEEP CYCLE M93 Shuts off sweep cycle DRILL KEY 7.4 F3 DRILL (DRILL) The ...

  • Page 228

    CONVERSATIONAL SCREENS Fl-DRILL (DRILL-START-DRILL) FS-BORE (DRILL-START-BORE) Enable Drill Cycle Z Pierce Feedrate (5 Spindle On CW RPM (2000 Clearance Final Z Depth G99 GOO I I Pl40 = .1 Pl41 -2 Pl45 = 5 M03 S2000 T G81 [ .1 [ - 2 G40 Enable Bore Cycle Drill Z Pierce Feedrate [5 Spindle On CW R...

  • Page 229

    7.4.1.1 F2 D/DWL (DRILL-START-D/DWL) F6 B/DWL (DRILL-START-B/DWL) Drill with Dwell Bore with Dwell Enable Drill Cycle w/Dwell Enable Bore Cycle w/Dwell Z Pierce Feedrate [5 Spindle On CW RPM [2000] Z Pierce Feedrate [5 Spindle On CW RPM [2000) Clearance Final Z Depth Dwell [ .1 [ -2 [. 5 Clearanc...

  • Page 230

    G99 I P140 P141 P144 P143 P145 P147 M03 T G83 7.4.1.2 F3 PECK (DRILL-START-PECK) Enable Drill/Peck Cycle GOO I = .1 -1 Z Pierce Feedrate [5 Spindle On CW RPM [3000] Clearance Final z Depth First Z Depth z Increment Peck Clearance [ .1 [ -1 [-. 25 [. 25 [. 01 CONVERSATIONAL SCREEN~ Peck Drilling C...

  • Page 231

    7.4.1.3 F4 WPECK (DRILL-START-PECK) Enable Woodpecker Drill Cycle Z Pierce Feedrate [10 Spindle On CW RPM [3000] Clearance Final z Depth First z Depth z Increment Peck Clearance Peckup Increment [ .1 [- 1 [-. 25 [. 25 [. 02 [. 2 CONVERSATIONAL SCREENS Woodpecker Drill Cycle GENERATED CODE FOR WOO...

  • Page 232

    G99 I P141 P145 P148 P149 M03 T G84 7.4.1.4 F7 TAP (DRILL-START-TAP) Enable Tap Cycle z Pierce Feedrate [2 Spindle On CW RPM [~00 Clearance [.~ Final z Depth [-2 Dwell Before Rev. [.05 Dwell After Rev. [.05 CONVERSATIONAL SCREEN Tap Drill Cycle GENERATED CODE FOR TAP GOO G40 L__ I -2 2 .05 .05 S1...

  • Page 233

    7.4.1.4.2 FS END Disable Drill Cycle CONVERSATIONAL SCREEN Disable Canned Cycle This screen does not require any entries but must be stored in the program to terminate the active drill cycle. If this screen is not stored, every move will cause a Z axis drill cycle to be performed. G80 I GENERATED...

  • Page 234

    CONVERSATIONAL BOLTHOLE DRILL SCREENS Diill Bolthole Cycle z Pieice Feedrate Spindle On CW RPM Cleaiance Final Z Depth Bolthole Centei X y Bolthole Radius Angle Of 1st Hole [ [ [ [ # Of Holes To Be Made # Of Holes In 360 Deg [ [ Diill/Peck Bolthole Cycle z Pierce Feedrate [ Spindle On CW RPM [ Cl...

  • Page 235

    G99 I P140 P141 P145 P148 P149 P156 P157 P158 P159 M3 I G84 G72 Tap Bolthole Cycle Z Pierce Feedrate [5 Spindle On CW RPM [50 Clearance [. 1 ] Final Z Depth [ ·1 ] Dwell Before Rev. [. 25 ] Dwell After Rev. [. 5 ] Bolthole Center X [1 ] y [1 ] Bolthole Radius [4 ] Angle Of 1st Hole [15 ] # Of Ho...

  • Page 236

    7.6 FS TOOL CHANGE (TCHG) When a new tool needs to be put in the machine tool, the Tool Change screen should be used. The two tool change screens are Tool Call and Tool Change. The tool call is used to initiate a new set of tool offsets without physically chang-ing the tool. The tool change puts ...

  • Page 237

    G70 I T2 GOO G40 I X-10 M06 S2000 I Tool Change G50 I G32 G80 I Tool [CHANGE] Tool Change Position X[-10 y [ -10 Tool Number [2] Spindle Speed [2000] Spindle Restart [CW] Stop for Speed Change [YES] Coolant [FLOOD] CONVERSATIONAL SCREEN Tool Change GENERATED CODE FOR TOOL CHANGE G69 HOO I L__ Cal...

  • Page 238

    7.7 F6 MISCELLANEOUS (MISC) As a program is being created it may be necessary to add certain miscellaneous functions such as coolant and stop commands. This is done through the MISC screen. S2000 I Miscellaneous Spindle Speed [2000] Spindle Command Coolant Command Compensation Stop Command Retuin...

  • Page 239

    Miscellaneous Spindle Speed Spindle Command Coolant Command Compensation Stop Command Return Command Cutting Mode Program Mode [ ] [OFF] [OFF] [PROGRAM] [XYZ TO ZERO] [ .-- -] [ABSOLUTE] Miscellaneous line [ CONVERSATIONAL SCREEN Miscellaneous GENERATED CODE (DEPENDING ON SELECTION) M9 G40 MO G90...

  • Page 240

    7.8 F7 CALL The program call screen is used to transfer program execution to another program for a specified number of loops. CALL I Program Call Program Number [9000] CONVERSATIONAL SCREEN Number of Loops [2 Program Number GENERATED CODE FOR PROGRAM CALL 9000 T L2 ~ Number of loops Program numbe...

  • Page 241

    7.9.1 F1 PARMS (SPEC-PARMS) P97 =1 P97 Set Parameter Set Type [LOAD] Parameter Number [97] Parameter Value [1 CONVERSATIONAL SCREEN Set Parameter GENERATED CODE FOR SET PARAMETER Set user parameter 97 to 1 Set Parameter Set Type [ADJUST] Parameter Number [97] Parameter Value [.25 CONVERSATIONAL S...

  • Page 242

    P261 P262 P261 P262 7.9.2 F2 TOOLS (SPEC-TOOLS) Set Tool Offset Note: This will only afftect the currently active tool. Set Type [LOAD] Tool Offset D [.25 H [. 75 CONVERSATIONAL SCREEN Set Tool Offset GENERATED CODE FOR SET TOOL OFFSET .25 . 7 5 Set current tool radius Set current tool length See...

  • Page 243

    GSO 7.9.3 F4 SCALE (SPEC-SCALE) Set Scale Factor Turn scaling [ON] Scale Factors X [2 y [2 z [1 Scaling Origin I [0 J [0 K [0 CONVERSATIONAL SCREEN Set Scale Factor GENERATED CODE FOR SCALING Scale factors Scale center Turn scaling on See Section 3.14 on page 3-50. Set Scale Factor Turn scaling [...

  • Page 244

    G68 I G69 7.9.4 FS ROT (SPEC-ROT) Set Rotation Angle Tuin Rotation [ON] Rotation Angle [45] Rotation Oiigin X [0 y [0 z [0 CONVERSATIONAL SCREEN Set Rotation Angle GENERATED CODE FOR ROTATION XO YO ZO AA45 ~--~,~-----~ Angle of rotation · Rotation origin Turn rotation on See Section 3.21 on page...

  • Page 245

    G71 I 7.9.5 F6 MIRR (SPEC-MIRR) xo l Set Mirror Image Turn Mirror Image [ON] Mirror Axis X [0 y [0 z [0 CONVERSATIONAL SCREEN Set Mirror Image GENERATED CODE FOR SET MIRROR IMAGE YO zo L Mirror z axis around zo Mirror y axis around YO Mirror X axis around xo Turn on mirror image See Section 3.22 ...

  • Page 246

    mo Set Mirror Image Turn Mirror Image [OFF] CONVERSATIONAL SCREEN Set Mirror Image GENERATED CODE FOR MIRROR OFF Turn off mirror image See Section 3.22 on page 3-58. 7.9.6 F7 FLZ (SPEC-FLZ) Set Floating Zero Axis X [10 y [-5 Z [O CONVERSATIONAL SCREEN Set Floating Zero GENERATED CODE FOR SET FLOA...

  • Page 247

    7-48

  • Page 248

    8. SAMPLE PROGRAMS The following sample programs give a variety of programming problems and show possible solutions to these problems using the Centurion V control. The program given for each sample part is by no means the only solution for that sample part. Each sample part begins with the drawi...

  • Page 249

    8-2

  • Page 250

    SAMPLE 1 ~---------6 .9142--------f-------- 5 ' 9142 ------; 2.50l .~-=1 n \---3l I (0.01 START/ ~ ~--·--t END ! ! ! (-l,-1) EIA PROGRAM Figure 16.1 ___________ _ ____ _j Nl GOO G17 G20 G32 G40 GSO G69 G80 G90 N2 Tl M6 N3 X-1 Y-1 83000 M03 N4 G43 HOl Z.l M08 NS GOl Z-.375 FS N6 G41 DOl XO Y-1 F2...

  • Page 251

    Explanation of EIA Program 1 N1 Selects rapid, XY plane, inch, and z to tool change position; cancels cutter compensation, scaling, rotation, and canned cycles; selects absolute dimensioning N2 Tool change #1 N3 Positions to X-1 Y-1 and turns spindle on (3000 rpm) N4 Calls tool #1's "H"...

  • Page 252

    1. 2. 3 . 4. 5. Conversational Program 1 Program setup . A. Dimensions ABSOLUTE * B. Units ENGLISH * Tool change (TCHNG) A. Tool CHANGE * B. Tool change position X y----C. Tool number 1 D. Spindle speed 3000 E. Spindle restar~W * F. Coolant FLOOD * Position (POS) A. Feedrate RAPID * B. Coordinate...

  • Page 253

    D. E. 3. 4 . 5. 6. 7. 8. Line a) b) c) Arc a) b) c) d) e) f) Line a) b) c) d) e) Arc a) b) c) d) e) f) Line a) b) c) Line a) b) c) (LINE) coordinates X axis 1. 5 Y axis 3.5 (ARC) CARTESIAN * plane XY * direction ccw * coordinates-FOLAR * arc radius 1 start angle 180 end angle -45 (LINE) coordinat...

  • Page 254

    6. 7. 8. F. Previous menu (BACK) Position (POS) A. Feedrate RAPID * B. Coordinates CARTESIAN * c. z axis .1 Miscellaneous (MISC) A. Spindle OFF * B. Coolant OFF * End program (EXIT) 8-7 Event 16 Event 17 Event 18

  • Page 255

    8-8

  • Page 256

    Explanation of EIA Program N1 Selects rapid, XY plane, inch, and z to tool change position; cancels cutter compensation, scaling, rotation, and canned cycles; selects absolute dimensioning. N2 Tool change #1 N3 Positions to X-1 Y1; turns spindle on CW (3000 rpm) N4 Calls tool #1's "H" ...

  • Page 257

    1. 2 . 3 . 4. 5. Conversational Program 2A Program setup A. Dimensions ABSOLUTE * B. Units ENGLISH * Tool change (TCHNG) A. Tool CHANGE * B. Tool change position X c. D. E. F. Tool number 1 Spindle speed 3000 Spindle restart CW Coolant FLOOD * Position (POS) A. Feedrate RAPID * y----* B. Coordina...

  • Page 258

    D. E. 3) 4) 5) 6) 7) Arc a) b) c) d) e) f) Arc a) b) c) d) e) f) Arc a) b) c) d) e) f) Line a) b) c) (ARC) plane XY * direction CCW * coordinates ABS CENTER * arc radius 1.0 arc center XC 1 YC -1.5 end point X 1 y -2.5 (ARC) plane XY * direction cw * coordinates-ABS CENTER * arc radius 1.4142 arc...

  • Page 259

    8-14

  • Page 260

    SAMPLE 2B Same Part as Sample 2A but Programmed Using Tangent Arc Function r------5.4142 ------1 (-1,1) ""='--, START/-----\ END \ '----t --------------------- ----------- -l r-~~(-0-,0-)------------~: -I' 50 : I I i t ! --+-! i // / I .00 R I .4142 R l .OOR L CENTER POINT CALCULATED US...

  • Page 261

    Explanation of EIA Program N1 Selects rapid, XY plane, inch, and Z to tool change position; cancels cutter compensation, scaling, rotation, and canned cycles; selects absolute dimensioning. N2 Tool change #1 N3 Positions to X-1 Y1; turns spindle on CW (3000 rpm) N4 Calls tool #1's 11H11 offset an...

  • Page 262

    1. 2. 3 . 4 . 5. Conversational Program 2B Program setup A. Dimensions ABSOLUTE * B. Units ENGLISH * Tool change (TCHNG) A. Tool CHANGE * B. Tool change position X y c. Tool number 1 D. Spindle speed 3000 E. Spindle restart cw * F. Coolant FLOOD * Position (POS) A. Feedrate RAPID * B. Coordinates...

  • Page 263

    D. E. 3) Tangent arc (TANGS) Event 8 a) plane XY * b) first arc direction ccw * c) Rl [1] (radius of firstarc) d) XCl [1] YCl [ -1.. 5] (center of first arc) Second arc information e) R2 [1] (radius of second arc) f) XC2[4.4142] YC2[-1.5] (center of second arc) g) Exit 1st arc [RIGHT]* and enter ...

  • Page 264

    6 . 7. 8. Position (POS) A. Feedrate RAPID * B. Coordinates CARTESIAN * c. Z axis .1 Miscellaneous (MISC) A. Spindle OFF * B. Coolant OFF * End program (EXIT) 8-19 Event 14 Event 15 Event 16

  • Page 265

    8-20

  • Page 266

    Explanation of EIA Program Nl Selects rapid, XY plane, inch, and Z to tool change position; cancels cutter compensation, scaling, rotation, and canned cycles; selects absolute dimensioning. N2 Tool change #1 N3 Selects left cutter compensation, activates tool #l's "D" offset, and turns ...

  • Page 267

    1. 2. 3. Conversational Program 3A Program setup A. Dimensions ABSOLUTE * B. Units ENGLISH * Tool change (TCHNG) A. Tool CHANGE * B. Tool change position X ________ _ y ---------c. Tool number 1 D. Spindle speed 3000 E. Spindle restart CW * F. Coolant FLOOD * Mill (MILL) A. Start (START) B. 1. z ...

  • Page 268

    4. c. D. 4. 5. 6 . 7. 8. Arc a) b) c) d) e) f) Arc a) b) c) d) e) f) Line a) b) c) Line a) b) c) Line a) b) c) (ARC) plane XY * direction CW * coordinates ABS CENTER * arc radius 1 arc center XC 4 YC 2 end point X 5 y 2 (ARC) plane XY * direction ccw * coordinates ABS CENTER * arc radius 2 arc ce...

  • Page 269

    SAMPLE 3B same Part as Sample 3A but Programmed Using Tangent Line Function t------- 9.00----------1 Figure 16.3 EIA PROGRAM Nl N2 N3 N4 N5 N6 N7 N8 N9 NlO Nll N12 N13 N14 N15 N16 N17 N18 N19 N20 N21 N22 N23 N24 N25 N26 Note: GOO G20 G32 G40 G50 G69 G80 G90 Tl M6 G41 DOl S3000 M03 G65 XO Y99 XO Y...

  • Page 270

    Explanation of EIA Program Nl Selects rapid, XY plane, inch, and Z to tool change position; cancels cutter compensation, scaling, rotation, and canned cycles; selects absolute dimensioning. N2 Tool change #1 N3 Selects left cutter compensation, activates tool #l's "D" offset, and turns ...

  • Page 271

    N24 Turns off cutter compensation N25 Rapids z to .1, turns off coolant N19 Turns off spindle 8-27

  • Page 272

    1. 2. 3. Conversational Program 3B Program setup A. Dimensions ABSOLUTE * B. Units ENGLISH * Tool change (TCHNG) A. Tool CHANGE * B. Tool change position X y-----C. Tool number 1 D. Spindle speed 3000 E. Spindle restart CW * F. Coolant FLOOD * Mill (MILL) A. Start (START) B. 1. Z pierce feedrate ...

  • Page 273

    4. c. D. 4. 5. 6. 7. e) arc center XC 4 YC 2 f) end point X 5 Arc a) b) c) d) e) f) Line a) b) c) Line a) b) c) Line a) b) c) y 2 (ARC) plane XY * direction CCW * coordinates ABS CENTER * arc radius 2 arc center XC 7 YC 2 end point X 9 y 2 (LINE) coordinates X axis 9 Y axis 5 (LINE) coordinates X...

  • Page 274

    8-30

  • Page 275

    SAMPLE 4A I. -4.2426-----t•l ~--~-2.1213---1•1 ( 0,0) ~~-~--r-------------~------------~ Figure 16.4 EIA PROGRAM Nl GOO G17 G20 G32 G40 G50 G69 G80 G90 N2 Tl M6 N3 G41 DOl 83000 M03 N4 G65 X99 YO N5 XO YO N6 G43 HOl Z.l M08 N7 GO 1 Z- . 3 7 5 F5 N8 XO Y- 2 F25 N9 G02 XCO YC-3 Xl Y-3 Rl NlO G0...

  • Page 276

    Explanation of EIA Program N1 Selects rapid, XY plane, inch, and Z to tool change position; cancels cutter compensation, scaling, rotation, and canned cycles; selects absolute dimensioning. N2 Tool change #1 N3 Selects left cutter compensation, activates tool #1's "D" offset, and turns ...

  • Page 277

    1. 2. 3. Conversational Program 4A Program setup A. Dimensions ABSOLUTE * B. Units ENGLISH * Tool change (TCHNG) A. Tool CHANGE * B. Tool change position X y-----c. Tool number 1 D. Spindle speed 3000 E . Spindle restart CW * F. Coolant FLOOD * Mill (MILL) A. Start (START) B. 1. Z pierce feedrate...

  • Page 278

    4. c. D. 4. 5. 6. f) end point X 2.1213 Arc a) b) c) d) e) f) Line a) b) c) Line a) b) c) y -4.2929 (ARC) plane XY * direction CW * coordinates-ABS CENTER * arc radius 1 arc center XC 4.2426 YC _--=-3-:::-::---end point X 4.2426 y .::::;.2 __ _ (LINE) coordinates CARTESIAN * X axis 4.2426 Y axis ...

  • Page 279

    SAMPLE 4B Programming Arc Using 3 Point Circle Generate Points Xl, X2, X3 Are the Points Used to Program Each Arc F 4.2426 2.1213~ r-~--,<_O~,O~>r-------------r-~----------~ 2.000 ............ _. 2.00 R Figure 16.4 EIA PROGRAM Nl GOO G17 G20 G32 G40 G50 G69 G80 G90 N2 Tl M6 N3 G41 DOl S3000...

  • Page 280

    N21 P94=4.1213 N22 P95=-2.2929 N23 CGEN N24 G03 XC[PBO] YC[P81] R[P82] AB300 N25 P90=4.2426 N26 P91= - 4 N27 P92=3.2426 N28 P93=-3 N29 P94=4.2426 N30 P95=-2 N31 CGEN N32 G02 XC[PBO] YC[P81] R[P82] X[P94] Y[P95] N33 GOl X4.2426 YO N34 XO YO N35 G65 XO Y-99 N36 G40 N37 GOO Z.l M09 N38 M05 8-36

  • Page 281

    Explanation of EIA Program N1 Selects rapid, XY plane, inch, and Z to tool change position, cancels cutter compensation, scaling, rotation, and canned cycles; selects absolute dimensioning. N2 Tool change #1 N3 Selects left cutter compensation, activates tool #1's "D" offset, and turns ...

  • Page 282

    N37 Rapids Z to .1, turns coolant off N38 Turns spindle off 8-38

  • Page 283

    1. 2. 3 . Conversational Program 4B Program setup A. Dimensions ABSOLUTE * B. Units ENGLISH * Tool change (TCHNG) A. Tool CHANGE * B. Tool change position X y-----c. Tool number 1 D. Spindle speed 3000 E. Spindle restart CW * F. Coolant FLOOD * Mill (MILL) A. Start (START) B. 1. z pierce feedrate...

  • Page 284

    4. c. D. 4. 5. 6 . Circle generate (CGEN) a) plane XY * b) direction CW * c) X1[4.2426]Y1[-4] d) X2[3.2426] Y2[-3] e) X3[4.2426] Y3[-2] f) X3, Y3 end point [YES] * Line a) b) c) Line a) b) c) (LINE) coordinates CARTESIAN * X axis 4.2426 Y axis o (LINE) coordinates X axis o Y axis 0 CARTESIAN * 7....

  • Page 285

    SAMPLE 5 2.00 R 2.00 R I ! ___ ......--r------._ ........-----+----.. _ , • .. ..... , // IIi ·-.......,, / I ' ' 1/ I \' l' I '· /. i '\ ./ ll \\\ I I \ I I I \ i i \ i '\i ' 1 --, ·- _______ .w______ --·--------r---·-2.,00 I I I i ' ~L---L-----=~---+----~------~---_--_--_-_--~--~-------~...

  • Page 286

    Explanation of EIA Program N1 Selects rapid, XY plane, inch, and Z to tool change position; cancels cutter compensation, scaling, rotation, and canned cycles; selects absolute dimensioning. N2 Tool change #1 N3 Selects right cutter compensation, calls tool #1's "D" offset, and turns on ...

  • Page 287

    1. 2 . 3 . conversational Program 5 Program setup A. Dimensions ABSOLUTE * B. Units ENGLISH * Tool change (TCHNG) A. Tool CHANGE * B. Tool change position X y-----C. Tool number 1 D. Spindle speed 3000 E. Spindle restart CW * F. Coolant FLOOD * Mill (MILL) A. Start (START) B. 1. z pierce feedrate...

  • Page 288

    4. c. D. 4. 5. e) arc center XC 4.8284 YC 2 --:-~--f) end point X 6.8284 Line a) b) c) Line a) b) c) y 2 (LINE) coordinates CARTESIAN * X axis 6.8284 Y axis 0 (LINE) coordinates X axis 0 Y axis o CARTESIAN * 6. Previous menu (BACK) End mill cycle (END) 1. Point after retract X 0 y 99 Miscellaneou...

  • Page 289

    SAMPLE 6 1.50 R .,___ ___ -4.00 ------4 k------- -6. 10 -------..1 Figure 16.6 EIA PROGRAM Nl GOO Gl7 G20 G32 G40 G50 G69 G80 G90 N2 Tl M6 N3 G42 DOl 83000 M03 N4 G65 XO YO N5 X.5 Y1.5 N6 G43 HOl Z.l M8 N7 GOl Z-.375 F5 N8 Xl Y3 F25 N9 X. 98 Y3 NlO G03 XC-1.2689 YC2.2 X-3.8 Y3 R1.5 Nll GOl X-4 Y3...

  • Page 290

    Explanation of EIA Program N1 Selects rapid, XY plane, inch, and z to tool change position; cancels cutter compensation, scaling, rotation, and canned cycles; selects absolute dimensioning. N2 Tool change #1 N3 Selects right cutter compensation, activates #1's "D" offset, and turns on ...

  • Page 291

    1. 2. 3. Conversational Program 6 Program setup A. Dimensions ABSOLUTE * B. Units ENGLISH * Tool change (TCHNG) A. Tool CHANGE * B. Tool change position X y-----c. Tool number 1 D. Spindle speed 3000 E. Spindle restart cw * F. Coolant FLOOD * Mill A. B. (MILL) Start (START) 1. Z pierce feedrate 5...

  • Page 292

    4. c. D. 4. 5. 6 . 7. 8. Line a) b) c) Line a) b) c) Line a) b) c) Line a) b) c) Line a) b) c) (LINE) coordinates CARTESIAN * X axis -4 Y axis --::-3--(LINE) coordinates CARTESIAN * X axis -6.1 Y axis .5 (LINE) coordinates CARTESIAN * X axis -6.1 Y axis o (LINE) coordinates CARTESIAN * X ax1s 0 Y...

  • Page 293

    SAMPLE 7 Sample Program Using Rotary Axis The "A" axis is programmed in decimal degrees in XXX.XXX format and performs linear interpolation with the X, Y, and z axes. The feedrate for the rotary axis is specified in degrees per minute divided by 10, example: Gl A90 F18.0 In the above e...

  • Page 294

  • Page 295

    APPENDIX A Control Parameters Great care must be taken when writing to any parameters other than the User Parameters, POO - P99. P140 P141 P142 P143 P144 P145 P146 P147 ·-. P148 P149 P150 P151 P152 P153 P154 P155 P156 P157 P158 P159 P160-P171 P172 P173 P174 P175 P176 P177 P178 P179 P180 P181 P18...

  • Page 296

    P242 P243 P244 P245 P246 P247 P248 P149 P250 P251 P252 P253 P254 P255 P256 P257 P258 P259 P260 P261 P262 P263 P264 P265 P266 P267 P268 P269 P270 P271 P272 P27 3-P299 P300 P301 P302 P303 P304 P305 P306 P307 P308 P309 P310 P311 P312 P313 P314 P315 P316 P317 P318 P319 P320 Tool offset axis 3 (Z) Too...

  • Page 297

    P448 P449 P450 P451 P452 P453 P454 P455 P456 P457 P458 P459 P460 P461 P462 P463 P464 P465 P466-P499 Tool change offset (X) Tool change offset (Y) Tool change offset (Z) Tool change offset (A) Tool chg. offset opt.axis Tool chg. offset opt.axis Positive safe zone (X) Positive safe zone (Y) Positiv...

  • Page 298

    PllOO-Axis 2 Address Pll45 P1200-Axis 3 Address P1245 P1300-Axis 4 Address P1345 P1400-Axis 5 Address Pl445 P1500-Axis 6 Address Pl545 PlOOO Axis address label (X) PlOOl Pulses per unit (X) P1002 Home position (X) P1003 Home direction (X) P1004 Positive limit (X) P1005 Negative limit (X) P1006 Ma...

  • Page 299

    CENTURION V SYSTEM PARAMETERS customer: Machine Type: Checked By: Notes: *Decimal Precision* Cartesian Angular Spindle Feed *Power On Defaults* English Lead Trail Machine Unit: Number of Axes: Feed Unit Spindle Unit Spindle Axis Tool Change 100% Rapid/Run 100% Rapid/Dry Spindle on Dry *Feedrate O...

  • Page 300

    *Spindle Override Settings* 1 -5 -2 -6 -3 -7 -4 -8 -*Axis Setup* Axis Address Label X: Y: Z: A: Home Position X: Y: Z: A: Negative Limit X: Y: Z: A: Dry Run Feed X: Y: Z: A: Rapid Ace/Dec: Home Sequence X: Velocity Toward Home Y: Z: A: X: Y: Z: A: Velocity Toward X: Marker Y: Z: A: 9 -13 -10 -14 ...

  • Page 301

    Encoder Multiplier X: Y: Z: A: Slow Jog Velocity Rapid Jog Velocity Slow Jog Ace/Dec Rapid Jog Ace/Dec In Position X: GOO X: Y: Unidirectional Y: Z: Z: A: A: G60 Unidirectional X: Backlash X: Y: Y: Z: Z: A: A: Excess Error X: Rotary=O X: Y: Linear=l Y: Z: Z: A: A: English Leading X: Engl. Trailin...

  • Page 302

  • Page 303

    ERROR MESSAGES 001 Note what just occurred and call for technical support. 002 File not found File name specified as OLD does not exist. Try MENU. 003 Path not found Check path settings in Centurion V shell. 004 Too many open files Check Config.sys for FILES=20. 005-Note what just occurred and ca...

  • Page 304

    101 Disk write error - Parts memory is full To avoid this error, remove programs from memory as you are done using them (store on a floppy) . Also, watch the amount of memory available as you are programming. Deleting some programs from the parts memory will free up space for additional programs....

  • Page 305

    163 Zoom factor is too large Zoom+ was pressed too many times in DISPLAY-GRAPH mode. 200- Note what just occurred and call for technical support. 202 203 Heap overflow - Insufficient RAM memory Run the DOS command CHKDSK to determine the amount of RAM that is available on the system. If possible,...

  • Page 306

    304 Problem loading program(s) from disk Disk was removed from floppy drive after setting files. 305 Not formatted for conversational. Try text editor. 306 Note what just occurred and call for technical support. 307 Illegal event number Event number in conversational program is negative. 308 Inva...

  • Page 307

    400 Home required 401 402 403 404 405 406 The machine must be horned before any axis movement can take place on the machine, i.e. MDI, JOG, HDW, etc. The "horne sequence" parameters can be modified so that the machine will not actually horne when commanded. Set "horne sequence&q...

  • Page 308

    415 Can't establish DNC link while program is running or verifying The program being run must be halted before the DNC link can be established. 416 Out of position 417 can't edit parameters while program is running The program must be halted before editing parameters. Is the program in block mode...

  • Page 309

    518 Illegal program statement Command in program statement is not considered valid. 519 Feedrate out of range The programmed feedrate is beyond the "maximum feedrate" parameter value in the machine setup parameters. The program feedrate may be negative. 520 Spindle speed out of range T...

  • Page 310

    538 Loop counter out of range The maximum number of loops for a call is 999. 539 Dwell time out of range Probably a negative number was specified. The maximum dwell time is 999999999. seconds. 540 Illegal dwell time 11 11 encountered Try G4 F##.####; specify X, P, or F after G4. 541 No axes moves...

  • Page 311

    554 Tangent function overflow Trying to find the tangent of a number close to 90° 555 Missing "/" Arctan "ATAN" syntax is P## = ATAN[#/#]. 556-Note what just occurred and call for technical support. 560 567 Unresolved call Program being called does not exist (Call ####) . 56...

  • Page 312

    600 Can't nest Start/End mill cycles -WHILE WEND loops-Do not start a mill cycle within a mill cycle. 601 Missing WHILE statement May be an end mill cycle without a start mill cycle. 602 Missing WEND statement May be a start mill cycle without an end mill cycle. 603 Program does not exist Program...

  • Page 313

    806 Scan origin expected Multiple pick segment started without defining the start of the scans within that segment. 807 Probe file not found Could not find the selected input file. 808 Setup not selected Tried to probe without selecting both the input file and the output mode from the probe setup...

x